## **Electronic Supplementary Information for**

## Ni<sub>2</sub>P nanowire arrays grown on Ni foam as an efficient monolithic cocatalyst for visible light dye-sensitized H<sub>2</sub> evolution

Fang Wang, Tongliang Liu, Zhaoting Liu, Zhengguo Zhang and Shixiong Min\*

School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.

\*Corresponding authors: <a href="mailto:sxmin@nun.edu.cn">sxmin@nun.edu.cn</a>



Fig. S1 SEM images of N<sub>2</sub>P NL/NF.



**Fig. S2** Photocatalytic HER activities of Ni<sub>2</sub>P/CC, Ni<sub>2</sub>P/NF, and NWAs/NF-15-160 from ErB-TEOA (10 vol.%, 25 mL, pH 10) system. The Ni<sub>2</sub>P/CC and Ni<sub>2</sub>P/NF were prepared by drop-coating Ni<sub>2</sub>P powder on carbon paper (*d*=1.6 cm) and NF (*d*=1.6 cm), respectively. The loading amount of Ni<sub>2</sub>P in Ni<sub>2</sub>P/CC and Ni<sub>2</sub>P/NF was same as

in NWAs/NF-15-160.



Fig. S3 TON of  $H_2$  evolution based on ErB on Ni<sub>2</sub>P NWAs/NF-15-160 from ErB-

TEOA (10 vol.%, 25 mL, pH 10) system.



Fig. S4 XPS survey spectrum of  $Ni_2P$  NWAs/NF-15-160 after photocatalytic HER.



**Fig. S5** Cyclic voltammograms (CV) of (a) pristine NF, (b) NF-O-15-160, (c) Ni<sub>2</sub>P NL/NF and (d) Ni<sub>2</sub>P NWAs/NF-15-160 at different scan rates in 0.5 M Na<sub>2</sub>SO<sub>4</sub>





Fig. S6 SEM images of NF-O-x-160 samples, where the "x" and "160" represent the concentration of H<sub>2</sub>O<sub>2</sub> and hydrothermal temperature, respectively.



**Fig. S7** TON of H<sub>2</sub> evolution on Ni<sub>2</sub>P NWAs/NF-*x*-160 from TEOA solution (10 vol.%, 25 mL, pH 10) containing ErB (0.5 mM) under visible light irradiation.



Fig. S8 SEM images of NF-O-15-y samples, where the "15" and "y" represent the concentration of  $H_2O_2$  and hydrothermal temperature, respectively.



**Fig. S9** TON of H<sub>2</sub> evolution on Ni<sub>2</sub>P NWAs/NF-*x*-160 from TEOA solution (10 vol.%, 25 mL, pH 10) containing ErB (0.5 mM) under visible light irradiation.

| Photocatalyst                                                              | Form     | Reaction conditions                                                    | Light source                 | $H_2$ evolution<br>rate (mmol h <sup>-1</sup><br>$g_{catalyst}^{-1}$ ) | Ref. |
|----------------------------------------------------------------------------|----------|------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------|------|
| Ni <sub>2</sub> P-CdS/g-C <sub>3</sub> N <sub>4</sub>                      | Powder   | 0.35 M Na <sub>2</sub> S and<br>0.25 M Na <sub>2</sub> SO <sub>3</sub> | 300 W Xe lamp<br>(>400 nm)   | 44.45                                                                  | 1    |
| $\begin{array}{c} Cd_{0.5}Zn_{0.5}S@ZnS-\\ Ni_2P/g-C_3N_4 \end{array}$     | Powder   | 0.35 M Na <sub>2</sub> S and<br>0.25 M Na <sub>2</sub> SO <sub>3</sub> | 300 W Xe lamp<br>(>420 nm)   | 55.43                                                                  | 2    |
| $Ni_{12}P_5/g-C_3N_4$                                                      | Powder   | 10 vol% TEOA                                                           | 350 W Xe lamp<br>(>420 nm)   | 0.12                                                                   | 3    |
| Ni <sub>2</sub> P/CdS-DETA                                                 | Powder   | 0.35 M Na <sub>2</sub> S and<br>0.25 M Na <sub>2</sub> SO <sub>3</sub> | 300 W Xe lamp<br>(>420 nm)   | 6.83                                                                   | 4    |
| Ni <sub>2</sub> P/CdS                                                      | Powder   | 10 vol.% Lactic<br>acid                                                | 300 W Xe lamp<br>(>420 nm)   | 1.18                                                                   | 5    |
| $Ni_2P$ - $Cd_{0.9}Zn_{0.1}S$                                              | Powder   | 0.7 M Na <sub>2</sub> S and<br>0.5 M Na <sub>2</sub> SO <sub>3</sub>   | 300 W Xe lamp<br>(>400 nm)   | 94                                                                     | 6    |
| MoS <sub>2</sub> -g-<br>C <sub>3</sub> N <sub>4</sub> /Ni <sub>2</sub> P   | Powder   | 10 vol.% TEOA                                                          | 300 W Xe lamp<br>(>420 nm)   | 0.29                                                                   | 7    |
| C-Ni <sub>2</sub> P@CdS                                                    | Powder   | 10 vol.% TEOA                                                          | 300 W Xe lamp<br>(>420 nm)   | 28.39                                                                  | 8    |
| $Ni_2P/ZnIn_2S_4$                                                          | Powder   | 10 vol.% Lactic<br>acid                                                | 300 W Xe lamp<br>(>420 nm)   | 2.06                                                                   | 9    |
| NiO/Ni <sub>2</sub> P/g-C <sub>3</sub> N <sub>4</sub>                      | Powder   | 10 vol.% TEOA                                                          | 300 W Xe lamp<br>(>420 nm)   | 0.50                                                                   | 10   |
| 7-Ni <sub>2</sub> P/MoP@g-<br>C <sub>3</sub> N <sub>4</sub>                | Powder   | 10 vol.% TEOA                                                          | 300 W Xe lamp<br>(>420 nm)   | 0.52                                                                   | 11   |
| NiCoP/g-C <sub>3</sub> N <sub>4</sub>                                      | Powder   | 10 vol.% CH <sub>3</sub> OH                                            | 300W Xe lamp<br>(300-700 nm) | 0.16                                                                   | 12   |
| Ni <sub>2</sub> P/TiO <sub>2</sub> /Ti <sub>3</sub> C <sub>2</sub> -<br>ox | Powder   | 5 vol.% glycerol                                                       | 35 W<br>UV–visible lamp      | 16.1                                                                   | 13   |
| Ti <sub>3</sub> AlC <sub>2</sub> /TiO <sub>2</sub> /Ni <sub>2</sub><br>P   | Powder   | 5 vol.% glycerol                                                       | 35 W<br>UV–visible lamp      | 4.3                                                                    | 14   |
| Ag/pCN-TiO <sub>2</sub>                                                    | Monolith | 5 vol.% CH <sub>3</sub> OH                                             | 200 W Hg lamp                | 8.2                                                                    | 15   |

**Table S1** Comparison of photocatalytic HER activity of dye-sensitized Ni2PNWAs/NF with other photocatalysts with Ni2P as cocatalyst.

| Ag-pCN/TiO <sub>2</sub>   | Monolith | 5 vol.% glycerol | 200 W Hg lamp                | 12.1 | 16               |
|---------------------------|----------|------------------|------------------------------|------|------------------|
| Ni <sub>2</sub> P NWAs/NF | Monolith | 10 vol% TEOA     | 10W LED (380<br>nm≤λ≤780 nm) | 0.96 | This<br>wor<br>k |

## References

T. F. Wu, P. F. Wang, J. Qian, Y. H. Ao, C. Wang and J. Hou, *Dalton Trans.*, 2017,
46, 13793-1380.

2. X. W. Ma, Q. Q. Ruan, J. K. Wu, Y. Zuo, X. P. Pu and H. F. Lin, *Dalton Trans.*, 2020, **49**, 6259-6269.

J. Q. Wen, J. Xie, R. C. Shen, X. Li, X. Y. Luo, H. D. Zhang, A. P. Zhang and G. C.
Bi, *Dalton Trans.*, 2017, 46, 1794-1802.

T. P. Hua, K. Dai, J. F. Zhang, G. P. Zhu and C. H. Liang, *Appl. Surf. Sci.*, 2019,
481, 1385-1393.

5. Z. Q. Wang, Z. L. Qi, X. J. Fan, D. Y. Leung, J. L. Long, Z. Z. Zhang, T. F. Miao,

S. G. Meng, S. F. Chen and X. L. Fu, Appl. Catal. B. Environ., 2021, 281, 119443.

Z. W. Shao, X. Meng, H. Lai, D. F. Zhang, X. P. Pu, C. H. Su, H. Li, X. Z. Ren and
Y. L. Geng, *Chin. J. Catal.*, 2021, 42, 439-449.

7. G. Z. Liang, M. H. Waqas, B. Yang, K. Xiao, J. Y. Li, C. Z. Zhu, J. M. Zhang and

H. B. Duan, Appl. Surf. Sci., 2019, 504, 144448.

8. C. Zhang, S. P. Chu, B. Q. Liu, Y. Liu, Z. M. Guo and Z.G. Lv, *Appl. Surf. Sci.*, 2021, **569**, 150987.

X. L. Li, X. J. Wang, J. Y. Zhu, Y. P. Li, J. Zhao and F. T. Li, *Chem. Eng. J.*, 2018, 353, 15-24.

10. J. W. Shi, Y. J. Zou, L. H. Cheng, D. D. Ma, D. K. Sun, S. M. Mao, L. W. Sun, C. He and Z. Y. Wang, *Chem. Eng. J.*, 2019, **378**, 122161.

11. J. P. Zhao, B. Fu, X. Li, Z. H. Ge, B. Ma and Y. T. Chen, ACS Appl. Energy Mater., 2020, 3, 10910-10919.

B. Ma, J. P. Zhao, Z. H. Ge, Y. T. Chen and Z. H. Yuan, *Sci. China Mater.*, 2020, 63, 258-266.

13. M. Tahir, Energy Fuels 2021, 35, 14197-14211.

14. S. Tasleem, M. Tahir and Z. Y. Zakaria, J. Alloys Compd., 2020, 842, 155752.

- 15. N. Fajrina and M. Tahir, Int. J. Hydrogen Energ., 2020, 45, 4355-4375.
- 16. S. Tasleem and M. Tahir, J. Environ. Chem. Eng., 2021, 9, 105351.