

Supplementary Information

Efficient electrocatalytic ammonia synthesis with FeS_2 coupled MoS_2 heterostructure under ambition conditions

Bo Wang^a, Chao Yan^a, Guangqing Xu^{a,b}, Xia Shu^{a,b}, Jun Lv^{a,b*}, Jiewu Cui^{a,b}, Dongbo
Yu^{a,b}, Zhiyong Bao^{a,b}, Yucheng Wu^{a,b*}

a. School of Materials Science and Engineering, Hefei University of Technology, Hefei,
230009, PR China

b. Key Laboratory of Advanced Functional Materials and Devices of Anhui Province,
Hefei, 230009, PR China

* Corresponding author. Key Laboratory of Advanced Functional Materials and
Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China.

E-mail addresses: lvjun117@126.com (J. Lv), ycwu@hfut.edu.cn (Y. C. Wu).

Experimental

Synthesis of FeS₂/MoS₂

To synthesize the FeS₂/MoS₂ (Fe: Mo= 1: 1) sample, one should follow these steps:

Firstly, 241.9 mg of Na₂MoO₄·H₂O, 175.4 mg of FeCl₃, 2878 mg of H₄SiO₄(W₃O₉)₄, and 450.8 mg of CH₃CSNH₂ were dissolved in 45 mL DI water to prepare the precursor solution, keep stirring the mixture solution to obtain a homogenous solution. Secondly, the solution was transferred into a 60 mL stainless steel autoclave for hydrothermal reaction which was performed at 200 °C for 24 h, and then cool down naturally. Finally, the FeS₂/MoS₂ powders were collected by the centrifugal process, washed with DI water and ethanol several times, then dried for later use. While for the preparation of FeS₂/MoS₂ (Fe: Mo= 1: 2) sample, only the amount of FeCl₃ is replaced with 87.7 mg. For FeS₂/MoS₂ (Fe: Mo= 2: 1) sample, only the amount of FeCl₃ is replaced with 350.9 mg. For MoS₂ sample, the precursor remains unchanged except that FeCl₃ is not included.

Electrochemical measurement

Electrochemical measurements were performed on a CHI660D electrochemical analyzer (Chenhua Instrument, Inc.) in an H-type cell with Nafion 117 membrane. 0.1 M Na₂SO₄ aqueous solution was adopted as the electrolyte. A platinum foil (10mm*10 mm), Ag/AgCl (saturated KCl) and Carbon paper (10mm*10 mm) deposited with electrocatalysts were employed as the counter electrode, the reference electrode and the working electrode, respectively. In this work, the electrode potential (Ag/AgCl) is converted to the reversible hydrogen electrode (RHE) according to the following formula:

$$V(\text{RHE}) = V(\text{Ag/AgCl}) + 0.197 \text{ V} + 0.059 * \text{pH} \quad (1)$$

To well prepare the working electrode, the following steps are suggested: 5 mg of

catalyst, 470 μ L of C₃H₈O (IPA) and 30 μ L of Nafion solution (5 wt%) were added together. The mixture was suffered from the ultrasound process until a uniform solution was obtained. Then, 10 μ L of the slurry was dropped onto the carbon paper (CP) electrode and dried naturally. LSV measurement was recorded from 0 V vs. Ag/AgCl to -1 V vs. Ag/AgCl with a sweep rate of 10 mV/s. EIS measurement was performed at -0.3 V in the range of 0.1–100 kHz.

Determination of NH₃

The general indophenol blue method was employed for the detection of NH₃ concentration¹. 50 μ L of the oxidizing solution containing NaClO (ρ Cl = 4–4.9) and NaOH (0.75 M), 50 μ L of catalyst solution containing 1wt% Na₂[Fe(CN)₅NO]·₂H₂O, and 500 μ L of coloring solution containing 0.4 M C₇H₆O₃ and 0.4 M NaOH solution was added into 4 mL reacted electrolyte in turn. After full-color rendering, the absorbance of electrolytes was recorded at λ = 697 nm. Besides, a series of standard NH₄Cl solutions were used to calibrate the concentration–absorbance curves and the fitting curve is $y = 0.243x + 0.054$, $R^2 = 0.999$ (Fig. S5).

NH₃ yield rate is calculated by:

$$\text{NH}_3 \text{ yield rate} = (C_{\text{NH}_4\text{Cl}} \times V) / (t \times A) \quad (2)$$

Faradaic efficiency is calculated by:

$$\text{Faradaic efficiency} = (3F \times C_{\text{NH}_4\text{Cl}} \times V) / Q \quad (3)$$

where $C_{\text{NH}_4\text{Cl}}$ is the measured concentration of NH₃, V is the electrolyte volume, t is the potential applied time, A is the surface area of the working electrode, F is the Faraday constant and Q is the quantity of total charge during NRR.

Determination of N₂H₄

The Watt and Chrisp method was employed to detect the possible N₂H₄ in the electrolyte². Firstly, prepare the color reagent: mixing 5.99 g of p-C₉H₁₁NO, 30 mL of HCl and 300 mL of C₂H₅OH together. 5 mL color reagent was added into 5 mL reacted electrolyte. After full-color rendering, the absorbance of electrolytes was recorded at λ = 457 nm by spectrophotometer. A series of standard N₂H₄ solutions were used to calibrate the concentration–absorbance curves and the fitting curve is $y = 5.654x +$

0.0246, $R^2 = 0.9997$ (Fig. S7).

Determination of NO_3^-

Firstly, 0.1 mL of 1.0 M HCl was added into 5 mL sample solutions. Then, after standing for 5 min, the absorbance of electrolytes was measured by spectrophotometer at a wavelength range from 190 to 300 nm. A series of standard NO_3^- solutions were used to calibrate the concentration–absorbance curves (0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 and 5.0 $\mu\text{g mL}^{-1}$ LiNO_3 standard solutions) and the fitting curve is $y = 0.0571x + 0.0054$, $R^2 = 0.999$, which is recorded with the absorbance value difference at 220 nm and 275 nm as y axis and the concentration of NO_3^- as x axis. (Fig. S8).

Determination of NO_2^-

The Griess-llosvay reaction was employed to detect the possible NO_2^- in the electrolyte. Firstly, prepare the color reagent A and B respectively: Reagent A: 0.5 g of sulfanilamide was dissolved in 50 mL solution consisting of 2.0 M HCl; Reagent B: 50 mg of N-(1-Naphthyl) ethylenediamine dihydrochloride was dissolved in 50 mL of DI water. Secondly, 0.1mL reagent A was added into 5 mL sample solutions, and keep shanking and standing the sample solution for 10 min. Then 0.1 mL of reagent B was added and the mixed solution was shaken up and stand for 30 min. Finally, after full-color rendering, the absorbance of electrolytes was measured by spectrophotometer at a wavelength range from 400 to 700 nm. A series of standard NO_2^- solutions were used to calibrate the concentration–absorbance curves (10, 20, 30, 40, 50, 60, 80 and 100 $\mu\text{g L}^{-1}$) and the fitting curve is $y = 0.0011x + 0.0019$, $R^2 = 0.9985$, which is recorded with the absorbance value difference at 540 nm and 650 nm as y axis and the concentration of NO_2^- as x axis. (Fig. S9).

Characterization

X-ray diffractometer (X’Pert PRO MPD) was employed to characterize the phase structure of samples with $\text{Cu K}\alpha$ radiation ($\lambda = 1.15406 \text{ \AA}$). A photoelectron spectrometer (Thermo/ESCALAB250Xi) was adopted to analyze the elemental composition of samples with $\text{Al K}\alpha$ radiation (1486.60 eV) as the excitation source. The morphologies and structure of samples were investigated by SEM (SU8020) and

TEM (JEM-2100F) measurements. UV-visible absorption spectroscopy was measured on a UV 1800 spectrophotometer.

Computational details

Spin-polarized DFT calculations were performed using the Vienna ab initio simulation package (VASP)^{3, 4}. The generalized gradient approximation proposed by Perdew, Burke, and Ernzerhof (GGA-PBE) is selected for the exchange-correlation potential⁵. The pseudo-potential was described by the projector-augmented-wave (PAW) method⁶. The geometry optimization is performed until the Hellmann–Feynman force on each atom is smaller than $0.02 \text{ eV}\cdot\text{\AA}^{-1}$. The energy criterion is set to 10^{-7} eV in iterative solution of the Kohn-Sham equation. A $0.04 \text{ 2}\pi/\text{\AA}$ K-mesh resolution was applied for the geometry optimization. A higher K-mesh resolution was used for the calculation of density of states. A plane-wave kinetic-energy cutoff of 450 eV was applied. GGA+U method was used for the evaluation of DOS. $U_{\text{eff}} = U - J = 2.5 \text{ eV}$ and $J=1.0 \text{ eV}$ were set for Fe 3d orbitals⁷. The heterojunction was constructed from FeS₂(111) plane and MoS₂(001) surface.

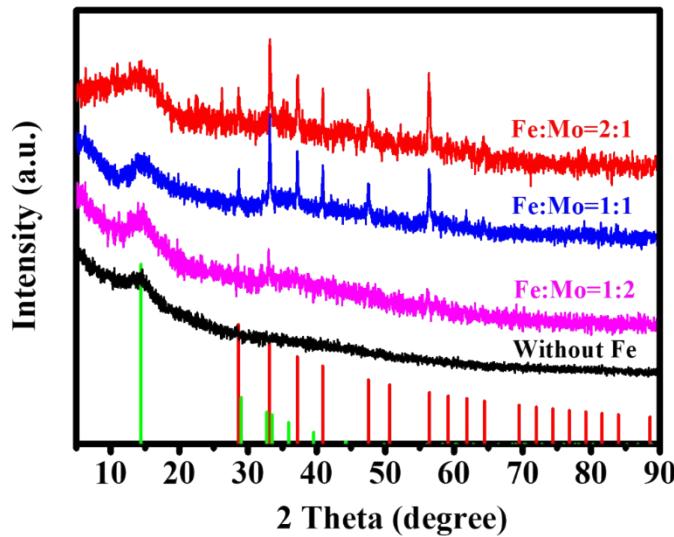


Figure S1. The XRD patterns of FeS₂/MoS₂ powders with different mole ratios (Fe:Mo)

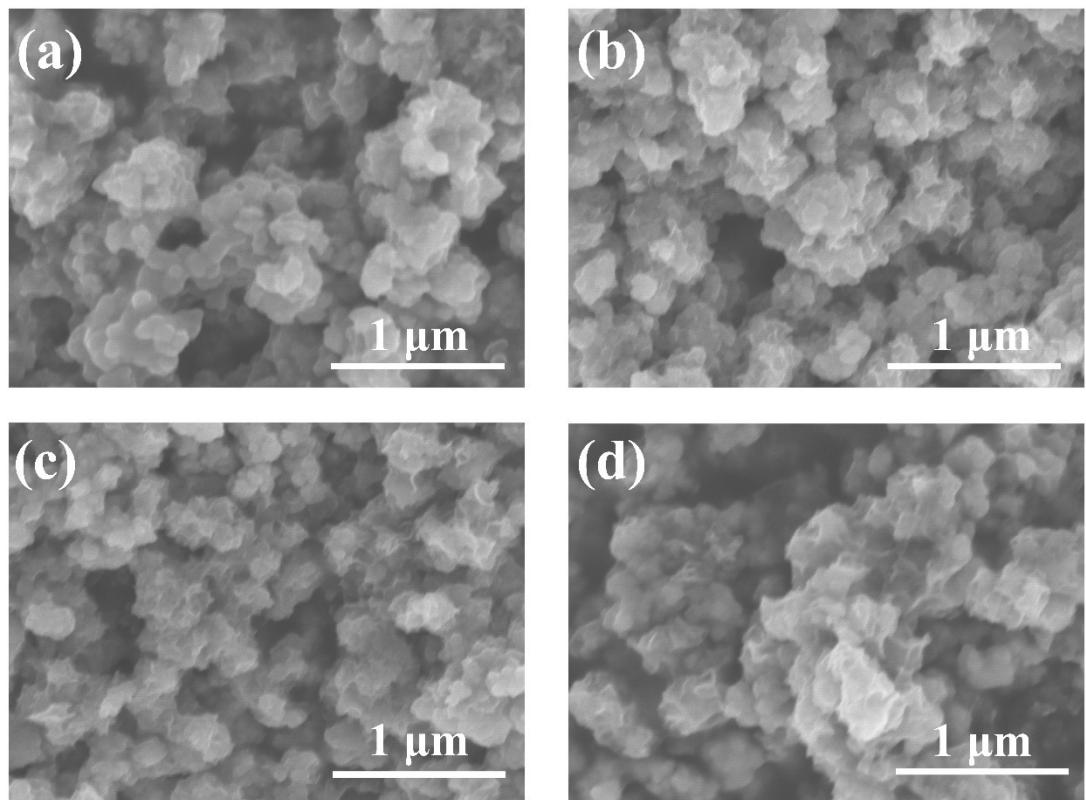


Figure S2. SEM images of different samples, (a) MoS₂, FeS₂/MoS₂ samples (b) Fe: Mo= (1:2), (c) Fe: Mo= (1:1), (d) Fe: Mo= (2:1)

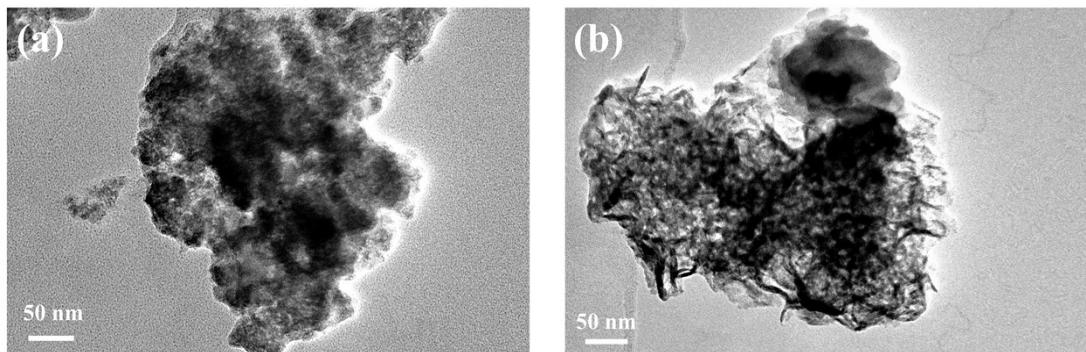


Figure S3. TEM images of different samples, (a) MoS₂, (b)FeS₂/MoS₂(1:1)

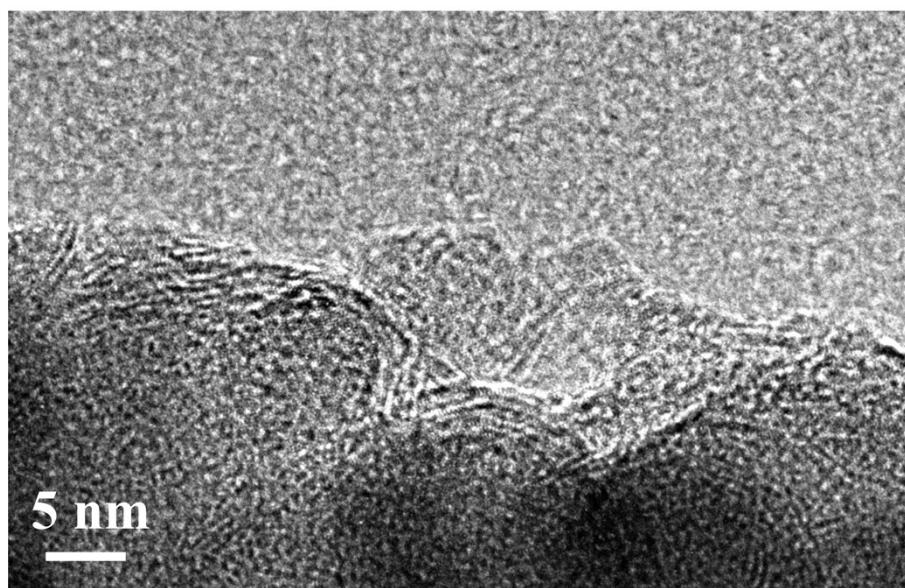


Figure S4. HRTEM image of as-fabricated MoS₂

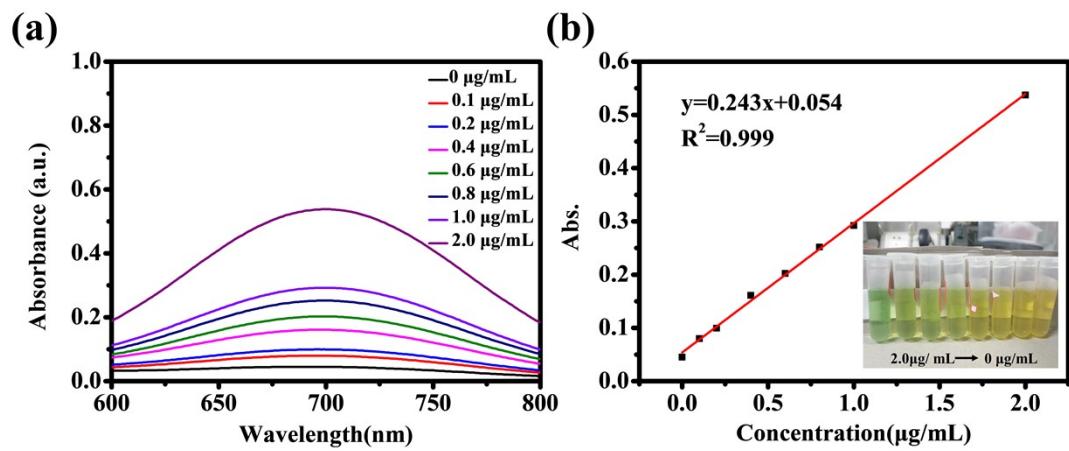


Figure S5. (a) The absorbance of a series of standard solutions for NH₃, (b) the corresponding fitting curve

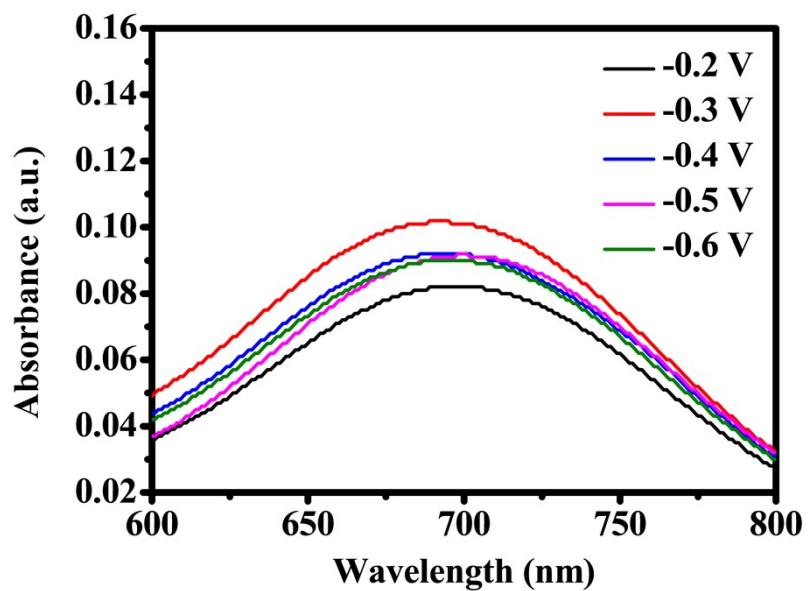


Figure S6. UV-vis absorption spectra of the electrolytes under different potentials

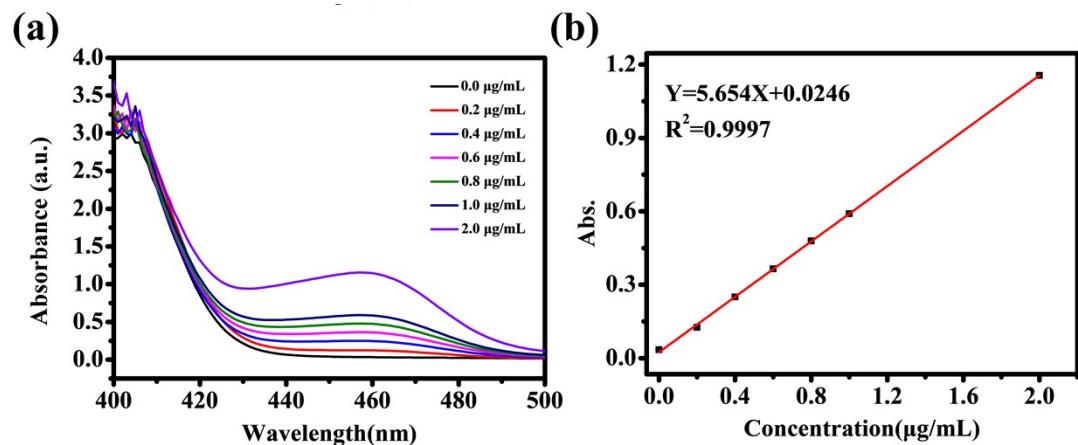


Figure S7. (a) The absorbance of a series of standard solutions for N_2H_4 , (b) the corresponding fitting curve

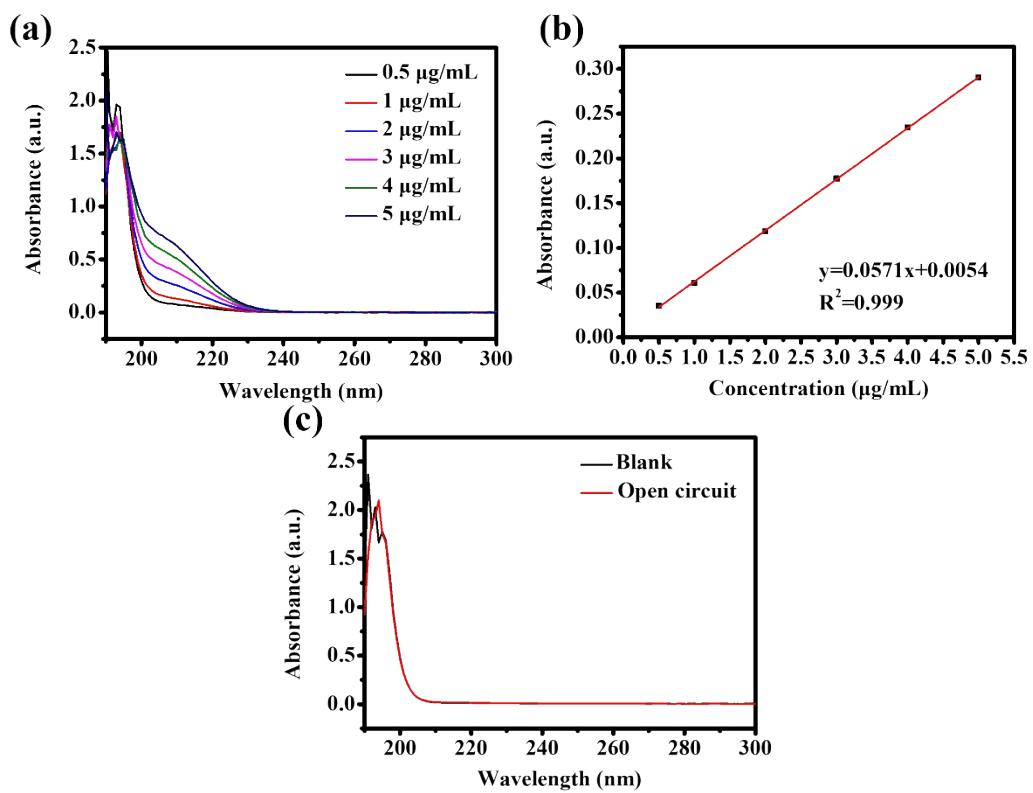


Figure S8. (a) The absorbance of a series of standard solutions for NO_3^- , (b) the corresponding fitting curve, (c) UV-vis absorbance of electrolyte for NO_3^- detection under different conditions

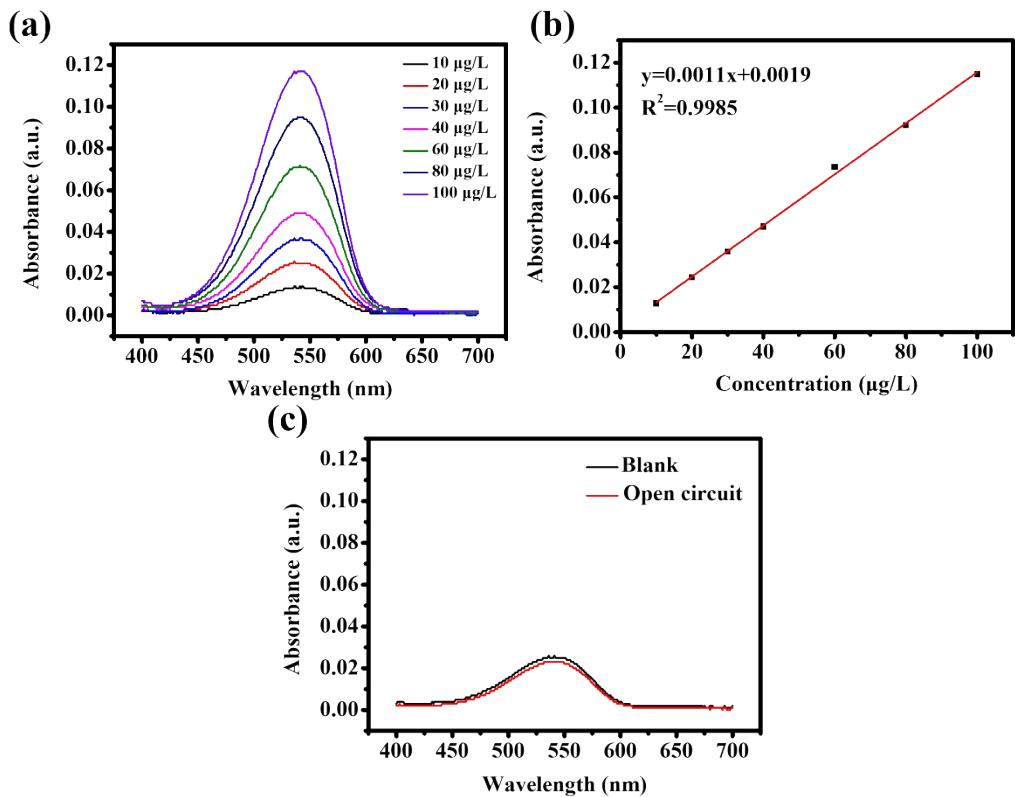


Figure S9. (a) The absorbance of a series of standard solutions for NO_2^- , (b) the corresponding fitting curve, (c) UV-vis absorbance of electrolyte for NO_2^- detection under different conditions

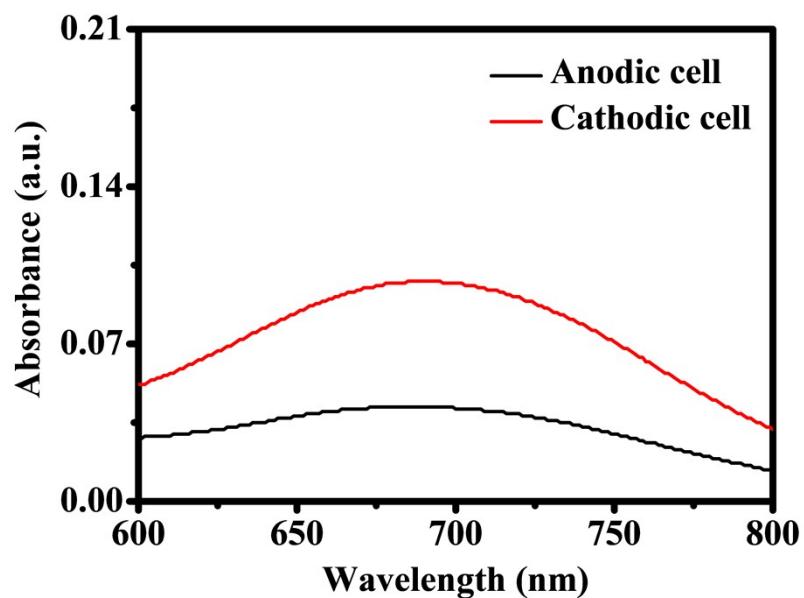


Figure S10. UV-vis absorption spectra of the electrolytes from anodic and cathodic cell

Table S1. The element composition in FeS₂/MoS₂(1:1) sample

Name	Position	At.%
O 1s	532.08	15.38
C 1s	285.08	20.17
S 2p	163.08	45.17
Fe 2p	708.08	1.24
Mo 3d	229.08	18.04

Table S2. The comparison of the NRR performance with the relevant Mo-based catalyst

Catalysts	Conditions	NH ₃ yield rate	FE (%)	Ref.
FeS₂/MoS₂ nanosheets	0.1M Na₂SO₄	2.59 μmol·h⁻¹·mg⁻¹ (44.03 μg·h⁻¹·mg⁻¹ cat.)	4.63%	This work
MoS ₂ -rGO	0.1 M LiClO ₄	24.82 μg·h ⁻¹ ·mg _{cat.} ⁻¹	4.58%	⁸
MoS ₂ -Fe	0.1 M Na ₂ SO ₄	20.11 μg·h ⁻¹ ·mg _{cat.} ⁻¹	15.72%	⁹
VS-MoS ₂	0.1 M Na ₂ SO ₄	29.55 μg·h ⁻¹ ·mg _{cat.} ⁻¹	4.58 %	¹⁰
Fe-MoS ₂	0.5 M K ₂ SO ₄	8.63 μg·h ⁻¹ ·mg _{cat.} ⁻¹	18.8 %	¹¹
Fe ₂ (MoO ₄) ₃	0.1 M Na ₂ SO ₄	7.5 μg·h ⁻¹ ·mg _{cat.} ⁻¹	1.0 %	¹²
MoS ₂ QDs	0.5 M LiClO ₄	39.6 μg h ⁻¹ mg ⁻¹	12.9%	¹³
MoS ₂ @Fe(OH) ₃ /CC	0.1 M Na ₂ SO ₄	4.23 × 10 ⁻¹⁰ mol s ⁻¹ cm ⁻²	2.76%	¹⁴
FeS ₂ -MoS ₂	0.1 M KOH	7.1×10 ⁻⁴ μmol·s ⁻¹ ·cm ⁻²	4.6%	¹⁵
FeS@MoS ₂ /CFC	Na ₂ SO ₄	8.45 μg·h ⁻¹ ·cm ⁻²	2.96%	¹⁶
MoS ₂ -800	0.1 M HCl	23.38 μg·h ⁻¹ ·mg _{cat.} ⁻¹	17.9%	¹⁷

References

1. P. L. Searle, *The Analyst*, 1984, **109**, 549.
2. G. W. Watt and J. D. Chriss, *Analytical Chemistry*, 1954, **26**, 452-453.
3. G. Kresse and J. Furthmüller, *Computational Materials Science*, 1996, **6**, 15-50.
4. G. Kresse and J. Furthmüller, *Physical Review B*, 1996, **54**, 11169-11186.
5. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical review letters*, 1996, **77**, 3865-3868.
6. P. E. Blöchl, *Physical review. B, Condensed matter*, 1994, **50**, 17953-17979.
7. J.-Y. Zhao and J.-M. Zhang, *The Journal of Physical Chemistry C*, 2017, **121**, 19334-19340.
8. X. Li, X. Ren, X. Liu, J. Zhao, X. Sun, Y. Zhang, X. Kuang, T. Yan, Q. Wei and D. Wu, *Journal of Materials Chemistry A*, 2019, **7**, 2524-2528.
9. L. Niu, D. Wang, K. Xu, W. Hao, L. An, Z. Kang and Z. Sun, *Nano Research*, 2021, **14**, 4093-4099.
10. B. Liu, C. Ma, D. Liu and S. Yan, *ChemElectroChem*, 2021, **8**, 3030-3039.
11. H. Su, L. Chen, Y. Chen, R. Si, Y. Wu, X. Wu, Z. Geng, W. Zhang and J. Zeng, *Angew Chem Int Ed Engl*, 2020, **59**, 20411-20416.
12. C. Chen, Y. Liu and Y. Yao, *European Journal of Inorganic Chemistry*, 2020, **2020**, 3236-3241.
13. Y. Luo, P. Shen, X. Li, Y. Guo and K. Chu, *Chem Commun*, 2021, **57**, 9930-9933.
14. X. Xu, X. Liu, J. Zhao, D. Wu, Y. Du, T. Yan, N. Zhang, X. Ren and Q. Wei, *J Colloid Interface Sci*, 2022, **606**, 1374-1379.
15. M. Yang, Z. Jin, C. Wang, X. Cao, X. Wang, H. Ma, H. Pang, L. Tan and G. Yang, *ACS Appl Mater Interfaces*, 2021, **13**, 55040-55050.
16. Y. Guo, Z. Yao, B. J. J. Timmer, X. Sheng, L. Fan, Y. Li, F. Zhang and L. Sun, *Nano Energy*, 2019, **62**, 282-288.
17. M. You, S. Yi, X. Hou, Z. Wang, H. Ji, L. Zhang, Y. Wang, Z. Zhang and D. Chen, *J Colloid Interface Sci*, 2021, **599**, 849-856.