Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information (ESI)

for

A novel symmetric pyrazine (pyz)-bridged uranyl dimer

[UO₂Cl₃(H₂O)(Pyz)_{0.5}]₂²⁻: Synthesis, structural and computational analysis

Nicole M. Byrne,^a Mark H. Schofield,^a and Christopher L. Cahill^{a*}

^aDepartment of Chemistry, The George Washington University, 800 22nd St. NW, Suite 4000, Washington,

D.C., 20052

Table of Contents

Chart S1	CSD search parameters for actinide/actinyl bridged compounds	.02
Table S1	Crystallography table for compound 1	03
Table S2	Bond distances and angles for compound 1	04
Figure S1	ORTEP drawing of compound 1	.05
Figure S2	Room temperature UV-Vis-DRS spectrum of compound 1	06
Figure S3	Room temperature Raman spectrum of 1	07
Figure S4	Labeled computational model of [UO ₂ Cl ₃ (H ₂ O)(Pyz) _{0.5}] ₂ ²⁻	08
Figure S5	Optimized versus unoptimized geometry of [UO ₂ Cl ₃ (H ₂ O)(Pyz) _{0.5}] ₂ ²⁻	.09
Figure S6	Labeled computational model of [UO ₂ Cl ₄] ²	10
Figure S7	Isodensity representation of the HOMO and LUMO for [UO ₂ Cl ₄] ²⁻	.11
Table S3	Calculated Raman induced atomic displacements for [UO ₂ Cl ₃ (H ₂ O)(Pyz) _{0.5}] ₂ ²⁻	.12
Figure S8	Calculated Raman spectrum of $[UO_2Cl_3(H_2O)(Pyz)_{0.5}]_2^2$.13
Table S4	Calculated Raman induced atomic displacements for [UO ₂ Cl ₄] ²	14
Table S5	Method validation of the $[UO_2Cl_3(H_2O)(Pyz)_{0.5}]_2^2$ computational model	.15
Table S6	Method validation of the [UO ₂ Cl ₄] ²⁻ computational model	.16
References		.17

Chart S1: Input structural search parameters and CSD results used to interrogate possible othe
pyrazine bridged complexes and bridged dimers of interest.

N/A PUQJOB ² BZAPXU10 ³ HOYXAU ⁴
PUQJOB ² BZAPXU10 ³ HOYXAU ⁴
$\begin{array}{c} \text{BZAPXU10}^3 \\ \text{HOYXAU}^4 \end{array}$
HOYXAU01 ⁴
BZAPXU10 ³
EYEREF ⁵ EYERIJ ⁵ IBADAT ⁶ PUQJOB ² QORGIO ⁷ UYANUE ⁸
EYEREF ⁵ EYERIJ ⁵ IBADAT ⁶ JOJMEB ⁹ PUQJOB ² QORGIO ⁷ SODCOE ¹⁰ SODCUK ¹⁰ UYANUE ⁸
N/A
NATJUR ¹¹ BEZLEX ¹² CAWGAJ ¹³ CURCRO ¹⁴ DAPWUM ¹⁵ DUFTUW ¹⁶ NILBAL01 ¹⁸ SIRJIO ¹⁹ TEAUFO10 ²⁰ XEVRAS ²¹ XEVRAS01 ²² XIHSAL ²² XIHSEP ²² XIHSIT ²²

	1					
Chemical	$(C_4H_5N_2)_2[UO_2Cl_3(H_2O)(C_4H_4N_2)_{0.5}]_22H_2O$					
Formula						
Formula						
Weight	1067.1					
(g/mol)						
Crystal						
System	Triclinic					
Space Group	P-1					
<i>a</i> (Å)	7.3929(3)					
b (Å)	8.7830(5)					
c (Å)	12.2365(6)					
a (°)	70.837(2)					
β (°)	73.478(2)					
γ (°)	69.922(3)					
V (Å ³)	691.57(9)					
Z	1					
T (K)	100(2)					
λ (Μο Κα)	0.71073					
μ (mm ⁻¹)	12.319					
R _{int}	0.0262					
R ₁	0.0106					
wR2	0.0256					

 Table S1: Crystallography table for compound 1.

Atom(1)-Atom(2)	Bond distance (Å)	Atom(1)-Atom(2)-Atom(3	<u>Bond angle (°)</u>	Atom(1)-Atom(2)-Atom(3)	Bond Angle (°)
U(1)-O(2)	1.7640(15)	O(2)-U(1)-O(1)	175.82(7)	C(5)-C(6)-H(6)	118.9
U(1)-O(1)	1.7654(14)	O(2)-U(1)-O(5)	90.05(7)	N(4)-C(7)-C(8)	122.1(2)
U(1)-O(5)	2.4385(15)	O(1)-U(1)-O(5)	91.84(6)	N(4)-C(7)-H(7)	118.9
U(1)-N(1)	2.5979(19)	O(2)-U(1)-N(1)	85.91(7)	C(8)-C(7)-H(7)	118.9
U(1)-Cl(2)	2.6895(6)	O(1)-U(1)-N(1)	90.24(6)	N(3)-C(8)-C(7)	118.3(2)
U(1)-Cl(3)	2.7121(5)	O(5)-U(1)-N(1)	139.95(6)	N(3)-C(8)-H(8)	120.9
U(1)-Cl(1)	2.7543(5)	O(2)-U(1)-Cl(2)	91.55(6)	C(7)-C(8)-H(8)	120.9
O(5)-H(5A)	0.8699	O(1)-U(1)-Cl(2)	92.59(5)	H(7B)-O(7)-H(7A)	110(3)
O(5)-H(5B)	0.8699	O(5)-U(1)-Cl(2)	71.79(4)		
N(1)-C(2)	1.340(3)	N(1)-U(1)-Cl(2)	148.04(4)		
N(1)-C(1)	1.342(3)	O(2)-U(1)-Cl(3)	90.72(5)		
C(1)-C(2)#1	1.377(3)	O(1)-U(1)-Cl(3)	89.50(5)		
C(1)-H(1)	0.95	O(5)-U(1)-Cl(3)	150.01(4)		
C(2)-H(2)	0.95	N(1)-U(1)-Cl(3)	69.97(4)		
N(3)-C(8)	1.328(3)	Cl(2)-U(1)-Cl(3)	78.219(16)		
N(3)-C(5)	1.336(3)	O(2)-U(1)-Cl(1)	90.83(5)		
N(3)-H(3)	0.8801	O(1)-U(1)-Cl(1)	86.31(5)		
N(4)-C(7)	1.329(3)	O(5)-U(1)-Cl(1)	70.30(4)		
N(4)-C(6)	1.337(3)	N(1)-U(1)-Cl(1)	69.94(4)		
C(5)-C(6)	1.373(3)	Cl(2)-U(1)-Cl(1)	142.010(17)		
C(5)-H(5)	0.95	Cl(3)-U(1)-Cl(1)	139.657(17)		
C(6)-H(6)	0.95	U(1)-O(5)-H(5A)	127.1		
C(7)-C(8)	1.378(3)	U(1)-O(5)-H(5B)	127.9		
C(7)-H(7)	0.95	H(5A)-O(5)-H(5B)	104.5		
C(8)-H(8)	0.95	C(2)-N(1)-C(1)	116.4(2)		
O(7)-H(7B)	0.804(17)	C(2)-N(1)-U(1)	120.79(14)		
O(7)-H(7A)	0.791(17)	C(1)-N(1)-U(1)	122.68(15)		
		N(1)-C(1)-C(2)#1	121.7(2)		
		N(1)-C(1)-H(1)	119.1		
		C(2)#1-C(1)-H(1)	119.1		
		N(1)-C(2)-C(1)#1	121.9(2)		
		N(1)-C(2)-H(2)	119.1		
		C(1)#1-C(2)-H(2)	119.1		
		C(8)-N(3)-C(5)	121.7(2)		
		C(8)-N(3)-H(3)	119.1		
		C(5)-N(3)-H(3)	119.2		
		C(7)-N(4)-C(6)	117.7(2)		
		N(3)-C(5)-C(6)	118.1(2)		
		N(3)-C(5)-H(5)	120.9		
		C(6)-C(5)-H(5)	120.9		
		N(4)-C(6)-C(5)	122.1(2)		
		N(4)-C(6)-H(6)	118.9		

Figure S1: ORTEP drawing of compound 1, (HPyz⁺)₂[UO₂Cl₃(H₂O)(Pyz)_{0.5}]₂·2H₂O.

Figure S2: Room temperature UV-Visible-DRS spectrum of compound 1, $(HPyz^+)_2[UO_2Cl_3(H_2O)(Pyz)_{0.5}]_2:2H_2O.$

FigureS3:RoomtemperatureRamanspectrumofcompound1, $(HPyz^+)_2[UO_2Cl_3(H_2O)(Pyz)_{0.5}]_2$ ·2H₂O, using a 532 nm excitation line.

Figure S4: Model of the isolated $[UO_2Cl_3(H_2O)(Pyz)_{0.5}]_2^{2-}$ anion, with relevant atoms labeled, which was utilized for all DFT and QTAIM calculations.

Figure S5: Side-by-side comparison of the unoptimized and optimized $[UO_2Cl_3(H_2O)(Pyz)_{0.5}]_2^{2-}$ dimer from the top, in order to show the rotation of the equatorial bridging pyrazine and water molecules.

Figure S6: Model of the isolated $[UO_2Cl_4]^{2-}$ dianion, with relevant atoms labeled, which was used for all DFT and QTAIM calculations.

Figure S6: Isodensity representation of the (Left) equatorial chloride p orbitals that comprise the HOMO of the $[UO_2Cl_4]^{2-}$ dianion and (Right) pure 5f orbitals, which serve as the LUMO of $[UO_2Cl_4]^{2-}$.

		51			52			53			54	
	AU			AG			AG			AG		
Frequencies		870.311		8	870.318	2	9	918.063	2		948.031	
Red. masses		15.8616	5		14.5217	7		1.2732			16.3255	;
Frc consts		7.0786			6.4807			0.6323		8.6449		
IR Inten		4.6401			0			0		0		
Raman Activ		0		1	146.445	4		4.4593		0.569		
Depolar (P)		0			0.0052			0.1817			0.5318	
Depolar (U)		0			0.0103			0.3076			0.6943	
Atom /AN	X	Y	Z	X	Y	Z	Х	Y	Z	X	Y	Z
1 92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.04	-0.05	0.03
2 17	0.01	-0.01	0.00	0.01	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3 17	-0.01	0.00	-0.01	-0.01	0.00	-0.01	0.00	0.00	0.00	0.00	0.00	0.00
4 17	0.00	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
5 8	0.30	0.35	-0.21	0.29	0.33	-0.20	0.01	0.01	-0.01	0.27	0.31	-0.19
6 8	-0.27	-0.35	0.21	-0.25	-0.33	0.20	-0.01	-0.01	0.00	0.26	0.35	-0.21
7 8	0.00	-0.01	-0.01	-0.01	-0.01	-0.01	0.00	0.00	0.00	0.00	0.00	0.00
8 1	0.02	0.02	0.03	0.02	0.02	0.02	0.00	0.00	0.00	-0.01	-0.03	-0.06
9 1	0.00	0.02	-0.01	0.00	0.02	0.00	0.00	0.00	0.00	-0.02	-0.02	-0.06
10 7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
11 6	0.01	-0.01	0.00	0.01	-0.02	-0.02	0.00	0.07	0.02	0.01	-0.04	0.00
12 1	0.01	0.05	0.01	-0.01	0.15	0.02	0.00	-0.48	-0.13	-0.02	0.16	0.05
13 6	0.00	0.01	0.01	-0.02	0.02	0.01	0.00	-0.07	-0.02	-0.01	-0.03	-0.02
14 1	0.00	-0.03	0.00	-0.02	-0.15	-0.05	-0.01	0.48	0.12	-0.01	0.10	0.05
15 7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.01	-0.01
16 6	0.01	-0.01	0.00	-0.01	0.02	0.02	0.00	-0.07	-0.02	-0.01	0.04	0.00
17 1	0.01	0.05	0.01	0.01	-0.15	-0.02	0.00	0.48	0.13	0.02	-0.16	-0.05
18 6	0.00	0.01	0.01	0.02	-0.02	-0.01	0.00	0.07	0.02	0.01	0.03	0.02
19 1	0.00	-0.03	0.00	0.02	0.15	0.05	0.01	-0.48	-0.12	0.01	-0.10	-0.05
20 92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.05	-0.03
21 17	0.01	-0.01	0.00	-0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22 17	-0.01	0.00	-0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
23 17	0.00	0.01	0.01	0.00	-0.01	-0.01	0.00	0.00	0.00	0.00	0.00	0.00
24 8	0.30	0.35	-0.21	-0.29	-0.33	0.20	-0.01	-0.01	0.01	-0.27	-0.31	0.19
25 8	-0.27	-0.35	0.21	0.25	0.33	-0.20	0.01	0.01	0.00	-0.26	-0.35	0.21
26 8	0.00	-0.01	-0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
	0.02	0.02	0.03	-0.02	-0.02	-0.02	0.00	0.00	0.00	0.01	0.03	0.06
28 1	0.00	0.02	-0.01	0.00	-0.02	0.00	0.00	0.00	0.00	0.02	0.02	0.06

Table S3: Calculated Raman and IR frequencies and atomic displacements for the symmetricand asymmetric stretches of the $[UO_2Cl_3(H_2O)(Pyz)_{0.5}]_2^{2^-}$ dianion.

Figure S7: Calculated Raman spectra rendered from B3LYP outputs. An inset is provided to highlight the U=O v_1 region from 790 to 900 cm⁻¹.

Table S4: Calculated Raman and IR frequencies and atomic displacements for $[UO_2Cl_4]^{2-}$ in the uranyl symmetric stretch region (v = 750-900 cm⁻¹).

		14			15		
		AG		AU			
Frequencies	8	862.612	5	942.2844			
Red. masses		16.0154		18.1577			
Frc consts		7.0213		9.4989			
IR Inten		0.0000		336.0006			
Raman Activ		73.0829	•	0.0000			
Depolar (P)	0.0005			0.0000			
Depolar (U)	0.0011			0.0000			
Atom/ AN	X	Y	Ζ	Х	Y	Ζ	
1 92	0.00	0.00	0.00	0.02	0.04	-0.09	
2 17	0.01	-0.01	0.00	0.00	0.00	0.01	
3 17	-0.01	-0.01	-0.01	0.00	0.00	0.01	
4 8	-0.18	-0.25	0.64	-0.17	-0.25	0.63	
5 17	-0.01	0.01	0.00	0.00	0.00	0.01	
6 17	0.01	0.01	0.01	0.00	0.00	0.01	
78	0.18	0.25	-0.64	-0.17	-0.25	0.63	

Table S5: Method validation across B3LYP, BLYP, CAM-B3LYP, BP86, PBE1PBE and TPSSH functionals for the $[UO_2Cl_3(H_2O)(Pyz)_{0.5}]_2^{2-}$ computational model, using Wiberg bond indices as a reference metric. Although slight deviations in index values occur across functionals, we observe the same trends in bonding, supporting the validity of the model and the lack of potential functional bias, further supported by low standard deviations.

	B3LYP	BLYP	CAM-B3LYP	BP86	PBE1PBE	TPSSH	Std. Dev. (%)
U=01	2.0695	2.0923	2.0653	2.1065	2.0774	2.0820	-
U=O2	2.0645	2.0873	2.0602	2.1015	2.0724	2.0869	-
U=O Average	2.0670	2.0898	2.0628	2.1040	2.0749	2.0845	1.54
U-Cl1	0.7663	0.8201	0.7359	0.8265	0.7603	0.7874	-
U-C12	0.8575	0.9195	0.8225	0.9256	0.8490	0.8807	-
U-C13	0.8749	0.9484	0.8329	0.9544	0.8643	0.9024	-
Average U-Cl	0.8329	0.8960	0.7971	0.9022	0.8245	0.8568	4.15
U-N1	0.3247	0.3427	0.3152	0.3467	0.3230	0.3329	1.22
U-OH ₂	0.3157	0.3271	0.3136	0.3330	0.3164	0.3231	0.76

Table S5: Method validation across B3LYP, BLYP, CAM-B3LYP, BP86, PBE1PB3 and TPSSH functionals for the $[UO_2Cl_4]^{2-}$ computational model, using Wiberg bond indices as a reference metric. Although slight deviations in index values occur across functionals, we observe the same trends in bonding, supporting the validity of the model and the lack of potential functional bias, further supported by low standard deviations.

	B3LYP	BLYP	CAM-B3LYP	BP86	PBE1PBE	TPSSH	Std. Dev. (%)
U=O1	2.0540	2.0771	2.0495	2.0911	2.0621	2.0719	-
U=O2	2.0540	2.0771	2.0495	2.0910	2.0621	2.0719	-
U=O Average	2.0540	2.0771	2.0495	2.0911	2.0621	2.0719	1.55
U-C11	0.8235	0.8755	0.7925	0.8815	0.816	0.8418	-
U-Cl2	0.8424	0.8945	0.8101	0.9007	0.8349	0.8609	-
U-C13	0.8237	0.8757	0.7923	0.8817	0.8162	0.8420	-
U-C14	0.8415	0.8936	0.8110	0.8998	0.8340	0.8600	-
U-Cl Average	0.8328	0.8848	0.8015	0.8909	0.8253	0.8512	3.50

References

- 1. Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The Cambridge Structural Database. Acta Cryst B. 2016 Apr 1;72(2):171–9. CSD version: 5.43, update 1: [cited 2022 June 16].
- Thuéry P, Masci B. Uranyl Ion Complexation by Cucurbiturils in the Presence of Perrhenic, Phosphoric, or Polycarboxylic Acids. Novel Mixed-Ligand Uranyl–Organic Frameworks. Crystal Growth & Design. 2010 Feb 3;10(2):716–25.
- Haegele R, Boeyens JCA. Crystal structure of benzyltrimethylammonium μ2-peroxobis[trichlorodioxouranate(VI)], a binuclear uranium complex containing dioxygen in a μ2-peroxo-linkage. J Chem Soc, Dalton Trans. 1977 Jan 1;(7):648–50.
- 4. Walker SM, Halasyamani PS, Allen S, O'Hare D. From Molecules to Frameworks: Variable Dimensionality in the UO2(CH3COO)2·2H2O/HF(aq)/Piperazine System. Syntheses, Structures, and Characterization of Zero-Dimensional (C4N2H12)UO2F4·3H2O, One-Dimensional (C4N2H12)2U2F12·H2O, Two-Dimensional (C4N2H12)2(U2O4F5)4·11H2O, and Three-Dimensional (C4N2H12)U2O4F6. J Am Chem Soc. 1999 Nov 1;121(45):10513–21.
- 5. Mehdoui T, Berthet JC, Thuéry P, Ephritikhine M. Clear-Cut Lanthanide(III)/Actinide(III) Differentiation in Coordination of Pyrazine to Tris(cyclopentadienyl) Complexes of Cerium and Uranium, Involving Reversible UIII → UIV Oxidation. European Journal of Inorganic Chemistry. 2004;2004(10):1996–2000.
- 6. Severance, R. C., Smith, M. D., zur Loye, H. C. CSD Communication, 2016. CCDC: 827123.
- 7. Evans WJ, Takase MK, Ziller JW, DiPasquale AG, Rheingold AL. Reductive Reactivity of the Tetravalent Uranium Complex [(η5-C5Me5)(η8-C8H8)U]2(μ-η3:η3-C8H8).
 Organometallics. 2009 Jan 12;28(1):236–43.

- Monreal MJ, Khan SI, Kiplinger JL, Diaconescu PL. Molecular quadrangle formation from a diuranium μ-η6,η6-toluene complex. Chem Commun. 2011 Aug 2;47(32):9119–21.
- Frisch M, Cahill CL. Thorium(IV) Coordination Polymers in the Pyridine and Pyrazinedicarboxylic Acid Systems. Crystal Growth & Design. 2008 Aug 1;8(8):2921–8.
- Masci B, Thuéry P. Pyrazinetetracarboxylic Acid as an Assembler Ligand in Uranyl–Organic Frameworks. Crystal Growth & Design. 2008 May 1;8(5):1689–96.
- 11. Hu KQ, Zeng LW, Kong XH, Huang ZW, Yu JP, Mei L, et al. Viologen-Based Uranyl Coordination Polymers: Anion-Induced Structural Diversity and the Potential as a Fluorescent Probe. European Journal of Inorganic Chemistry. 2021;2021(48):5077–84.
- Ivanov, S. B., Davidovich, R. L., Mikhailov, Yu. N., Shchelokov, R. N. Koord. Khim.(Russ.)(Coord. Chem.), 1982, 8, 211.
- Wang CM, Liao CH, Kao HM, Lii KH. Hydrothermal Synthesis and Characterization of [(UO2)2F8(H2O)2Zn2(4,4'-bpy)2]·(4,4'-bpy), a Mixed-Metal Uranyl Aquofluoride with a Pillared Layer Structure. Inorg Chem. 2005 Sep 1;44(18):6294–8.
- 14. Bombieri G, De Paoli G, Immirzi A. An example of uranium(IV) insertion within a macrocyclic crown ether with coexistence of the metal in two oxidation states. Journal of Inorganic and Nuclear Chemistry. 1978 Jan 1;40(11):1889–94.
- Mak TCW, Wai-Hing Y. Synthesis and crystal structure of bis(tetramethylammonium) aquotetra-fluorodioxouranate(VI) dihydrate, [(CI3)4 N]2[UO2 F4(H2 O)]·2H2O. Inorganica Chimica Acta. 1985 Mar 1;109(2):131–3.
- 16. Zhang Y, Lu K, Liu M, Karatchevtseva I, Tao Z, Wei G. Thorium(IV) and uranium(VI) compounds of cucurbit[10]uril: from a one-dimensional nanotube to a supramolecular framework. Dalton Trans. 2020 Jan 2;49(2):404–10.

- Hassaballa H, Steed JW, Junk PC. New insights into the formation of extended supramolecular architectures from simple building blocks. Chem Commun. 1998 Jan 1;(5):577–8.
- 18. Hassaballa H, Steed JW, Junk PC, Elsegood MRJ. Formation of Lanthanide and Actinide Oxonium Ion Complexes with Crown Ethers from a Liquid Clathrate Medium. Inorg Chem. 1998 Sep 1;37(18):4666–71.
- Kerr, AT, Kumalah, SA, Holman, KT, Butcher, RJ, Cahill, CL. Uranyl Coordination Polymers Incorporating η5-Cyclopentadienyliron-Functionalized η6-Phthalate Metalloligands: Syntheses, Structures and Photophysical Properties. J. Inorg. Organomet. Polym. Mater., 2014@24):128.
- 20. Mikhailov, Yu. N., Ivanov, S. B., Kuznetsov, V. G., Davidovich, R. L., Koord. Khim. (Russ.)(Coord. Chem.), 1979:(5):1545.
- 21. Ok KM, O'Hare D. Hydrothermal synthesis, crystal structure, and characterization of a new pseudo-two-dimensional uranyl oxyfluoride, [N(C2H5)4]2[(UO2)4(OH2)3F10]. Journal of Solid State Chemistry. 2007 Feb 1;180(2):446–52.
- 22. Yue Z, Lin J, Silver MA, Han L, Li X, Zhou J, et al. Anionic uranyl oxyfluorides as a bifunctional platform for highly selective ion-exchange and photocatalytic degradation of organic dyes. Dalton Trans. 2018 Oct 30;47(42):14908–16.
- 23. Liu XX, Wang Y, Tian WG, Yang W, Sun ZM. Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands. Chinese Chemical Letters. 2015 Jun 1;26(6):641–5.