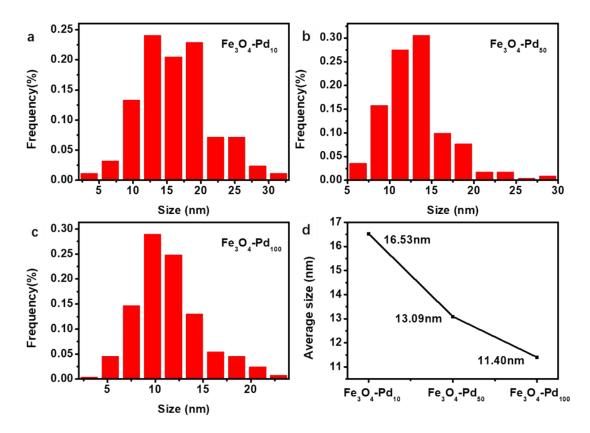
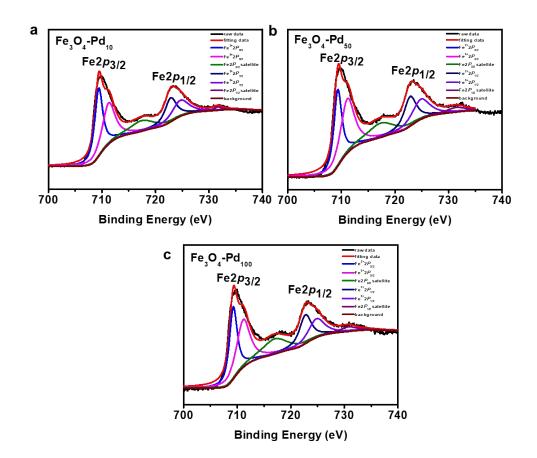
Support information for Dalton Transactions


Rapid one-pot synthesis of magnetically separable Fe_3O_4 -Pd nanocatalysts: a highly reusable catalyst for the Suzuki-Miyaura coupling reaction

Xiangyun Xiao,^{†,a} Sunhee Lee,^{†,b} Hyeonjong Ma,^{c,d} Jiwoong Yang^{c,d} Won-Sik Han,^{b*} Taekyung Yu^{a*}


Affiliations:

^aDepartment of Chemical Engineering, College of Engineering, Integrated Engineering Major, Kyung Hee University, Yongin 17104, Korea ^bDepartment of Chemistry, Seoul Women's University, 01797, Korea. ^cDepartment of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea ^dEnergy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea

*These authors contributed equally to this work.
*To whom correspondence should be addressed. E-mail: <u>wshan@swu.ac.kr and</u> <u>tkyu@khu.ac.kr</u>.

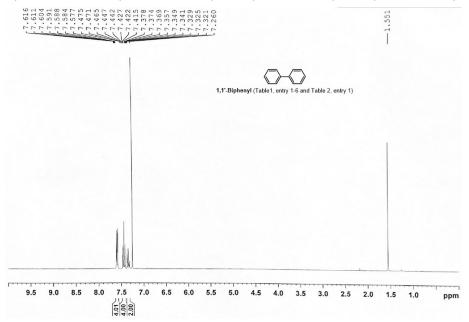
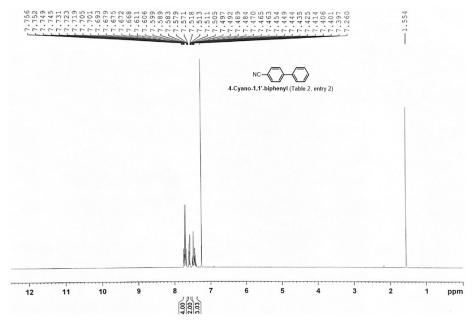
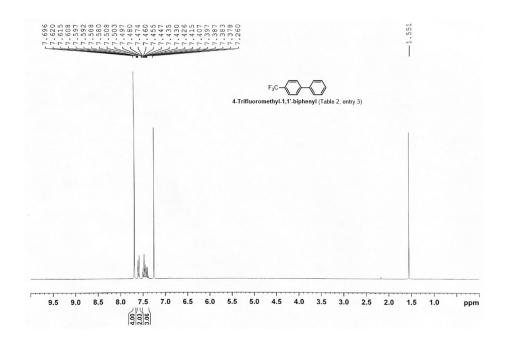

Fig. S1. The size distribution of (a,b,c) Fe₃O₄-Pd_n, and (d) their average size summary graph.

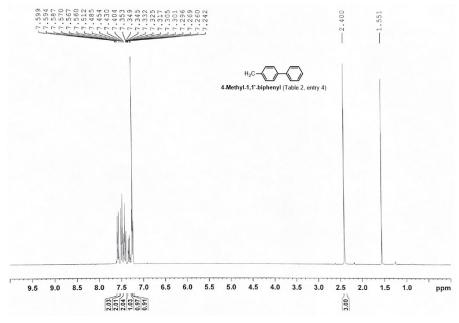
Fig. S2. Deconvolution of high-resolution XPS spectra for the Fe2p in the (a) Fe_3O_4 -Pd₁₀, (b) Fe_3O_4 -Pd₅₀, and (c) Fe_3O_4 -Pd₁₀₀.


1,1'-Biphenyl (Table 2, entry 1)

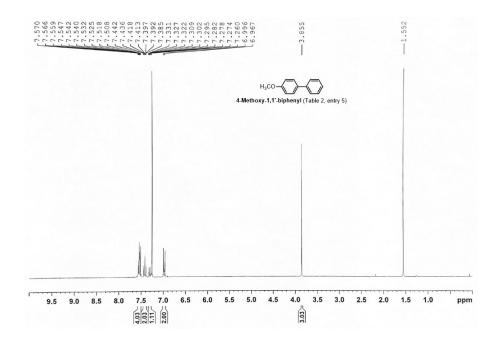
¹H NMR (300 MHz, CDCl₃): δ 7.62-7.58 (m, 4H), 7.48-7.42 (m, 4H), 7.38-7.32 (m, 2H)


4-Cyano-1,1'-biphenyl (Table 2, entry 2)

¹H NMR (300 MHz, CDCl₃): δ 7.76-7.67 (m, 4H), 7.61-7.57 (m, 2H), 7.52-7.40 (m, 3H)


4-Trifluormethyl-1,1'-biphenyl (Table 2, entry 3)

¹H NMR (300 MHz, CDCl₃): δ 7.70 (s, 4H), 7.62-7.58 (m, 2H), 7.51-7.38 (m, 3H)


4-Methyl-1,1'-biphenyl (Table 2, entry 4)

¹H NMR (300 MHz, CDCl₃): δ 7.60-7.56 (m, 2H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.35-7.30 (m, 1H), 7.26 (d, 2H), 2.40 (s, 3H)

4-Methoxy-1,1'-biphenyl (Table 2, entry 5)

¹H NMR (300 MHz, CDCl₃): δ 7.57-7.51 (m, 4H), 7.44-7.39 (m, 2H), 7.33-7.27 (m, 1H), 6.98 (d, *J* = 8.7 Hz, 2H), 3.86 (s, 3H)

3-Methyl-1,1'-biphenyl (Table 2, entry 6)

 ^1H NMR (300 MHz, CDCl_3): δ 7.61-7.57 (m, 2H), 7.46-7.31 (m, 6H), 7.19-7.16 (m, 1H), 2.43 (s, 3H)

2-Methyl-1,1'-biphenyl (Table 2, entry 7)

 ^1H NMR (300 MHz, CDCl_3): δ 7.45-7.39 (m, 2H), 7.37-7.31 (m, 3H), 7.28-7.22 (m, 4H), 2.28 (s, 3H)

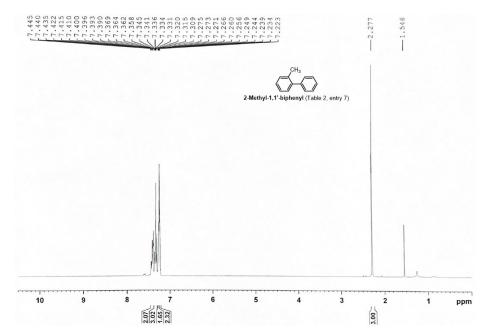
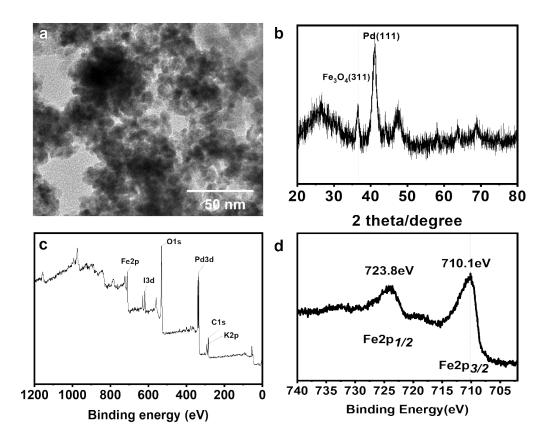
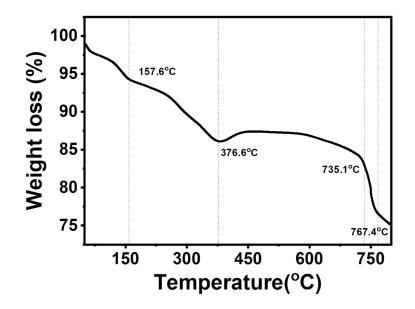




Fig. S3 The ¹H NMR spectra recorded to identify the products for Table 2.

Fig. S4. (a) TEM, (b) XRD, (c) a survey XPS spectrum, and (d) fine XPS spectra of Fe 2p analyses of the Fe_3O_4 -Pd₅₀ after 10 reaction cycles.

Fig. S5. The thermogravimetric analysis (TGA) of Fe_3O_4 -Pd₅₀ after 10 cycles. It was carried out at a temperature range of 50 – 800 °C at heating rate of 10°C /min under N₂ atmosphere.

$X + (HO)_2B$	$- \underbrace{Fe_{3}O_{4}-Pd_{50}}_{\text{EtOH},60^{\circ}C}$	
Entry	Aryl halide	Yield(%) ^b
1	X=I	100.0°
2	X=Br	7.5
3	X=Cl	/

Table S1. The Suzuki reactions of aryl halides with phenylboronic acid using the Fe_3O_4 -Pd₅₀ catalyst^a.

^aIsolated yield by column chromatography.

^bReaction condition: aryl halide (1.0 mmol), pheylboronic(1.5 mmol),K₂CO₃ (2.0mmol),

ethanol (6.0 mL), Fe₃O₄-Pd₅₀ catalyst (Pd content in Fe₃O₄-Pd₅₀ is: 1.0 mol%; 0.01mmol), and 60°C,

1h.

Table S2: The Suzuki-Miyaura coupling reactions between iodobenzene and phenylboronic acidusing the Fe_3O_4 -Pd₅₀, Pd, and Fe_3O_4 as catalysts.^a

	+ (HO) ₂ B-	$\begin{array}{c} & \\ \hline \\$	$\bigcirc - \bigcirc \bigcirc$
Entry	Cat.	Cat. Mass	Yield(%)
1	Fe_3O_4 -Pd ₅₀	Pd content in cat.: 0.01mmol	99.9 ^b
2	Pd	0.01mmol	>80°
3	Fe ₃ O ₄	0.01mmol	_c

^aReaction condition: iodobenzene (1.0 mmol), phenylboronic acid (1.5 mmol), K_2CO_3 (2.0 mmol), ethanol (6.0 mL), catalyst (1mol%), 60°C, 360 rpm, 1 atm, and 1 h.

 $^{\rm b}GC$ yield.

^cIsolated yield by column chromatography.

Name –	Molar fraction of metal (%)			
	Pd	Fe	(Fe+Pd)	Fe/Pd ratio
Fe ₃ O ₄ -Pd ₅₀ -after 10 cycles	25.4	15.6	4.1	85.45%

Table S3: ICP data of the Fe_3O_4 -Pd₅₀ after 10 reaction cycles.