ELECTRONIC SUPPORTING INFORMATION

Scandium, Titanium and Vanadium Complexes Supported by PCP-type Pincer Ligands: Synthesis, Structure, and Styrene Polymerization Activity

Jiayu Zhang,[†] Wenshuang Huang,[‡] Kailing Han,^b Guoyong Song,^{*,†} and Shaowei Hu^{*,‡}

[†]Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China

^{*}College of Chemistry, Beijing Normal University, No. 19, Xin-wai street, Beijing 100875, People's Republic of China.

*To whom correspondence should be addressed. E-mail: <u>shu@bnu.edu.cn</u>, <u>songg@bjfu.edu.cn</u>.

Figure S1. ¹H NMR spectra of complex **1-Sc** (C_6D_6 , rt, *… C_6D_6)

Figure S3. ³¹P NMR spectra of complex **1-Sc** (C_6D_6 , rt, *… C_6D_6)

Figure S4. ¹H NMR spectra of complex **2-Sc** (C_6D_6 , rt, *... C_6D_6)

Figure S5. ¹³C NMR spectra of complex **2-Sc** (C_6D_6 , rt, *... C_6D_6)

Figure S6. ^{31}P NMR spectra of complex **2-Sc** (C₆D₆, rt, *…C₆D₆)

Figure S7. UV-Vis spectra of 1-Ti

Figure S8. UV-Vis spectra of 2-Ti

Figure S9. UV-Vis spectra of 1-V

Figure S10. Infrared spectra of 1-Ti

Figure S11. Infrared spectra of 2-Ti

Figure S12. Infrared spectra of 1-V

Figure S13. ¹³C NMR (120 °C, *…1,1,2,2-tetrachloroethane-*d*₂) of sPS obtained with complex **1-Sc**

Figure S14. ¹³C NMR (120 °C, *...1,1,2,2-tetrachloroethane- d_2) of sPS obtained with complex **2-Sc**

Figure S15. ¹³C NMR (120 °C, *...1,1,2,2-tetrachloroethane-*d*₂) of aPS (atactic polystyrene) obtained with complex **1-Ti**

Figure S16. ¹³C NMR (120 °C, *...1,1,2,2-tetrachloroethane- d_2) of aPS (atactic polystyrene) obtained with complex **1-V**

Figure S17. GPC curve of sPS sample obtained by complex 1-Sc

Figure S18. GPC curve of aPS (atactic polystyrene) sample obtained by complex 1-Ti

Figure S19. GPC curve of aPS (atactic polystyrene) sample obtained by complex 1-V

Figure S20. DSC curve of sPS obtained by complex 1-Sc

Figure S21. DSC curve of sPS obtained by complex 2-Sc

Figure S22. DSC curve of aPS (atactic polystyrene) obtained by complex 1-Ti

Figure S23. DSC curve of aPS (atactic polystyrene) obtained by complex 1-V

X-ray Crystallographic Studies

Crystals for X-ray diffraction studies were obtained as described in the preparations. The crystals were manipulated in a glovebox under a microscope and were sealed in thin-walled glass capillaries. Intensity data were collected on a Rigaku Mercury CCD area detector with Mo or Cu K α radiation. The diffracted intensities were corrected for Lorentz–polarization effects and empirical absorption corrections. All of the structures were solved using SHELXL-2018.¹ Structural refinement was performed using on F² anisotropically for all of the non-hydrogen atoms by the full-matrix least-squares method. Structural refinement was performed using the SHELXL option in the WINGX system,² or Olex2 system³ on F² anisotropically for all of the non-hydrogen atoms by the full-matrix least-squares method. Analytical scattering factors for neutral atoms were used throughout the analysis. The hydrogen atoms of ligands were placed at the calculated positions, which were refined using a riding model. The analytical scattering factors for neutral atoms were used throughout the analysis. The residual electron densities were of no chemical significance.

Figure S24. X-ray diffraction crystal structure of **3-Ti** with thermal ellipsoids drawn at 30% probability. Hydrogen atoms was omitted for clarity.

Figure S25. X-ray diffraction crystal structure of **4-Ti** with thermal ellipsoids drawn at 30% probability. Hydrogen atoms was omitted for clarity.

Figure S26. X-ray diffraction crystal structure of **3-V** with thermal ellipsoids drawn at 30% probability. Hydrogen atoms was omitted for clarity.

	1-Sc	2-Sc	1-Ti	1-V	2-Ti
CCDC	2161776	2163361	2161777	2162723	2161786
formula	$C_{30}H_{61}O_2P_2ScSi_2$	$C_{32}H_{65}P_2ScSi_2$	$C_{30}H_{61}O_2P_2TiSi_2$	$C_{30}H_{61}O_2P_2VSi_2$	$C_{32}H_{65}P_2Si_2Ti$
crystal system	Orthorhombic	Monoclinic	Orthorhombic	Orthorhombic	Orthorhombic
space group	Pca21	P21/c	Pca21	Pca21	Pca21
a, Å	16.3488(9)	16.7335(7)	16.1891(2)	16.1044(4)	16.1352(2)
b, Å	13.2688(8)	13.2393(6)	13.1418(2)	13.1750(3)	13.17667(18)
c, Å	16.9093(10)	16.9263(8)	16.9923(3)	16.9968(6)	17.2700(3)
α, deg	90	90	90	90	90
β, deg	90	97.212(4)	90	90	90
γ, deg	90	90	90	90	90
<i>V,</i> Å ³	3668.1(4)	3720.2(3)	3615.18(10)	3606.30(18)	3671.75(9)
Z	4	4	4	4	4
D _{calcd} , g/cm ³	1.117	1.094	1.139	1.147	1.099
temp, K	100	100	100	100	100
µ, mm⁻ ¹(MoKa)	0.376	0.366	3.645	0.453	3.542
reflections collected	15172	19441	13919	42226	9078
independent reflections (R _{int})	7508(0.0305)	8822(0.0410)	5894(0.0323)	8658(0.0590)	6009(0.0370)
$R1\left(l>2\sigma(l)\right)$	0.0430	0.0394	0.0260	0.0384	0.0460
wR2 (I > 2σ(I))	0.0946	0.0936	0.0677	0.0866	0.1249
wR2 (all data)	0.1014	0.1014	0.0681	0.0929	0.1257
parameters	353	335	335	353	352
GOF	1.023	1.027	1.041	0.981	1.067
absolute					
structure	0.28(4)	-	0.004(4)	-0.06(2)	0.000(8)
Flack					

Table S1. X-Ray crystallographic data and structure refinement for 1-Sc, 1-Ti, 1-V, 2-Sc and 2-Ti.

	3-Ti	3-V	4-Ti
CCDC	2168774	2168775	2169339
formula	$C_{22}H_{39}CI_2O_2P_2Ti$	$C_{22}H_{39}CI_2O_2P_2V$	$C_{24}H_{43}CI_2P_2Ti$
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	P21/n	P21/n	P21/n
a <i>,</i> Å	10.6740(6)	10.6403(4)	12.1470(7)
b, Å	16.1874(9)	16.2799(8)	15.8810(7)
c, Å	15.2797(10)	15.1343(8)	14.4631(11)
α, deg	90	90	90
β, deg	91.080(6)	90.332(4)	105.389(7)
γ, deg	90	90	90
<i>V,</i> Å ³	2639.6(3)	2621.6(2)	2690.0(3)
Z	4	4	4
D _{calcd} , g/cm ³	1.299	1.316	1.265
temp, K	100	100	100
µ, mm⁻¹(MoKa)	0.663	0.720	0.645
reflections collected	14374	31769	18427
independent reflections (R _{int})	6321(0.0919)	6664(0.0750)	6450(0.1071)
$R1 (I > 2\sigma(I))$	0.0725	0.0525	0.0565
wR2 (I > 2σ(I))	0.1300	0.1235	0.1369
wR2 (all data)	0.1688	0.1368	0.1703
parameters	274	274	274
GOF	1.048	1.029	1.045

Table S2. X-Ray crystallographic data and structure refinement for 3-Ti, 3-V and 4-Ti.

References

1. G. M. Sheldrick, Acta Cryst. 2015, C71, 3–8.

2. L. J. J. Farrugia, WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. **1999**, 32(4), 837–838.

3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.