Di-, tri- and tetraphosphine-substituted Fe/Se carbonyls: Synthesis, Characterization and electrochemical properties

Shu-Fen Bai, a Xiu-Mei Du, a Wen-Jing Tian, b Hang Xu, b Ru-Fen Zhang, a Chun-Lin Ma a, Yan-Lan Wang, a Shuang Lü, c Qian-Li Li,*a and Yu-Long Li *b

a Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P.R. China
b College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
c School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, P.R. China

Contents

Figs. S1-S38. IR and NMR spectra for 1 - 7.........................pages 2-20
Fig. 39. Plots of i_cat (μA) vs [HOAc] (mM) for a solution of 4, 6 and 7 (1.0 mM) with 0.1 M n-Bu4NPF6/MeCN at a scan rate of 0.1 V s⁻¹. page 21
Table S1. Crystal data and structure parameters for 1-3....................page 22
Table S2. Crystal data and structure parameters for 4 - 7..................page 23
Tables S3-S10. Selected distance (Å) and angles (°) for 1 - 7..............pages 24-28
Figure S1. FT-IR (CH$_2$Cl$_2$, 25°C) spectrum of 1. Assignments: $\nu_{CO} = 2005, 1950$ cm$^{-1}$.

Figure S2. 1H NMR (500 MHz, CDCl$_3$, 25°C) spectrum of 1. Assignments: $\delta =$ 7.47-6.97 (m, 20H, 4C$_6$H$_5$), 1.87 (t, $^2J_{P-H} = 4.5$ Hz, 12H, 4CH$_3$) ppm.
Figure S3. 31P NMR (202 MHz, CDCl$_3$, 25 °C) spectrum of 1.
Assignments: $\delta = 11.28$ (s) ppm

Figure S4. 13C NMR (126 MHz, CDCl$_3$, 25 °C) spectrum of 1.
Assignments: $\delta = 212.3$ (t, $^2J_{P-C} = 21.4$, Fe(CO)$_2$), 139.8-125.3 (CsHs), 14.7 (t, $J_{P-C} = 17.4$ Hz, PCH$_3$) ppm
Figure S5. FT-IR (CH$_2$Cl$_2$, 25°C) spectrum of 2. Assignments: $\nu_{CO} = 2000, 1946$ cm$^{-1}$.

Figure S6. 1H NMR (500 MHz, CDCl$_3$, 25°C) spectrum of 2. Assignments: $\delta = 7.65, 7.14, 7.08$ (d, t, $^3J_{H-H} = 7.5$ Hz, 10H, 2C$_6$H$_5$), 1.58 (t, $^2J_{P-H} = 4$Hz, 18H, 6CH$_3$) ppm.
Figure S7. 31P NMR (202 MHz, CDCl$_3$, 25 °C) spectrum of 2.

Assignments: $\delta = 2.04$ (s) ppm

Figure S8. 13C NMR (126 MHz, CDCl$_3$, 25 °C) spectrum of 2. Assignments: $\delta = 212.7$ (t, $^{2}J_{P-C} = 22.0$, Fe(CO)$_2$), 136.7, 133.6, 128.1, 125.6 (C$_6$H$_5$), 17.4 (t, $^{3}J_{P-C} = 16.2$ Hz, PCH$_3$) ppm.
Figure S9. FT-IR (CH$_2$Cl$_2$, 25°C) spectrum of 3-anti.

Figure S10. 1H NMR (500 MHz, CDCl$_3$, 25 °C) spectrum of 3-anti.

Assignments: δ = 7.48-6.86 (m, 20H, 4C$_6$H$_5$), 3.50, 2.63 (2s, 4H, 2PhCH$_2$), 1.71 (t, $J = 8.0$ Hz, 12H, 4PCH$_3$) ppm.
Figure S11. 31P NMR (202 MHz, CDCl$_3$, 25 °C) spectrum of 3-anti.

Assignments: $\delta = 216.7$, (t, $^2J_{P-C} = 3.2$ Hz, PFe(CO)$_2$), 126.0-141.6 (m, C$_6$H$_5$), 32.0 (s, Ph$_2$H), 20.9 (d, $^1J_{P-C} = 12.8$ Hz, PCH$_3$), 20.7 (d, $^1J_{P-C} = 11.9$ Hz, PCH$_3$).

Figure S12. 13C NMR (126 MHz, CDCl$_3$, 25 °C) spectrum of 3-anti.

Assignments: $\delta = 216.7$, (t, $^2J_{P-C} = 3.2$ Hz, PFe(CO)$_2$), 126.0-141.6 (m, C$_6$H$_5$), 32.0 (s, Ph$_2$H), 20.9 (d, $^1J_{P-C} = 12.8$ Hz, PCH$_3$), 20.7 (d, $^1J_{P-C} = 11.9$ Hz, PCH$_3$).
Figure S13. VT-1HNMR spectrum of 3-anti in CD\textsubscript{2}Cl\textsubscript{2}.

Figure S14. VT-31PNMR spectra of 3-anti in CD\textsubscript{2}Cl\textsubscript{2}.
Figure S15. FT-IR (CH$_2$Cl$_2$, 25°C) spectrum of 3-syn.
Assignments: $\nu_{CO} = 1977, 1932, 1912$ cm$^{-1}$.

Figure S16. 1H NMR (500 MHz, CDCl$_3$, 25°C) spectrum of 3-syn.
Assignments: $\delta = 7.41-7.10$ (m, 20H, 4C$_6$H$_5$), 3.27 (s, 4H, 2PhCH$_2$), 1.56 (d, $J = 6.5$ Hz, 12H, 4PCH$_3$) ppm.
Figure S17. 31P NMR (202 MHz, CDCl$_3$, 25 °C) spectrum of 3-syn.

Assignments: $\delta = 21.58$ (s) ppm

Figure S18. 13C NMR (126 MHz, CDCl$_3$, 25 °C) spectrum of 3-syn.

Assignments: $\delta = 217.8$, (t, $^2J_{P-C} = 3.2$ Hz, PFe(CO)$_2$), 126.5-142.5 (m, C$_6$H$_5$), 30.3 (s, PhCH$_2$), 20.5, 20.3 (2t, $J_{P-C} = 11.2$ Hz, PCH$_3$).
Figure S19. FT-IR (in CH₂Cl₂, 25°C) spectrum of 4-anti.
Assignments: ν\textsubscript{CO} = 1974, 1937, 1906 cm\(^{-1}\).

Figure S20. \(^1\)H NMR (500 MHz, CDCl₃, 25 °C) spectrum of 4-anti. Assignments: δ = 7.14-7.41(m, 10H, 2C₆H₅), 3.65, 3.13 (2s, 4H, 2CH₂), 1.39 (d, \(^2\)Jₚ-H = 8.5Hz, 18H, 6CH₃) ppm.
Figure S21. 31P NMR (202 MHz, CDCl$_3$, 25 °C) spectrum of 4-anti.
Assignments: $\delta = 21.02$ (s) ppm.

Figure S22. 13C NMR (126 MHz, CDCl$_3$, 25 °C) spectrum of 4-anti.
Assignments: $\delta = 217.2$ (t, $^2J_{P\text{-}C} = 18.9$, Fe(CO)$_2$), 141.8-125.7 (m, C$_6$H$_5$), 31.6 (s, CH$_2$), 22.0 (d, $J_{P\text{-}C} = 27.7$ Hz, PCH$_3$) ppm.
Figure S23. FT-IR (in CH₂Cl₂, 25°C) spectrum of 4-syn.
Assignments: νCO = 1975, 1929, 1908 cm⁻¹.

Figure S24. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of 4-syn.
Assignments: δ = 7.17-7.32 (m, 10H, 2C₆H₅), 3.67 (s, 4H, 2PhCH₂), 1.31 (d, J = 4.5 Hz, 18H, 6CH₃) ppm
Figure S25. 31P NMR (202 MHz, CDCl$_3$, 25 °C) spectrum of 4-syn. Assignments: $\delta = 10.35$ (s) ppm

Figure S26. 13C NMR (126 MHz, CDCl$_3$, 25 °C) spectrum of 4-syn. Assignments: $\delta = 218.4$ (t, $^2J_{P-C} = 3.7$, Fe(CO)$_2$), 141.4, 128.8, 128.4, 126.5 (s, C$_6$H$_5$), 30.1 (s, CH$_2$), 22.1-21.7 (m, PCH$_3$).
Figure S27 31P NMR spectra in the reaction of 5 equivalents of PMe$_3$ with Fe(μ-SeCH$_2$Ph)$_2$(CO)$_6$ in toluene (stirred at room temperature for 4h (1), then heated to 100°C for 1h (2)).

Figure S28. FT-IR (in CH$_2$Cl$_2$, 25°C) spectrum of 5. Assignments: $\nu_{CO} = 1942$, 1885, 1660 cm$^{-1}$.
Figure S29. 1H NMR (500 MHz, C$_6$D$_6$, 25 °C) spectrum of 5. *Assignments:* $\delta =$ 6.91-7.65 (m, 25H, 4C$_6$H$_5$), 3.99, 3.55, 3.15, 2.90 (ABq, $^2J_{H-H} = 11.5$Hz, 4H, 2C$_6$H$_5$CH$_2$), 1.81, 1.63, 1.56, 1.51, 1.29, 1.09 (6d, $^2J_{P-H} = 8.0$ Hz, 18H, 6CH$_3$) ppm.

Figure S30. 31P NMR (202 MHz, C$_6$D$_6$, 25 °C) spectrum of 5. *Assignments:* $\delta =$ 32.0 (d, $J = 11.7$ Hz, *apical-*Fe(CO)(PPhMe$_2$)$_2$), 29.6 (d, $J = 11.6$ Hz, *apical-*Fe(CO)$_2$PPhMe$_2$), 17.9 (t, $J = 12.1$ Hz, *basal-*Fe(CO)(PPhMe$_2$)$_2$) ppm.
Figure S31. 13C NMR (126 MHz, C$_6$D$_6$, 25 °C) spectrum of 5. Assignments: $\delta =$ 221.8-222.2 (m, Fe(CO)), 217.6 (s, Fe(CO)), 143.9-125.8 (m, C$_6$H$_5$), 31.4(s, CH$_2$), 23.9-15.7 (m, PCH$_3$) ppm.

Figure S32. FT-IR (in CH$_2$Cl$_2$, 25°C) spectrum of 6.
Assignments: νco = 1938, 1880, 1855 cm$^{-1}$.
Figure S33. 1H NMR (500 MHz, C$_6$D$_6$, 25 °C) spectrum of 6. Assignments: $\delta = 6.95$-7.60 (m, 10H, 2C$_6$H$_5$), 4.01, 3.75 (2d, 2J$_{H-H} = 11.5$Hz, 2H, e-C$_6$H$_5$CH$_2$), 3.15 (s, 2H, a-C$_6$H$_5$CH$_2$), 1.27, 1.22, 1.18 (3d, 2J$_{P-H} = 8.0$ Hz, 27H, 9CH$_3$) ppm.

Figure S34. 31P NMR (202 MHz, C$_6$D$_6$, 25 °C) spectrum of 6. Assignments: $\delta = 22.0$ (d, 3J$_{P-P} = 11.5$ Hz, apical-Fe(CO)(PMe$_3$)$_2$), 19.9 (d, 3J$_{P-P} = 8.7$ Hz, apical-Fe(CO)$_2$PMe$_3$), 22.0 (dd, 3J$_{P-P} = 11.3$, 9.1Hz, basal-Fe(CO)(PMe$_3$)$_2$).
Figure S35. 13C NMR (126 MHz, C$_6$D$_6$, 25 °C) spectrum of 6. Assignments: $\delta =$ 221.3-222.8 (m, Fe(CO)), 218.2 (s, Fe(CO)), 143.1-125.8 (m, C$_6$H$_5$), 31.3 (s, CH$_2$), 24.2-15.5 (m, PCH$_3$) ppm.
Figure S36. FT-IR (in toluene, 25°C) spectrum of 7. Assignments: $\nu_{CO} = 1938, 1880, 1855 \text{ cm}^{-1}$.

Figure S37. 1H NMR (500 MHz, C$_6$D$_6$, 25°C) spectrum of 7. Assignments: $\delta = 6.96$-7.79 (m, 10H, 2C$_6$H$_5$), 3.67 (d, 2H, e-C$_6$H$_3$CH$_2$), 3.15 (s, 2H, a-C$_6$H$_3$CH$_2$), 1.09-1.45 (m, 36H, 12CH$_3$) ppm.
Figure S38. 31P NMR (202 MHz, C$_6$D$_6$, 25 °C) spectrum of 7. Assignments: $\delta = 26.6$ (s), 24.1 (s), 13.1 (s), 10.0 (s).

Figure S39. Plots of i_{cat} (μA) vs [HOAc] (mM) for a solution of 4, 6 and 7 (1.0 mM) with 0.1 M n-Bu$_4$NPF$_6$/MeCN at a scan rate of 0.1 V s$^{-1}$.
<table>
<thead>
<tr>
<th>Compound</th>
<th>1</th>
<th>2</th>
<th>3-syn</th>
<th>3-anti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol formula</td>
<td>C₃₀H₃₂FeO₂P₂Se₂</td>
<td>C₂₀H₂₈FeO₂P₂Se₂</td>
<td>C₃₄H₃₆Fe₂O₄P₂Se₂</td>
<td>C₃₄H₃₆Fe₂O₄P₂Se₂</td>
</tr>
<tr>
<td>Mol wt</td>
<td>700.26</td>
<td>576.13</td>
<td>840.19</td>
<td>840.19</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>1.54178</td>
<td>0.71073</td>
</tr>
<tr>
<td>Cryst syst</td>
<td>Triclinic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
<td>P-1</td>
<td>P21/c</td>
<td>P 21/n</td>
</tr>
<tr>
<td>a /Å</td>
<td>9.5662(8)</td>
<td>11.7653(12)</td>
<td>21.2567(5)</td>
<td>9.1562(9)</td>
</tr>
<tr>
<td>b /Å</td>
<td>10.8574(9)</td>
<td>14.8573(15)</td>
<td>20.1481(5)</td>
<td>18.9496(16)</td>
</tr>
<tr>
<td>c /Å</td>
<td>15.7815(13)</td>
<td>15.8567(16)</td>
<td>17.2656(5)</td>
<td>20.2164(18)</td>
</tr>
<tr>
<td>α/deg</td>
<td>76.313(2)</td>
<td>112.254(5)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β/deg</td>
<td>88.635(3)</td>
<td>92.185(2)</td>
<td>90.004(2)</td>
<td>97.088(2)</td>
</tr>
<tr>
<td>γ/deg</td>
<td>77.739(2)</td>
<td>96.229(3)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V/Å³</td>
<td>1555.7(2)</td>
<td>2540.7(5)</td>
<td>7394.5(3)</td>
<td>3480.9(5)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Dₐ/gcm⁻³</td>
<td>1.495</td>
<td>1.506</td>
<td>1.509</td>
<td>1.603</td>
</tr>
<tr>
<td>abs coeff/mm⁻¹</td>
<td>2.952</td>
<td>3.596</td>
<td>9.635</td>
<td>8.130</td>
</tr>
<tr>
<td>F(000)</td>
<td>704</td>
<td>1152</td>
<td>3376</td>
<td>1688</td>
</tr>
<tr>
<td>index ranges</td>
<td>-11≤h≤10</td>
<td>-13≤h≤13</td>
<td>-25≤h≤25</td>
<td>-10≤h≤10</td>
</tr>
<tr>
<td></td>
<td>-12≤k≤12</td>
<td>-17≤k≤17</td>
<td>-23≤k≤23</td>
<td>-22≤k≤22</td>
</tr>
<tr>
<td></td>
<td>-17≤l≤18</td>
<td>-18≤l≤12</td>
<td>-20≤l≤19</td>
<td>-16≤l≤24</td>
</tr>
<tr>
<td>no. of refns</td>
<td>7877</td>
<td>12842</td>
<td>48505</td>
<td>17475</td>
</tr>
<tr>
<td>no. of indep refns</td>
<td>5374</td>
<td>8768</td>
<td>12916</td>
<td>6093</td>
</tr>
<tr>
<td>Goodness of fit</td>
<td>1.048</td>
<td>1.066</td>
<td>1.073</td>
<td>0.977</td>
</tr>
<tr>
<td>R</td>
<td>0.0522</td>
<td>0.0574</td>
<td>0.0635</td>
<td>0.0522</td>
</tr>
<tr>
<td>Rw</td>
<td>0.1310</td>
<td>0.1344</td>
<td>0.1756</td>
<td>0.1089</td>
</tr>
</tbody>
</table>
Table S2. Crystal data and structure refinement parameters for compounds 4-7.

<table>
<thead>
<tr>
<th>Compound</th>
<th>4-syn</th>
<th>4-anti</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol formula</td>
<td>C₂₄H₃₂Fe₂O₄P₂Se₂</td>
<td>C₂₄H₃₂Fe₂O₄P₂Se₂</td>
<td>C₄₁H₄₇Fe₂O₃P₃Se₂</td>
<td>C₂₆H₄₁Fe₂O₃P₃Se₂</td>
<td>C₂₈H₅₀Fe₂O₂P₄Se₂</td>
</tr>
<tr>
<td>Mol wt</td>
<td>716.05</td>
<td>716.05</td>
<td>950.31</td>
<td>764.12</td>
<td>812.18</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Cryst syst</td>
<td>Monoclinic</td>
<td>Orthorhombic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/n</td>
<td>P2₁(1)2(1)2(1)</td>
<td>P-1</td>
<td>P2₁/n</td>
<td>Pbca</td>
</tr>
<tr>
<td>a /Å</td>
<td>10.6496(9)</td>
<td>11.5785(11)</td>
<td>9.4986(9)</td>
<td>23.261(3)</td>
<td>15.6555(15)</td>
</tr>
<tr>
<td>c /Å</td>
<td>20.9799(18)</td>
<td>16.1003(14)</td>
<td>24.425(2)</td>
<td>25.607(3)</td>
<td>42.587(4)</td>
</tr>
<tr>
<td>α/deg</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β/deg</td>
<td>90</td>
<td>96.009(2)</td>
<td>90</td>
<td>106.916(3)</td>
<td>90</td>
</tr>
<tr>
<td>γ/deg</td>
<td>103.421(3)</td>
<td>90</td>
<td>94.422(2)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V/Å³</td>
<td>2948.8(4)</td>
<td>2977.5(5)</td>
<td>2224.5(4)</td>
<td>7120.8(13)</td>
<td>7551.1(13)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>D_p/gcm⁻³</td>
<td>1.613</td>
<td>1.597</td>
<td>1.419</td>
<td>1.426</td>
<td>1.429</td>
</tr>
<tr>
<td>abs coeff/mm⁻¹</td>
<td>3.587</td>
<td>3.553</td>
<td>2.430</td>
<td>3.017</td>
<td>2.888</td>
</tr>
<tr>
<td>F(000)</td>
<td>1432</td>
<td>1432</td>
<td>964</td>
<td>3088</td>
<td>3312</td>
</tr>
<tr>
<td>index ranges</td>
<td>-12 ≤ h ≤ 12</td>
<td>-13 ≤ h ≤ 13</td>
<td>-10 ≤ h ≤ 11</td>
<td>-21 ≤ h ≤ 27</td>
<td>-18 ≤ h ≤ 18</td>
</tr>
<tr>
<td></td>
<td>-15 ≤ k ≤ 16</td>
<td>-18 ≤ k ≤ 13</td>
<td>-11 ≤ k ≤ 8</td>
<td>-14 ≤ k ≤ 13</td>
<td>-13 ≤ k ≤ 13</td>
</tr>
<tr>
<td></td>
<td>-15 ≤ l ≤ 24</td>
<td>-19 ≤ l ≤ 19</td>
<td>-26 ≤ l ≤ 29</td>
<td>-30 ≤ l ≤ 21</td>
<td>-50 ≤ l ≤ 41</td>
</tr>
<tr>
<td>no. of reflns</td>
<td>14423</td>
<td>14350</td>
<td>10744</td>
<td>34977</td>
<td>34800</td>
</tr>
<tr>
<td>no. of indep reflns</td>
<td>5167</td>
<td>5244</td>
<td>7577</td>
<td>12525</td>
<td>6660</td>
</tr>
<tr>
<td>Goodness of fit</td>
<td>1.008</td>
<td>0.859</td>
<td>1.067</td>
<td>1.058</td>
<td>1.163</td>
</tr>
<tr>
<td>R</td>
<td>0.0620</td>
<td>0.0331</td>
<td>0.0892</td>
<td>0.0730</td>
<td>0.0808</td>
</tr>
<tr>
<td>Rw</td>
<td>0.1712</td>
<td>0.0592</td>
<td>0.1946</td>
<td>0.1857</td>
<td>0.1771</td>
</tr>
</tbody>
</table>
Table S3
Selected bond lengths (Å) and angles (°) for 1.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Se(1)-C(19)</th>
<th>Fe(1)-C(1)</th>
<th>1.766(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.939(6)</td>
<td>2.4891(9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Se(1)-Fe(1)</td>
<td>Fe(1)-C(2)</td>
<td>1.792(7)</td>
</tr>
<tr>
<td></td>
<td>2.4891(9)</td>
<td>1.766(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Se(2)-C(25)</td>
<td>Fe(1)-P(1)</td>
<td>2.2989(15)</td>
</tr>
<tr>
<td></td>
<td>1.950(6)</td>
<td>2.5062(9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Se(2)-Fe(1)</td>
<td>Fe(1)-P(2)</td>
<td>2.3119(16)</td>
</tr>
<tr>
<td></td>
<td>2.5062(9)</td>
<td>2.3062(9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(1)-Fe(1)-C(2)</td>
<td>P(1)-Fe(1)-Se(1)</td>
<td>83.86(4)</td>
</tr>
<tr>
<td></td>
<td>90.6(2)</td>
<td>88.31(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(1)-Fe(1)-P(1)</td>
<td>P(2)-Fe(1)-Se(1)</td>
<td>176.77(17)</td>
</tr>
<tr>
<td></td>
<td>91.07(17)</td>
<td>91.80(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(2)-Fe(1)-P(1)</td>
<td>C(1)-Fe(1)-Se(2)</td>
<td>87.73(16)</td>
</tr>
<tr>
<td></td>
<td>93.76(18)</td>
<td>91.07(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(1)-Fe(1)-P(2)</td>
<td>C(2)-Fe(1)-Se(2)</td>
<td>91.80(4)</td>
</tr>
<tr>
<td></td>
<td>90.29(17)</td>
<td>91.07(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(2)-Fe(1)-P(2)</td>
<td>C(1)-Fe(1)-Se(1)</td>
<td>87.73(16)</td>
</tr>
<tr>
<td></td>
<td>93.94(18)</td>
<td>88.31(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P(1)-Fe(1)-P(2)</td>
<td>P(2)-Fe(1)-Se(1)</td>
<td>176.77(17)</td>
</tr>
<tr>
<td></td>
<td>172.17(6)</td>
<td>83.87(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(1)-Fe(1)-Se(1)</td>
<td>Se(1)-Fe(1)-Se(2)</td>
<td>83.87(3)</td>
</tr>
<tr>
<td></td>
<td>97.91(17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(2)-Fe(1)-Se(1)</td>
<td>171.19(16)</td>
<td></td>
</tr>
</tbody>
</table>

Table S4
Selected bond lengths (Å) and angles (°) for 2.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Fe(1)-C(2)</th>
<th>Fe(1)-C(2)</th>
<th>1.758(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.758(7)</td>
<td>1.758(7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe(1)-C(1)</td>
<td>Fe(1)-C(1)</td>
<td>1.779(8)</td>
</tr>
<tr>
<td></td>
<td>1.779(8)</td>
<td>1.779(8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe(1)-P(2)</td>
<td>Fe(1)-P(2)</td>
<td>2.299(2)</td>
</tr>
<tr>
<td></td>
<td>2.299(2)</td>
<td>2.299(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe(1)-P(1)</td>
<td>Fe(1)-P(1)</td>
<td>2.310(2)</td>
</tr>
<tr>
<td></td>
<td>2.310(2)</td>
<td>2.310(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(2)-Fe(1)-C(1)</td>
<td>C(1)-Fe(1)-Se(1)</td>
<td>169.6(2)</td>
</tr>
<tr>
<td></td>
<td>93.5(3)</td>
<td>169.6(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(2)-Fe(1)-P(2)</td>
<td>P(2)-Fe(1)-Se(1)</td>
<td>84.61(6)</td>
</tr>
<tr>
<td></td>
<td>89.5(2)</td>
<td>84.61(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(1)-Fe(1)-P(2)</td>
<td>P(1)-Fe(1)-Se(2)</td>
<td>89.58(6)</td>
</tr>
<tr>
<td></td>
<td>93.3(2)</td>
<td>89.58(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(2)-Fe(1)-P(1)</td>
<td>C(2)-Fe(1)-Se(2)</td>
<td>178.3(2)</td>
</tr>
<tr>
<td></td>
<td>91.1(2)</td>
<td>178.3(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(1)-Fe(1)-P(1)</td>
<td>C(1)-Fe(1)-Se(2)</td>
<td>87.5(2)</td>
</tr>
<tr>
<td></td>
<td>92.4(2)</td>
<td>87.5(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P(2)-Fe(1)-P(1)</td>
<td>P(2)-Fe(1)-Se(2)</td>
<td>91.76(7)</td>
</tr>
<tr>
<td></td>
<td>174.18(8)</td>
<td>91.76(7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(2)-Fe(1)-Se(1)</td>
<td>P(1)-Fe(1)-Se(2)</td>
<td>87.50(6)</td>
</tr>
<tr>
<td></td>
<td>96.7(2)</td>
<td>87.50(6)</td>
<td></td>
</tr>
</tbody>
</table>

Table S5
Selected bond lengths (Å) and angles (°) for 3-syn.

<table>
<thead>
<tr>
<th>Compound 3-syn</th>
<th>Se(1)-C(21)</th>
<th>Fe(1)-C(2)</th>
<th>1.741(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.985(6)</td>
<td>2.3778(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Se(1)-Fe(2)</td>
<td>Fe(1)-C(1)</td>
<td>1.759(7)</td>
</tr>
<tr>
<td></td>
<td>2.3778(10)</td>
<td>1.985(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Se(1)-Fe(1)</td>
<td>Fe(1)-P(1)</td>
<td>2.2239(18)</td>
</tr>
<tr>
<td></td>
<td>2.3961(11)</td>
<td>2.3778(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Se(2)-C(28)</td>
<td>Fe(1)-Fe(2)</td>
<td>2.5517(13)</td>
</tr>
<tr>
<td></td>
<td>1.995(7)</td>
<td>2.3961(11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Se(2)-Fe(2)</td>
<td>Fe(2)-C(4)</td>
<td>1.749(7)</td>
</tr>
<tr>
<td></td>
<td>2.4027(11)</td>
<td>2.4027(11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Se(2)-Fe(1)</td>
<td>Fe(2)-P(2)</td>
<td>2.2225(19)</td>
</tr>
<tr>
<td></td>
<td>2.4066(11)</td>
<td>2.4066(11)</td>
<td></td>
</tr>
<tr>
<td>Bond Lengths (Å) and Angles (º) for 3-anti.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-Fe(1)-C(1)</td>
<td>91.1(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-Fe(1)-P(1)</td>
<td>98.0(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-Fe(1)-P(1)</td>
<td>98.1(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-Fe(1)-Se(1)</td>
<td>94.3(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-Fe(1)-Se(1)</td>
<td>160.9(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(1)-Fe(1)-Se(1)</td>
<td>99.30(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-Fe(1)-Se(2)</td>
<td>92.7(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(1)-Fe(1)-Se(2)</td>
<td>104.60(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se(1)-Fe(1)-Se(2)</td>
<td>75.30(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se(1)-Fe(1)-Fe(2)</td>
<td>103.7(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(1)-Fe(1)-Fe(2)</td>
<td>152.25(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se(2)-Fe(1)-Fe(2)</td>
<td>57.34(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se(2)-Fe(1)-Fe(2)</td>
<td>57.88(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-Fe(1)-C(2)</td>
<td>95.2(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-Fe(1)-P(1)</td>
<td>93.4(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-Fe(1)-P(1)</td>
<td>100.17(17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-Fe(1)-Se(2)</td>
<td>165.32(19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-Fe(1)-Se(2)</td>
<td>92.50(19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(1)-Fe(1)-Se(2)</td>
<td>97.57(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-Fe(1)-Se(1)</td>
<td>85.65(19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-Fe(1)-Se(1)</td>
<td>149.71(17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(1)-Fe(1)-Se(1)</td>
<td>110.03(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se(2)-Fe(1)-Se(1)</td>
<td>81.43(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-Fe(1)-Fe(2)</td>
<td>109.33(19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-Fe(1)-Fe(2)</td>
<td>94.54(17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(1)-Fe(1)-Fe(2)</td>
<td>151.68(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se(2)-Fe(1)-Fe(2)</td>
<td>57.47(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se(1)-Fe(1)-Fe(2)</td>
<td>57.19(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S6
Selected bond lengths (Å) and angles (º) for 3-anti.
Table S7

Selected bond lengths (Å) and angles (°) for 4-syn.

<table>
<thead>
<tr>
<th>Compound 4-syn</th>
<th>Se(1)-Fe(1)</th>
<th>Fe(1)-C(1)</th>
<th>1.738(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se(1)-Fe(2)</td>
<td>2.370(13)</td>
<td>Fe(1)-P(1)</td>
<td>2.204(2)</td>
</tr>
<tr>
<td>Se(2)-C(18)</td>
<td>1.961(8)</td>
<td>Fe(1)-Fe(2)</td>
<td>2.542(14)</td>
</tr>
<tr>
<td>Se(2)-Fe(1)</td>
<td>2.362(13)</td>
<td>Fe(2)-C(4)</td>
<td>1.718(9)</td>
</tr>
<tr>
<td>Se(2)-Fe(2)</td>
<td>2.371(13)</td>
<td>Fe(2)-C(3)</td>
<td>1.740(9)</td>
</tr>
<tr>
<td>Fe(1)-C(2)</td>
<td>1.723(10)</td>
<td>Fe(2)-P(2)</td>
<td>2.201(2)</td>
</tr>
<tr>
<td>C(2)-Fe(1)-C(1)</td>
<td>89.0(4)</td>
<td>C(4)-Fe(2)-C(3)</td>
<td>91.6(4)</td>
</tr>
<tr>
<td>C(2)-Fe(1)-P(1)</td>
<td>99.9(3)</td>
<td>C(4)-Fe(2)-P(2)</td>
<td>98.4(3)</td>
</tr>
<tr>
<td>C(1)-Fe(1)-P(1)</td>
<td>98.9(3)</td>
<td>C(3)-Fe(2)-P(2)</td>
<td>97.9(3)</td>
</tr>
<tr>
<td>C(2)-Fe(1)-Se(2)</td>
<td>160.5(3)</td>
<td>C(4)-Fe(2)-Se(1)</td>
<td>161.4(3)</td>
</tr>
<tr>
<td>C(1)-Fe(1)-Se(2)</td>
<td>95.0(3)</td>
<td>C(3)-Fe(2)-Se(1)</td>
<td>93.1(3)</td>
</tr>
<tr>
<td>P(1)-Fe(1)-Se(2)</td>
<td>98.25(8)</td>
<td>P(2)-Fe(2)-Se(1)</td>
<td>98.78(8)</td>
</tr>
<tr>
<td>C(2)-Fe(1)-Se(1)</td>
<td>92.8(3)</td>
<td>C(4)-Fe(2)-Se(2)</td>
<td>92.3(3)</td>
</tr>
<tr>
<td>C(1)-Fe(1)-Se(1)</td>
<td>161.5(3)</td>
<td>C(3)-Fe(2)-Se(2)</td>
<td>159.8(3)</td>
</tr>
<tr>
<td>P(1)-Fe(1)-Se(1)</td>
<td>98.95(8)</td>
<td>P(2)-Fe(2)-Se(2)</td>
<td>101.03(7)</td>
</tr>
<tr>
<td>Se(2)-Fe(1)-Se(1)</td>
<td>77.51(4)</td>
<td>Se(1)-Fe(2)-Se(2)</td>
<td>77.30(4)</td>
</tr>
<tr>
<td>C(2)-Fe(1)-Fe(2)</td>
<td>102.8(3)</td>
<td>C(4)-Fe(2)-Fe(1)</td>
<td>103.8(3)</td>
</tr>
<tr>
<td>C(1)-Fe(1)-Fe(2)</td>
<td>104.1(3)</td>
<td>C(3)-Fe(2)-Fe(1)</td>
<td>102.5(3)</td>
</tr>
<tr>
<td>P(1)-Fe(1)-Fe(2)</td>
<td>147.72(9)</td>
<td>P(2)-Fe(2)-Fe(1)</td>
<td>149.13(8)</td>
</tr>
<tr>
<td>Se(2)-Fe(1)-Fe(2)</td>
<td>57.70(4)</td>
<td>Se(1)-Fe(2)-Fe(1)</td>
<td>57.54(4)</td>
</tr>
<tr>
<td>Se(1)-Fe(1)-Fe(2)</td>
<td>57.60(4)</td>
<td>Se(2)-Fe(2)-Fe(1)</td>
<td>57.34(4)</td>
</tr>
</tbody>
</table>

Table S8

Selected bond lengths (Å) and angles (°) for 4-anti.

<table>
<thead>
<tr>
<th>Compound 4-anti</th>
<th>Se(1)-C(11)</th>
<th>Fe(1)-C(2)</th>
<th>1.735(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se(1)-Fe(1)</td>
<td>2.359(11)</td>
<td>Fe(1)-P(1)</td>
<td>2.189(2)</td>
</tr>
<tr>
<td>Se(1)-Fe(2)</td>
<td>2.369(11)</td>
<td>Fe(1)-Fe(2)</td>
<td>2.574(12)</td>
</tr>
<tr>
<td>Se(2)-C(18)</td>
<td>1.973(6)</td>
<td>Fe(2)-C(3)</td>
<td>1.724(8)</td>
</tr>
<tr>
<td>Se(2)-Fe(1)</td>
<td>2.348(11)</td>
<td>Fe(2)-C(4)</td>
<td>1.730(8)</td>
</tr>
<tr>
<td>Se(2)-Fe(2)</td>
<td>2.360(11)</td>
<td>Fe(2)-P(2)</td>
<td>2.207(2)</td>
</tr>
<tr>
<td>Fe(1)-C(1)</td>
<td>1.721(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-Fe(1)-C(2)</td>
<td>104.9(4)</td>
<td>C(3)-Fe(2)-C(4)</td>
<td>90.4(3)</td>
</tr>
<tr>
<td>C(1)-Fe(1)-P(1)</td>
<td>90.2(2)</td>
<td>C(3)-Fe(2)-P(2)</td>
<td>96.2(2)</td>
</tr>
<tr>
<td>C(2)-Fe(1)-P(1)</td>
<td>90.7(3)</td>
<td>C(4)-Fe(2)-P(2)</td>
<td>97.4(2)</td>
</tr>
<tr>
<td>C(1)-Fe(1)-Se(2)</td>
<td>94.1(2)</td>
<td>C(3)-Fe(2)-Se(2)</td>
<td>95.4(2)</td>
</tr>
<tr>
<td>C(2)-Fe(1)-Se(2)</td>
<td>96.1(3)</td>
<td>C(4)-Fe(2)-Se(2)</td>
<td>162.9(2)</td>
</tr>
<tr>
<td>P(1)-Fe(1)-Se(2)</td>
<td>170.71(7)</td>
<td>P(2)-Fe(2)-Se(2)</td>
<td>97.97(7)</td>
</tr>
<tr>
<td>C(1)-Fe(1)-Se(1)</td>
<td>142.6(2)</td>
<td>C(3)-Fe(2)-Se(1)</td>
<td>158.6(2)</td>
</tr>
<tr>
<td>C(2)-Fe(1)-Se(1)</td>
<td>112.5(2)</td>
<td>C(4)-Fe(2)-Se(1)</td>
<td>86.6(2)</td>
</tr>
<tr>
<td>P(1)-Fe(1)-Se(1)</td>
<td>88.93(6)</td>
<td>P(2)-Fe(2)-Se(1)</td>
<td>105.21(6)</td>
</tr>
</tbody>
</table>
Table S9
Selected bond lengths (Å) and angles (º) for 5.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Se(1)-Fe(1)-Se(1)</th>
<th>Se(2)-Fe(1)-Se(1)</th>
<th>C(1)-Fe(1)-Fe(2)</th>
<th>P(1)-Fe(1)-Fe(2)</th>
<th>Se(2)-Fe(1)-Fe(2)</th>
<th>Se(1)-Fe(1)-Fe(2)</th>
<th>P(1)-Fe(1)-Fe(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>82.66(4)</td>
<td>82.19(4)</td>
<td>89.8(2)</td>
<td>114.78(7)</td>
<td>57.09(3)</td>
<td>57.19(3)</td>
<td>150.8(3)</td>
</tr>
</tbody>
</table>

Table S10
Selected bond lengths (Å) and angles (º) for 6.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Se(1)-Fe(2)</th>
<th>Se(3)-Fe(4)</th>
<th>Se(2)-Fe(2)</th>
<th>Se(3)-Fe(3)</th>
<th>Fe(1)-C(1)</th>
<th>C(1)-Fe(1)-Fe(2)</th>
<th>Fe(1)-Fe(2)</th>
<th>Fe(1)-P(2)</th>
<th>Fe(1)-P(1)</th>
<th>Fe(1)-Fe(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2.4206(15)</td>
<td>2.4136(16)</td>
<td>2.4216(15)</td>
<td>2.4171(16)</td>
<td>1.726(10)</td>
<td>80.04(6)</td>
<td>104.2(2)</td>
<td>2.239(3)</td>
<td>1.722(10)</td>
<td>152.37(11)</td>
</tr>
</tbody>
</table>

27
Table S11
Selected bond lengths (Å) and angles (º) for 7.

<table>
<thead>
<tr>
<th>Compound 7</th>
<th>Se(1)-C(15)</th>
<th>2.013(9)</th>
<th>Fe(1)-P(1)</th>
<th>2.232(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Se(1)-Fe(1)</td>
<td>2.4039(15)</td>
<td>Fe(1)-P(2)</td>
<td>2.243(3)</td>
</tr>
<tr>
<td></td>
<td>Se(1)-Fe(2)</td>
<td>2.4319(15)</td>
<td>Fe(1)-Fe(2)</td>
<td>2.7197(17)</td>
</tr>
<tr>
<td></td>
<td>Se(2)-C(22)</td>
<td>2.022(9)</td>
<td>Fe(2)-C(2)</td>
<td>1.712(10)</td>
</tr>
<tr>
<td></td>
<td>Se(2)-Fe(1)</td>
<td>2.4214(15)</td>
<td>Fe(2)-P(3)</td>
<td>2.234(3)</td>
</tr>
<tr>
<td></td>
<td>Se(2)-Fe(2)</td>
<td>2.4365(15)</td>
<td>Fe(2)-P(4)</td>
<td>2.240(3)</td>
</tr>
<tr>
<td></td>
<td>Fe(1)-C(1)</td>
<td>1.745(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(1)-Fe(1)-P(1)</td>
<td>86.1(3)</td>
<td>C(2)-Fe(2)-P(3)</td>
<td>90.0(3)</td>
</tr>
<tr>
<td></td>
<td>C(1)-Fe(1)-P(2)</td>
<td>96.4(3)</td>
<td>C(2)-Fe(2)-P(4)</td>
<td>94.2(4)</td>
</tr>
<tr>
<td></td>
<td>P(1)-Fe(1)-P(2)</td>
<td>101.89(11)</td>
<td>P(3)-Fe(2)-P(4)</td>
<td>97.72(11)</td>
</tr>
<tr>
<td></td>
<td>C(1)-Fe(1)-Se(1)</td>
<td>94.9(3)</td>
<td>C(2)-Fe(2)-Se(1)</td>
<td>159.2(3)</td>
</tr>
<tr>
<td></td>
<td>P(1)-Fe(1)-Se(1)</td>
<td>156.19(10)</td>
<td>P(3)-Fe(2)-Se(1)</td>
<td>97.56(9)</td>
</tr>
<tr>
<td></td>
<td>P(2)-Fe(1)-Se(1)</td>
<td>101.65(9)</td>
<td>P(4)-Fe(2)-Se(1)</td>
<td>103.83(9)</td>
</tr>
<tr>
<td></td>
<td>C(1)-Fe(1)-Se(2)</td>
<td>163.4(3)</td>
<td>C(2)-Fe(2)-Se(2)</td>
<td>87.7(3)</td>
</tr>
<tr>
<td></td>
<td>P(1)-Fe(1)-Se(2)</td>
<td>91.89(8)</td>
<td>P(3)-Fe(2)-Se(2)</td>
<td>164.02(10)</td>
</tr>
<tr>
<td></td>
<td>P(2)-Fe(1)-Se(2)</td>
<td>100.10(8)</td>
<td>P(4)-Fe(2)-Se(2)</td>
<td>98.22(9)</td>
</tr>
<tr>
<td></td>
<td>Se(1)-Fe(1)-Se(2)</td>
<td>80.48(5)</td>
<td>Se(1)-Fe(2)-Se(2)</td>
<td>79.63(5)</td>
</tr>
<tr>
<td></td>
<td>C(1)-Fe(1)-Fe(2)</td>
<td>108.0(3)</td>
<td>C(2)-Fe(2)-Fe(1)</td>
<td>104.0(3)</td>
</tr>
<tr>
<td></td>
<td>P(1)-Fe(1)-Fe(2)</td>
<td>100.80(9)</td>
<td>P(3)-Fe(2)-Fe(1)</td>
<td>109.76(9)</td>
</tr>
<tr>
<td></td>
<td>P(2)-Fe(1)-Fe(2)</td>
<td>147.57(9)</td>
<td>P(4)-Fe(2)-Fe(1)</td>
<td>146.71(9)</td>
</tr>
<tr>
<td></td>
<td>Se(1)-Fe(1)-Fe(2)</td>
<td>56.27(4)</td>
<td>Se(1)-Fe(2)-Fe(1)</td>
<td>55.29(4)</td>
</tr>
<tr>
<td></td>
<td>Se(2)-Fe(1)-Fe(2)</td>
<td>56.22(4)</td>
<td>Se(2)-Fe(2)-Fe(1)</td>
<td>55.69(4)</td>
</tr>
</tbody>
</table>