Synthesis and antibacterial activity study of rutheniumbased metallodrugs with membrane-disruptive mechanism against *Staphylococcus aureus*

Yushou Chen^{a§}, Lianghong Liu^{b§}, Xuerong Wang^{a§}, Zhouyuji Liao^a, Runbin Wang^a, Yanshi Xiong^a, Jianxin Cheng^a, Guijuan Jiang^a, Jintao Wang^{a*}, Xiangwen Liao^{a*}

^a Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science&Technology Normal University, Nanchang, 330013, China

^b School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China

 ${}^{\$}$ These authors contribute equally to this work

* Correspondence author:

E-mail: jintaochem@163.com or liao492008522@163.com

Supplementary Materials

Ligands L1–L3: The synthesis of L1, L2 and L3 were identical with the procedure as described previously^{1,2,3}.

L4: A mixture of terphenyl-4-formaldehyde(0.12mmol), 1,10phenanthroline-5,6-dione (0.12 mmol), ammonium acetate (2.38 mmol) and glacial acetic acid (4.5 mL) were refluxed at 130 °C for 3 h under argon. After the mixture was cooled to room temperature, the solution was neutralized with aqueous ammonia solution. The resulting solid was filtered and washed with ethanol. The residue was collected and further purified through column chromatography on silica gel using ethanol/dichloromethane (2:1, v/v) as an eluent. Yield: 29.6 mg, 55 %. ¹H NMR (400 MHz, DMSO- d_6) δ 13.83 (s, 1H), 9.12-8.93 (m, 3H), 8.42 (d, J = 8.2 Hz, 2H), 8.13-7.67 (m, 11H), 7.58–7.45 (m, 2H), 7.44-7.35 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 167.9 (s), 166.3 (s), 152.6 (s), 150.5 (s), 148.82(s), 147.7 (s), 145.6 (s), 141.7 (s), 139.1 (s), 138.1 (s), 136.6 (s), 130.7 (s), 129.4 (s), 129.0 (s), 128.5 (s), 128.0 (s), 127.4 (s), 127.4-126.9 (m), 126.6 (d, J = 18.2 Hz), 125.1 (s), 25.5 (s), 24.4 (s). HRMS (ESI) m/z: calcd for C₃₁H₂₀N₄ [M+H]⁺, 449.1766; found 449.1767. Complex Ru1, Ru2, Ru3, Ru7, Ru8, Ru9, Ru13 and Ru14: A mixture of L3 (0.826 mmol) and corresponding reagent (0.826 mmol, $[Ru(bpy)_2Cl_2] \cdot 2H_2O$ $Ru1^4$, $[Ru(phen)_2Cl_2] \cdot 2H_2O$ for for Ru2, $[Ru(dmp)_2Cl_2] \cdot 2H_2O$ $[Ru(dmb)_2Cl_2] \cdot 2H_2O$ Ru7⁴, for Ru3, for $[Ru(dtb)_2Cl_2] \cdot 2H_2O$ **Ru8**, $[Ru(btp)_2Cl_2] \cdot 2H_2O$ **Ru9**, for for

 $[Ru(ncp)_2Cl_2] \cdot 2H_2O$ for **Ru13** and $[Ru(tmp)_2Cl_2] \cdot 2H_2O$ for **Ru14**) in ethylene glycol (15 mL) were heated at 150 °C for 8 h under argon. After the resulting red solution cooled to room temperature, saturated KPF_6 aqueous solution (10 mL) were added to obtain a red precipitate. The crude product was collected, dried and purified by column chromatography (neutral alumina, acetonitrile/xylene = 5:1, v/v). **Ru1**: yield: 65.0 %. ¹H NMR (400 MHz, DMSO- d_6) δ 9.07 (dd, J = 9.1, 0.9 Hz, 2H), 8.86 (dd, J = 15.1, 8.1 Hz, 4H), 8.44 (d, J = 8.1 Hz, 2H), 8.22 (t, J =7.9 Hz, 2H), 8.11 (t, J = 7.7 Hz, 2H), 8.03-7.74 (m, 10H), 7.69-7.49 (m, 6H), 7.48 – 7.28 (m, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 156.7 (d, J = 20.9 Hz), 151.4 (s), 148.6 (s), 144.5 (s), 140.7 (s), 139.5 (s), 137.8 (d, J =16.2 Hz), 130.2 (s), 129.0 (s), 127.8 (d, J = 11.5 Hz), 127.1 (d, J = 3.1Hz), 126. (s), 125.8 (s), 124.4 (d, J = 6.3 Hz). HRMS (ESI) m/z: calcd for C₄₅H₃₂N₈Ru [M-2PF₆-H]⁺, 785.1727; found 785.1718. **Ru2**: yield: 74.0%. ¹H NMR (400 MHz, DMSO- d_6) δ 9.04-8.97 (m, 2H), 8.72 (d, J = 17.8 Hz, 4H), 8.44 (d, J = 8.2 Hz, 2H), 7.97-7.75 (m, 8H), 7.68 (d, J = 5.5 Hz, 2H), 7.52 (t, J = 7.7 Hz, 2H), 7.40 (t, J = 6.7 Hz, 5H), 7.17 (d, J = 5.9 Hz, 2H), 2.55 (s, 6H), 2.45 (s, 6H). ¹³C NMR(101 MHz, DMSO- d_6) δ 156.3 (d, J = 14.9 Hz), 151.9-151.6 (m), 151.9-151.3 (m), 151.9-147.1 (m), 144.8 (s), 140.2 (d, J = 141.4 Hz), 137.7-136.7 (m), 129.9 (s), 129.8-1295 (m), 128.4 (dd, J = 67.9, 55.0 Hz), 127.7-127.3 (m), 126.9 (d, J = 45.5 Hz), 126.5-126.4 (m), 126.4-124.8 (m), 124.2 (s), 124.2 (s), 20.7 (d, J = 9.2

Hz). HRMS (ESI) m/z: calcd for C₄₉H₄₀N₈Ru [M-2PF₆-H]⁺, 841.2354; found 841.2345. **Ru3**: yield: 54.5%. ¹H NMR (400 MHz, DMSO- d_6) δ 9.11 (d, J = 8.0 Hz, 2H), 8.87 (d, J = 12.9 Hz, 4H), 8.45-8.39 (m, 2H), 8.05-7.92 (m, 6H), 7.84-7.79 (m, 2H), 7.69-7.65 (m, 2H), 7.64-7.59 (m, 2H), 7.58-7.51 (m, 2H), 7.50 – 7.42 (m, 3H), 7.36 – 7.30 (m, 2H), 1.43 (d, J = 2.8 Hz, 18H), 1.34 (d, J = 2.6 Hz, 18H). ¹³C NMR (101 MHz, DMSO d_6) δ 161.8 (d, J = 17.7 Hz), 156.5 (d, J = 17.0 Hz), 152.5 (s), 150.8 (d, J= 13.8 Hz), 149.6 (s), 145.3 (s), 141.9 (s), 139.2 (s), 130.2 (s), 129.1 (s), 128.3 (d, J = 39.7 Hz), 128.0 – 127.5 (m), 127.3 (d, J = 23.4 Hz), 126.7 (s), 126.3 (s), 124.8 (s), 124.5 (s), 121.7 (s), 35.4 (d, J = 13.3 Hz), 30.0 (d, J = 10.9 Hz). HRMS (ESI) m/z: calcd for $C_{61}H_{64}N_8Ru$ [M-2PF₆-H]⁺, 1009.4236; found 1009.4236. **Ru7**: yield: 52.0%. ¹H NMR (400 MHz, DMSO- d_6) δ 9.02 (d, J = 8.0 Hz, 2H), 8.77 (d, J = 8.2 Hz, 4H), 8.46 – 8.37 (m, 6H), 8.13 (d, J = 5.2 Hz, 4H), 7.88 (d, J = 8.2 Hz, 4H), 7.77 (dd, J = 7.8, 5.2 Hz, 6H), 7.74-7.68 (m, 2H), 7.52 (t, J = 7.5 Hz, 2H), 7.41 (t, J= 7.3 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.6 (s), 148.9 (s), 147.2 (d, J = 9.9 Hz), 144.8 (s), 140.5 (s), 139.4 (s), 136.6 (s), 130.4 (s), 130.1 (s), 128.9 (s), 127.8 (d, J = 30.9 Hz), 126.9 (s), 126.5 (s), 126.4 (d, J = 27.1 Hz), 125.5 (s). HRMS (ESI) m/z: calcd for C₄₉H₃₂N₈Ru [M-2PF₆-H]⁺, 833.1728; found 833.1714. **Ru8**: yield: 74.8%. ¹H NMR (400 MHz, DMSO- d_6) δ 8.91 (dd, J = 23.7, 8.2 Hz, 4H), 8.45 (dd, J = 10.8, 8.9Hz, 4H), 8.34 (d, J = 8.2 Hz, 2H), 8.25 (d, J = 8.8 Hz, 2H), 7.99 (d, J =

8.4 Hz, 2H), 7.92 (d, J = 8.1 Hz, 2H), 7.78 (d, J = 7.4 Hz, 2H), 7.51 (dd, J = 15.6, 8.0 Hz, 4H), 7.46-7.31 (m, 5H), 1.94 (s, 6H), 1.72 (s, 6H). 13 C NMR (101 MHz, DMSO- d_6) δ 167.9 (s), 166.3 (s), 152.6 (s), 150.5 (s), 148.8 (s), 147.7 (s), 145.6 (s), 141.7 (s), 139.1 (s), 138.0 (s), 136.6 (s), 130.7 (s), 129.4 (s), 129.0 (s), 128.5 (s), 128.0 (s), 127.4 (s), 127.4-126.9 (m), 126. 6 (d, J = 18.2 Hz), 125.1 (s), 25.5 (s), 24.4 (s). HRMS (ESI) *m/z*: calcd for C₅₃H₄₀N₈Ru [M-2PF₆-H]⁺, 889.2355; found 889.2350. **Ru9**: yield: 49.0%. ¹H NMR (400 MHz, DMSO- d_6) δ 9.16 (d, J = 8.2 Hz, 2H), 8.44 (d, J = 8.4 Hz, 2H), 8.35 (d, J = 5.6 Hz, 2H), 8.31-8.16 (m, 7H), 7.99 (d, J = 8.3 Hz, 2H), 7.92 (s, 2H), 7.86-7.50 (m, 28H), 7.45 (d, J = 7.6 Hz, 2H)2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.2 (d, J = 21.9 Hz), 152.1-151.8 (m), 147.9 (d, J = 13.3 Hz), 135.3 (d, J = 4.0 Hz), 130.5 (s), 130.9-129.5 (m), 129.0 (s), 129.0-128.6 (m), 128.6-127.7 (m), 127.2 (d, J = 22.7Hz), 127.1-127.0 (m), 127.1-127.0 (m), 126.7 (s), 126.2 (dd, J = 43.0, 5.4 Hz). HRMS (ESI) m/z: calcd for $C_{73}H_{48}N_8Ru$ [M-2PF₆-H]⁺,1137.2987; found 1137.2974. **Ru13**: yield: 58.0%. ¹H NMR (400 MHz, DMSO- d_6) δ 8.99 (d, J = 7.9 Hz, 2H), 8.46 (d, J = 3.4 Hz, 4H), 8.43 (s, 1H), 7.96 -7.91 (m, 4H), 7.87 (d, J = 7.3 Hz, 3H), 7.78 (d, J = 7.8 Hz, 3H), 7.70 (s, 2H), 7.59 (d, *J* = 5.2 Hz, 4H), 7.52 (t, *J* = 7.4 Hz, 3H), 7.41 (t, *J* = 6.9 Hz, 1H), 2.89 (d, J = 3.3 Hz, 12H). ¹³C NMR (101 MHz, DMSO- d_6) δ 167.9 (s), 166.3 (s), 152.6 (s), 150.5 (s), 148.8 (s), 147.7 (s), 145.6 (s), 141.7 (s), 139.1 (s), 138.0 (s), 136.6 (s), 130.7 (s), 129.4 (s), 129.0 (s), 128.5 (s),

128.0 (s), 127.4 (s), 127.4-126.9 (m), 126.6 (d, J = 18.2 Hz), 125.1 (s), 25.5 (s), 24.4 (s). HRMS (ESI) m/z: calcd for C₅₃H₄₀N₈Ru [M-2PF₆-H]⁺,889.2355; found 889.2339. **Ru14**: yield: 60.0%. ¹H NMR (400 MHz, DMSO- d_6) δ 14.41 (s, 1H), 9.10-9.00 (m, 2H), 8.51 (d, J = 17.8 Hz, 3H), 8.40 (t, J = 8.1 Hz, 2H), 8.08-7.65 (m, 13H), 7.54 (t, J = 7.5 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 2.91-2.62 (m, 12H), 2.23 (d, J = 20.3 Hz, 12H). ¹³C NMR (101 MHz, DMSO- d_6) δ 167.9 (s), 166.3 (s), 152.6 (s), 150.5 (s), 148.8 (s), 147.7 (s), 145.6 (s), 141.7 (s), 139.0 (s), 138.0 (s), 136.6 (s), 130.7 (s), 129.4 (s), 129.0 (s), 128.5 (s), 128.0 (s), 127.4 (s), 127.4-126.9 (m), 126.6 (d, J = 18.2 Hz), 125.1 (s), 25.5 (s), 24.4 (s). HRMS (ESI) m/z: calcd for C₅₇H₄₈N₈Ru [M-2PF₆-H]⁺,945.2983; found 945.2986.

Complex Ru4 and Ru10: These complexes were synthesized in an identical manner to that described for complex **Ru1** with **L1** in place of **L3. Ru4**: yield: 61.2%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.98 (d, *J* = 8.1 Hz, 2H), 8.78-8.66 (m, 4H), 8.05 (d, *J* = 4.9 Hz, 2H), 7.89 (dd, *J* = 8.3, 5.3 Hz, 2H), 7.65 (d, *J* = 5.8 Hz, 2H), 7.39 (dd, *J* = 11.7, 5.8 Hz, 3H), 7.16-7.02 (m, 3H), 7.00-6.91 (m, 1H), 2.53 (d, *J* = 13.7 Hz, 6H), 2.44 (s, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.2 (d, *J* = 16.2 Hz), 150.5 (d, *J* = 17.7 Hz), 150.3-150.1 (m), 150.1-149.2 (m), 145.3 (s), 142.8 (s), 130.0 (s), 128.4 (d, *J* = 14.5 Hz), 126.3 (s), 125.0 (d, *J* = 7.6 Hz), 20.7 (d, *J* = 9.7 Hz). HRMS (ESI) *m/z*: calcd for C₃₇H₃₂N₈Ru [M-2PF₆-H]⁺, 689.1725; found 689.1725. **Ru10**⁵: yield: 53.0%. ¹H NMR (500 MHz, DMSO-*d*₆) δ

14.17 (s, 1H), 8.91 (d, J = 8.3 Hz, 2H), 8.78 (d, J = 7.7 Hz, 2H), 8.65 (s, 1H), 8.43 (t, J = 8.5 Hz, 4H), 8.24 (d, J = 8.7 Hz, 2H), 7.98 (d, J = 8.3 Hz, 2H), 7.54-7.46 (m, 2H), 7.36 (d, J = 7.7 Hz, 4H), 1.92 (s, 6H), 1.67 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 167.9 (s), 166.3 (s), 152.6 (s), 150.5 (s), 148.8 (s), 147.7 (s), 145.6 (s), 141.7 (s), 139.1 (s), 138.0 (s), 136.6 (s), 130.7 (s), 129.4 (s), 129.0 (s), 128.5 (s), 128.0 (s), 127.4 (s), 127.4-126.9 (m), 126.6 (d, J = 18.2 Hz), 125.1 (s), 25.47 (s), 24.4 (s). HRMS (ESI) *m/z*: calcd for C₄₁H₃₂N₈Ru [M-2PF₆-H]⁺,737.1726; found 737.1721.

Complex Ru5 and Ru11: These complexes were synthesized in an identical manner to that described for complex **Ru1** with **L2** in place of **L3**. **Ru5**⁶: yield: 60.5%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.05 (d, *J* = 8.3 Hz, 2H), 8.77 – 8.69 (m, 4H), 8.33 (d, *J* = 7.5 Hz, 2H), 8.01 (s, 2H), 7.88 (s, 2H), 7.62 (dd, *J* = 31.0, 20.3 Hz, 5H), 7.44 – 7.35 (m, 4H), 7.16 (d, *J* = 5.9 Hz, 2H), 2.55 (s, 6H), 2.45 (s, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.3 (d, *J* = 14.0 Hz), 154.1 (s), 150.4 (d, *J* = 11.0 Hz), 149.8-149.1 (m), 149.1-148.7 (m), 145.0 (s), 130.7 (s), 129.8 (d, *J* = 20.4 Hz), 129.3 (s), 129.0 (s), 128.4 (d, *J* = 14.1 Hz), 126.6 (s), 125.9 (s), 124.9 (d, *J* = 5.9 Hz), 123.9 (s), 20.7 (d, *J* = 9.7 Hz). HRMS (ESI) *m/z*: calcd for C₄₃H₃₆N₈Ru [M-2PF₆-H]⁺, 765.2040; found 765.2051. **Ru11**: yield: 52.0%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.92 (d, *J* = 8.3 Hz, 2H), 8.85 (d, *J* = 8.1 Hz, 2H), 8.44 (t, *J* = 9.2 Hz, 4H), 8.25 (d, *J* = 8.5 Hz, 4H),

7.98 (d, J = 8.3 Hz, 2H), 7.58 (t, J = 7.2 Hz, 2H), 7.54 – 7.44 (m, 3H), 7.38 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 3.5 Hz, 2H), 1.94 (s, 6H), 1.70 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 167.7 (s), 166.1 (s), 148.9 (s), 148.5 (s), 147.9 (s), 138.9 (d, J = 53.1 Hz), 137.8 (s), 136.5 (s), 130.1 (s), 129.4 (d, J = 4.7 Hz), 128.9 (s), 127.3 (s), 127.1-126.7 (m), 126.5 (t, J =12.3 Hz), 124.2 (d, J = 16.0 Hz), 25.3 (s), 24.4 (s). HRMS (ESI) *m/z*: calcd for C₄₇H₃₆N₈Ru [M-2PF₆-H]⁺,813.2040; found 813.2032.

Complex Ru6 and Ru12: These complexes were synthesized in an identical manner to that described for complex **Ru1** with **L4** in place of **L3**. **Ru6**: yield: 59.0%. ¹H NMR (400 MHz, DMSO- d_6) δ 9.04 (d, J = 7.8Hz, 2H), 8.72 (d, J = 17.3 Hz, 4H), 8.47 (d, J = 8.2 Hz, 2H), 7.96 (d, J =7.3 Hz, 4H), 7.90 (d, J = 8.2 Hz, 2H), 7.83 (d, J = 8.1 Hz, 4H), 7.76 (d, J= 7.6 Hz, 2H), 7.68 (d, J = 5.6 Hz, 2H), 7.51 (t, J = 7.6 Hz, 2H), 7.44 -7.38 (m, 5H), 7.17 (d, J = 5.6 Hz, 2H), 2.56 (s, 6H), 2.46 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 156.3 (d, J = 15.1 Hz), 150.4 (s), 149.4 (d, J = 14.9 Hz), 148.3 (s), 144.6 (s), 140.5-138.9 (m), 138.5 (s), 129.8 (s), 129.0 (s), 128.4 (d, J = 11.5 Hz), 127.7-126.5 (m), 126.5-125.9 (m), 126.5 -125.9 (m), 125.6 (s), 124.9 (s), 20.7 (d, J = 8.8 Hz). HRMS (ESI) m/z: calcd for C₅₅H₄₄N₈Ru [M-2PF₆-H]⁺,917.2669; found 917.2667. **Ru12**: yield: 50.1%. ¹H NMR (400 MHz, DMSO- d_6) δ 8.91 (d, J = 8.3 Hz, 2H), 8.77 (d, J = 7.5 Hz, 2H), 8.50-8.35 (m, 6H), 8.24 (d, J = 8.8 Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H), 7.90-7.69 (m, 8H), 7.50 (t, J = 7.5 Hz, 2H), 7.44-7.28

(m, 5H), 7.15 (s, 2H), 1.95 (s, 6H), 1.72 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 167.9 (s), 150.3 (s), 148.8 (s), 147.8 (s), 145.5 (s), 138.0 (s), 136.6 (s), 130.6 (s), 130.6-129.7 (m), 129.4 (s), 129.0 (s), 127.4 (d, J = 13.2 Hz), 127.0 (s), 126.5 (s), 125.0 (s), 25.4 (s), 24.4 (s). HRMS (ESI) m/z: calcd for C₅₉H₄₄N₈Ru [M-2PF₆-H]⁺,965.2670; found 965.2663.

Spectra of Ligands and Complexes

HRMS of L4

pos		
2021-1021-WJT-cys-10 (0.027) Is (1.00,1.00) C31H21N4		1: TOF MS ES+
100	443 1766	7.04e12
	450.1797 451.1828	
0	P	m/z
100 150 200 250 300 350 400	0 450 500 550 600 650 700 750 800 850	900 950 1000 1 TOE MS ES
2021-1021-0031-0036 (0.296) 274.2750		2.73e6
8-		
230 2488	449 1767 450 1730	
140.1440 198.1286 318.3010 0 330.3375 385.1202	409.1711 476.3286	

75.2786

318 3011 330.3378

407,1054

475 3262

1000

950

900

198 1284

124.081

230,2486

950 1000 -----

Identification code	1_0m
Empirical formula	$C_{50}H_{44}F_{12}N_8OP_2Ru$
Formula weight	1163.94
Temperature/K	170.0
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.2796(14)
b/Å	23.099(3)
c/Å	18.796(3)
$\alpha/^{\circ}$	90
β/°	95.087(4)
$\gamma^{\prime \circ}$	90
Volume/Å ³	4878.0(11)
Z	4
$\rho_{calc}g/cm^3$	1.585
μ/mm^{-1}	0.481
F(000)	2360.0
Crystal size/mm ³	0.25 imes 0.15 imes 0.11
Radiation	MoKa ($\lambda = 0.71073$)
2 Θ range for data collection/°	4.032 to 50.052
Index ranges	$-13 \le h \le 12, -27 \le k \le 27, -22 \le l \le 20$
Reflections collected	32959
Independent reflections	8617 [$R_{int} = 0.1129, R_{sigma} = 0.0959$]
Data/restraints/parameters	8617/0/673
Goodness-of-fit on F ²	1.022
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0782, wR_2 = 0.1933$
Final R indexes [all data]	$R_1 = 0.1175, wR_2 = 0.2290$
Largest diff. peak/hole / e Å ⁻³	1.30/-1.40

Table S1 Crystal data and structure refinement for Ru2

Supplementary Figure 1: Stability of fourteen complexes in the PBS solution.

Supplementary Figure 2: The purity of fourteen complexes was investigated through HPLC

Reference

- [1] S. Lazic, P. Kaspler, G Shi, S. Monro, T. Sainuddin, S. Forward, K. Kasimova, R. Hennigar, A, Mandel, S. McFarland, L. Lilge. Novel Osmium-based Coordination Complexes as Photosensitizers for Panchromatic Photodyna mic Therapy. Photochemistry and Photobiology. 93 (2017) 1248 1258.
- [2] Q. Wu, K.D. Zheng, S.Y. Liao, Y. Ding, Y.Q. Li, W.J. Mei. Arene Ruthenium(II) Complexes as Low-Toxicity Inhibitor against the Proliferation, Migration, and Invasion of MDA-MB-231 Cells through Binding and Stabilizing c-myc G-Quadruplex DNA. Organometallics. 35 (2016) 317-326.
- [3] F.L. Xie, Z.T. Huang, L. Bai, J.W. Zhu, H.H. Xu, Q.Q. Long, Q.F. Guo; Y. Wu, S.H. Liu. Antitumor activity studies of iridium (III) polypyridine complexesloaded liposomes against gastric tumor cell in vitro. J. Inorg. Biochem. 225 (2021) 111603.
- [4] L.F. Tan, H. Chao, Y.F. Zhou, L.N. Ji. Synthesis, Characterization, DNA-binding and DNA-photocleavage studies of [Ru(bpy)2(BPIP)]2+ and [Ru(phen)2(BPIP)]2+ (BPIP = 2-(4'-biphenyl)imidazo[4,5-f][1,10]phenanthroline). Polyhedron. 13 (2007) 3029 3036.
- [5] J.A. Roque, H.D. Cole, P.C. Barrett, L.M. Lifshits, R.O. Hodges, S. Kim, G. Deep, A. Frances-Monerris, M.E. Alberto, C.G. Cameron, S.A. McFarland. Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. J. Am. Chem. Soc .144 (2022) 8317-8336.
- [6] G. Ghosh, H.M. Yin, S.M.A. Monro, T. Sainuddin, L Lapoot, S.A. Greer. Synthesis and Characterization of Ru (II) Complexes with pi-Expansive Imidazophen Ligands for the Photokilling of Human Melanoma Cells. Photochem. Photobiol. 96 (2022) 349-357.