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Section 1: Experimental Section

Materials and General Methods. Except that K7H[Nb6O19]·13H2O precursor was synthesized 

according to a literature method and confirmed by IR spectra.19 All chemicals were commercially 
purchased and directly used without further purification. Elemental analyses of C, H and N were 
carried out with a Vario MICRO elemental analysis. IR spectra were recorded on an Opus Vertex 70 
FT-IR infrared spectrophotometer in the range of 400 - 4000 cm-1. Thermogravimetric analysis was 
performed on a Mettler Toledo TGA/SDTA 851e analyzer under an air-flow atmosphere with a heating 
rate of 10 ºC/min in the temperature of 30-750 ºC. Powder X-ray diffraction (PXRD) patterns were 
measured using a Rigaku DMAX 2500 diffractometer with CuKα radiation (λ = 1.5418 Å). UV-vis 
absorption spectra were collected using a PerkinElmer Lambda 35 spectrophotometer to monitor the 
release process. 

Synthesis of H5[Cu(H2O)(en)2]2[Cu(H2O)2(en)2]{[Cu(en)2(H2O)]2Eu(H2O)3Te6Nb18O64(OH)4}7H2O (1). 
A mixture of K7H[Nb6O19]·13H2O (0.20 g, 0.146 mmol), Cu(OAc)2·H2O (0.12 g, 0.60 mmol), 
Eu(NO3)3·6H2O (0.10 g, 0.22 mmol), TeO2 (0.08 g, 0.50 mmol), pyridine-2,3-dicarboxylic acid (0.03 g, 
0.18 mmol), 0.20 ml 2M NaOH and 0.11 ml en was mixed in 6 ml deionized water. After stirred 1 hour, 
the resulting mixture was sealed in a glass vial (20 ml) and heated at 90 ℃ for 3 days, and then cooled 
down to room temperature. The blue purple block crystals were isolated. Yield: 15 mg (4.6% based on 
Nb). Elemental analysis calcd (%) for H121C20N20Cu5EuTe6Nb18O84: C 4.90, H 2.49, N 5.72. Found 
(%): C 4.43, H 2.55, N 6.23. IR (KBr, cm−1): 3221(s), 3133(s), 2952(w), 2891(w), 1639(w), 1586(s), 
1461(m), 1394(w), 1370(w), 1325(w), 1280(m), 1185 (w), 1106(m), 1041(s), 985(w), 842(s), 688(m), 
617(m), 498(m), 427(w).

Synthesis discussion
In the synthesis process, the following reaction parameters show important impacts on the 
synthesis of 1:
(1) The temperature of hydrothermal reactions is one of the important factors for the synthesis of 
the compound 1. The compound 1 was obtained at 90℃. When the reaction temperature is above 
or below the 90℃, the yield will decrease dramatically and only amorphous phases would be 
obtained. (2) We tried to introduce different 3d metals salts (e.g., Co2+, Ni2+ and Zn2+) into the 
reaction instead of Cu2+. However, we failed to obtain any other crystalline HPONb products. (3) 
The 2M NaOH aqueous solution and pyridine-2, 3-dicarboxylic acid are indispensable for 
adjusting the pH, when we changed the solvent to other buffer solutions (e.g., Na2CO3/NaHCO3 
and Na2B4O7/H3BO3), only amorphous precipitation instead of crystals could be obtained despite 
their absence in the component.

Single-Crystal Structure Analysis. Single-crystal X-ray diffraction data of 1 were collected on Bruker 
APEX Due CCD diffractometer equipped with a fine focus, 2.0 kW sealed tube X-ray source (MoKα 
radiation, λ = 0.71073 Ǻ) operating at 150(2) K. The structure of 1 was solved through direct methods 
and refined by full-matrix least-squares refinements based on F2 adopting the SHELX-2014 program 

package.20 The contribution of disordered solvent molecules to the overall intensity data of structures 
were treated using the SQUEEZE method in PLATON.21 Crystallographic data and structure 
refinements for 1 are summarized in Table S1. CCDC 2156753 contains supplementary 
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crystallographic data for this paper. These data can be obtained free of charge from The Cambridge 
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Water adsorption measurement: As-synthesized sample 1 was exchanged with excessive 

ethanol 9 times for 3 days. The solvent exchanged sample was then degassed at 80 oC for 12 h 

under high dynamic vacuum. Water sorption isotherm was recorded at 298K on a micromeritics 

3flex Adsorption Analyzer.

The reactivity test of compound 1: 

Firstly, HCl and NaOH compounds were used to prepare aqueous solutions with pH 1-14, and 

then 20 mg of compound 1 was added to 5 mL of aqueous solutions with different pH values and 

soaked for 24 hours, respectively. Finally, the soaked crystals were taken out and tested for PXRD. 

The compound 1 was insoluble in the aqueous solutions with different pH values.  The 

compound 1 which had been soaked for 24 hours was filtrated, washed with water and dried under 

vacuum at room temperature.

20 mg of compound 1 was added to a 5 mL of organic solvent and soaked for 24 hours. Then the 

soaked crystals were taken out and tested for PXRD. The compound 1 was insoluble in the 

organic solvents. The compound 1 which had been soaked for 24 hours was filtrated, washed with 

water and dried under vacuum at room temperature. 

Proton conductivity experiments: Ac impedance measurements were carried out with a SI 1260 

IMPEDANCE/GAINPHASE analyzer over the frequency range from 0.1 Hz to 10 MHz with an 

applied voltage of 50 mV. The relative humidity was controlled by a STIK Corp CIHI-150BS3 

incubator. The samples were pressed to form a cylindrical pellet of crystalline powder sample (~1 

mm thickness ×5 mm ϕ) coated with C-pressed electrodes. Two silver electrodes were attached to 

both sides of pellet to form four end terminals (quasi-four-probe method). The bulk conductivity 

was estimated by semicircle fittings of Nyquist plots.

http://www.ccdc.cam.ac.uk/data_request/cif
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Section 2: Additional tables

Table S1 Crystal data and structure refinement for 1.

1

Empirical formula H121C20N20Cu5EuTe6Nb18O84

Formula weight 4893.68

Crystal system Monoclinic

space group P21/m

a (Å) 13.7123(7)

b (Å) 34.3657(15)

c (Å) 19.9008(10)

Β(°) 92.736(2)

V (Å3) 9367.2(8)

Z 2

F(000) 4622

ρcalcd (gcm-3) 1.735

Temperature (K) 150

Refl. Collected 184527

Independent relf. 16908

Parameters 706

GOF on F2 1.067

Final R indices (I= 2σ(I)) R1= 0.0541  wR2= 0.1372

R indices (all data) R1= 0.0610  wR2= 0.1415

R1 = ∑||Fo| – |Fc||/∑|Fo|. wR2 = [∑w(Fo
2– Fc

2)2/∑w(Fo
2)2]1/2; w = 1/[σ2(Fo

2) + (xP)2 + yP], P = (Fo
2 

+ 2Fc
2)/3, where x = 0.061200, y = 105.458809 for 1.
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Table S2. Hydrogen Bond Lengths (Å) and Bond Angles (o ) in 1.

No. N-H H···O N···O <(NHO) Hydrogen bonds

1 0.89 2.47 3.211(12) 140.5 N1-H1A···O12

2 0.89 2.63 3.308(13) 133.7 N1-H1A···O33

3 0.89 1.98 2.863(11) 172.1 N2-H2A···O21_$3

4 0.89 2.33 3.184(10) 160.9 N2-H2B···O30

5 0.89 2.26 3.140(12) 171.7 N3-H3A···O7W

6 0.89 2.12 2.956(11) 156.2 N3-H3B···O33

7 0.89 2.16 3.005(11) 157.5 N4-H4A···O37

8 0.89 2.27 3.071(9) 149.6 N4-H4B···O11_$3

9 0.89 2.09 2.956(11) 164.7 N5-H5B···O31_$4

10 0.89 2.24 3.088(10) 158.5 N6-H6A···O25_$4

11 0.89 2.19 3.074(10) 173.0 N7-H7A···O4

12 0.89 2.50 2.944(10) 111.4 N7-H7A···O13

13 0.89 2.26 3.073(9) 151.7 N7-H7B···O2

14 0.89 2.16 3.028(10) 163.7 N8-H8A···O17

15 0.89 2.34 3.199(11) 163.7 N8-H8B···O29

6 0.89 2.23 3.081(10) 160.2 N9-H9A···O33

17 0.89 2.14 3.022(9) 168.7 N9-H9B···O17

18 0.89 2.31 3.155(9) 159.0 N10-H10A···O6

19 0.89 2.23 3.106(10) 169.7 N10-H10B···O32

Symmetric codes:

$3: x-1, y, z.  $4: -x+2, -y+1, -z.
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Table S3. A summary of known vapour adsorption capacities of polyoxometalate materials.

Compounds Amount (cm3•g-1) ref

1 167 This work

{[Cu(en)2]6[Nb68O176(OH)12(H2O)12]} 172 S1

{[Cu(en)2]10[Nb68O182(OH)8 (H2O)10]} 140 S1

[Cu(en)2(H2O)]2{[Cu(en)]4[Cu(en)2]5[Cu(en)2KNb24O72H10]2} 204 S2

[Cu(en)2]6{[Cu(en)2]@{[Cu2 (trz)2(en)2]6[H10Nb68O188]}} 224 S3

K4@{[Cu29(OH)7(H2O)2(en)8(trz)21][Nb24O67(OH)2(H2O)3]4} 193 S3

[Cu(en)2]@{[Cu2(en)2(trz)2]6(Nb68O188)} 188 S3

[Zn12(trz)20][SiW12O40]·11H2O 150 S4

K3[Cr3O(OOCH)6(H2O)3][R-SiW12O40] 130 S5

Cu6(Trz)10(H2O)4[H2SiW12O40]·8H2O 118 S6

[Cu4(dpdo)12][H(H2O)27(CH3CN)12][PW12O40]3 65.1 S7

K2[Cr3O(OOCH)6(mepy)3]2[α-PMo12 O40]·5H2O 56.8 S8

H14[Na6(H2O)12]4[K42Ge8W72O272(H2O)60]·solvent 52 S9

[Cu3(L)2(H2O)4][Cu(dmf)4 (SiW12O40)]·9H2O 51.7 S10

H[Ni(Hbpdc)(H2O)2]2[PW12O40]8H2O} 31 S11

[Co(pn)3]4[PNb12O40(VO)6][OH]5·20H2O 19.72 S12

(DODA)23[Mo154O462H5]70H2O 16.6 S13

Cs3.6K0.4[PW11O39(Sn-OH)]8H2O 0.31 S14

K2[Cr3O(OOCH)6(mepy)3]2[a-SiW12O40]2H2OCH3OH 0.03 S15

Cs2[Cr3O(OOCC2H5)6(H2O)3]2 [R-SiW12O40]4H2O 0.022 S16,S17

Cs3H0.3[SiW12O40]0.83·3H2O 0.020 S18

[a] Trz: 1,2,4-triazole; dpdo: 4,4’-bipyridine-N,N’-dioxide; mepy: 4-methylpyridine; L: N,N-bis[(2-

hydroxy-3-methoxyphenyl) methylidene] hydrazine hydrate ; dmf: N,N-Dimethylformamide; H2bpdc : 

2,2’-bipyridyl-3,3’-dicarboxylicacid; pn: 1,2-diaminopropane; DODA: dimethyldioctadecyl 
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ammonium.
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Section 3: Additional structural figures and characterizations

Fig S1. (a) Polyhedral and ball-stick representations of { Nb3O4} unit in 1；(b) Polyhedral and ball-

stick representations of {TeNb6}unit in 1. Color code: Nb:blue; Te: yellow; O: red.

Fig S2. (a) Side view of {EuTe6Nb18} in 1；(b) Side view of {Te2Nb24} in 1. Color code: Nb: cyan; 

Eu: green; Te: yellow.
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Fig S3. Coodination environments of [Cu(en)2(H2O)]2+ (Cu1) unit in 1 (a); [Cu(H2O)(en)2]2+ (Cu2) (b); 

unit [Cu(H2O)2(en)2]2+ (Cu3) (c). Color code: Cu: cyan; Te: yellow. C: grey; N: blue; O: red.

Fig S4. View of a 2D supramolecular (4, 4) layer in the bc plane in 1. Color code: Cu: cyan; Eu: green; 

Te: yellow. C: grey; N: blue. 
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Fig S5. View of the three-dimensional supramolecular framework of 1 along the a axis. Color code: 

Cu: cyan; Te: yellow. C: grey; N: blue.

Fig S6. View of the three-dimensional supramolecular framework of 1 along the b axis. Color code: 

Cu: cyan; Te: yellow. C: grey; N: blue.
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Fig S7. View of the three-dimensional supramolecular framework of 1 along the c axis. Color code: 

Cu: cyan; Te: yellow. C: grey; N: blue.

Fig S8. The simulated and experimental PXRD patterns of 1.
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Fig S9. Plot of UV-vis absorption spectrum of 1.
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Fig S10. Water vapor adsorption curve of 1 at 298 K.
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Fig S11. PXRD patterns of 1 after water vapor adsorption experiment.
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Fig S12. TGA curve of 1.
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Fig S13. IR spectrum of 1.
As shown in Figure S13, the O-H, C-H and N-H stretching vibration bands are observed at ṽ = 
2800 to 3300 cm-1, and their bending vibration bands are observed at ṽ = 1100-1600 cm–1. The 
characteristic peaks at ṽ = 1041, 985, 842, 688, 617, 498, and 427 cm–1 are assigned to the ν(Nb-
Ot) and ν(Nb-Ob-M) stretches (M = Nb, Cu).
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Section 4: Topology analysis

Topology for Eu1

--------------------

Atom Eu1 links by bridge ligands and has

Common vertex with                                R(A-A)

Eu 1    1.8729    0.7500    0.3143   ( 1 0 0)    13.712A        1

Eu 1   -0.1271    0.7500    0.3143   (-1 0 0)    13.712A        1

Eu 1    1.1271    1.2500    0.6857   ( 2 0 1)    18.962A        1

Eu 1    1.1271    0.2500    0.6857   ( 2-1 1)    18.962A        1

Eu 1    1.1271    1.2500   -0.3143   ( 2 0 0)    21.635A        1

Eu 1    1.1271    0.2500   -0.3143   ( 2-1 0)    21.635A        1

-------------------------

Structural group analysis

-------------------------

-------------------------

Structural group No 1

-------------------------

Structure consists of 3D framework with Eu

Coordination sequences

----------------------

Eu1:  1  2  3   4   5   6   7   8    9   10

Num   6 18 38  66 102 146 198 258  326  402

Cum   7 25 63 129 231 377 575 833 1159 1561

Rad 18.1(3.6) 28.8(7.3) 40.1(10.1) 51.9(12.4) 64.0(14.9) 76.2(17.4) 88.5(19.9) 100.8(22.5) 113.2(25.1) 

125.5(27.7) 

Cmp Eu6 Eu18 Eu38 Eu66 Eu102 Eu146 Eu198 Eu258 Eu326 Eu402

----------------------

TD10=1561
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Vertex symbols for selected sublattice

--------------------------------------

Eu1 Point symbol:{4^12.6^3}

Extended point symbol:[4.4.4.4.4.4.4.4.4.4.4.4.6(4).6(4).6(4)]

--------------------------------------

Point symbol for net: {4^12.6^3}

6-c net; uninodal net
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