Electronic Supplementary Information (ESI):

Reversible Binding of Dinitrogen on a Thiolate-Bridged Cobalt-Ruthenium Complex Supported by a Flexible Bidentate Phosphine Ligand

Wenjing Dong,^a Dawei Yang,^{*a} Tao Mei,^a Baomin Wang^a and Jingping Qu^a

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China

E-mail: yangdw@dlut.edu.cn

Table of Contents

I. General Materials and Methods	S3
II. Experimental Procedures and Analytical Data	\$3
III. References	S7
IV. X-ray Crystallographic Data	S8
V. NMR Spectra	S15
VI. IR Spectra	S21
VII. ESI High Resolution Mass Spectra	S25
VIII. GC analysis	S28

I. General Materials and Methods

General Consideration. All manipulations were performed under an argon atmosphere by standard Schlenk techniques unless otherwise specified. All solvents were dried and distilled over an appropriate drying agent under argon. $[Cp*Co(\eta^3-tpdt)]$ ($Cp* = \eta^5-C_5Me_5$, tpdt = $S(CH_2CH_2S^-)_2$),¹ and $[RuCl_2(PPh_3)_3]^2$ were prepared according to literature procedures. 1,2-Bis(diphenylphosphino)ethane (dppe, Heowns), NaBPh4 (Aldrich), N₂ and ¹⁵N₂ (Dalian Junfeng Gas chemical Co., LTD) are commercially available and used as received without further purification.

Spectroscopic Measurements. NMR spectra were recorded on a Brüker 400 Ultra Shield spectrometer (400 MHz for ¹H; 162 MHz for ³¹P{¹H}; 40.6 MHz for ¹⁵N). The chemical shifts (δ) are given in parts per million relative to CD₂Cl₂ (5.32 ppm for ¹H). ¹⁵N chemical shifts are referenced to external nitromethane (δ = 380.74 ppm relative to liquid ammonia at 0 ppm). Infrared spectra were recorded on a NEXVS FT-IR spectrometer. ESI-HRMS analyses were recorded on a UPLC/Q-Tof microspectrometer. Elemental analyses were performed on a Vario EL analyzer. GC analyses were performed using an Agilent 6890N gas chromatography system equipped with an Agilent DB-5MS 30 m × 0.25 mm column and FID detector and a Techcomp GC7900 gas chromatography instrument with argon as the carrier gas and a thermal conductivity detector. Absorption spectra were recorded with an Agilent UV-8453 spectrophotometer.

X-ray Crystallography Procedures. Single-crystal X-ray diffraction studies were carried out on a Brüker SMART APEX CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Empirical absorption corrections were performed using the SADABS program.³ All structures were solved with the Superflip structure solution program using Charge Flipping and refined with the XL refinement package using least Squares minimization that implanted in Olex2.³⁻⁶ All of the non-hydrogen atoms were refined anisotropically. All of the hydrogen atoms were generated and refined in ideal positions.

II. Experimental Procedures and Analytical Data

Synthesis of $[Cp*Co(\mu-1\kappa^3 SSS': 2\kappa^2 SS-tpdt)RuCl_2(PPh_3)_2]$ (1). $[RuCl_2(PPh_3)_3]$ (958 mg, 1.00 mmol) was added to a solution of $[Cp*Co(\eta^3-tpdt)]$ (345 mg, 1.00 mmol) in THF (50 mL) at room temperature. The solution color rapidly changed from purple to brown. The reaction mixture was stirred at room temperature for 4 h. After removal of

the solvent, the solids were washed with Et₂O (30 mL × 3), and dried under vacuum to afford a brown powder **1** (573 mg, 0.55 mmol, 55%). Single-crystals suitable for X-ray diffraction analysis were grown by slow diffusion of *n*-hexane into a CH₂Cl₂ solution of **1** at room temperature. ¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 0.92 (m, 2H, tpdt-*H*), 2.06–3.65 (m, 6H, tpdt-*H*), 7.11–7.55 (m, 30H, Ph-*H*), 1.45 (s, 15H, Cp*-CH₃). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, ppm): δ 40.31 (s). IR (KBr, cm⁻¹): 3051, 2962, 2903, 1483, 1433, 1260, 1090, 1026, 807, 742, 692. Anal. Calcd for C₅₀H₅₃Cl₂CoP₂RuS₃: C, 57.58; H, 5.12. Found: C, 57.53; H, 5.24.

Synthesis of $[Cp*Co(\mu-1\kappa^3SSS':2\kappa^2SS-tpdt)RuCl(PPh_3)_2][BPh_4]$ (2). Complex 1 (104 mg, 0.10 mmol) and NaBPh₄ (34 mg, 0.10 mmol) were dissolved in CH₂Cl₂ (8 mL) and stirred at room temperature for 10 h. The resulting brown-red solution was filtered and dried in vacuum to provide a dark-brown powder 2 (80 mg, 0.06 mmol, 60%). Crystals suitable for X-ray diffraction analysis were obtained from a THF solution layered with Et₂O at room temperature. ¹H NMR (400 MHz, CD₂Cl₂, ppm, 2·Et₂O): δ 1.82 (m, 4H, tpdt-*H*), 3.68 (m, 4H, tpdt-*H*), 1.15 (m, 6H, Et₂O-CH₃), 3.44 (m, 4H, Et₂O-CH₂), 6.86–7.30 (m, 50H, Ph-*H*), 1.36 (s, 15H, Cp*-CH₃). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, ppm): δ 37.15 (s), 74.45 (s). IR (KBr, cm⁻¹): 3055, 2916, 2854, 1579, 1481, 1433, 1261, 1088, 1032, 702. HRMS (ESI, *m*/*z*) calcd for C₅₀H₅₃ClCoP₂RuS₃ [2–BPh₄]⁺, 1007.0862, found 1007.0864. Anal. Calcd for C₇₄H₇₃BClCoP₂RuS₃: C, 66.99; H, 5.55. Found: C, 66.61; H, 5.92.

Synthesis of [Cp*Co(μ -1 κ^3 SSS':2 κ^2 SS-tpdt)RuCl₂(dppe)] (3). To a solution of 1 (104 mg, 0.10 mmol) in CH₂Cl₂ (8 mL) was added 1,2-bis(diphenylphosphino)ethane (dppe, 40 mg, 0.10 mmol) at room temperature. The solution color rapidly changed from brown to yellow. The reaction mixture was stirred at room temperature for 4 h. After all volatiles were removed under vacuum, the residue was washed with Et₂O (10 mL × 3) and then dried under vacuum. The product **3** (58 mg, 0.063 mmol, 63%) was obtained as a yellow-green powder. Single-crystals suitable for X-ray diffraction analysis were grown by slow diffusion of *n*-hexane into a CH₂Cl₂ solution of **3** at room temperature. ¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 1.74–2.40 (m, 4H, PPh₂(CH₂)₂PPh₂), 2.58–3.80 (m, 8H, tpdt-*H*), 7.19–8.01 (m, 20H, Ph-*H*), 1.62 (s, 15H, Cp*-CH₃). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, ppm): δ 59.48 (s). IR (KBr, cm⁻¹): 3053, 2908, 1485, 1433, 1373, 1097, 1026, 746, 696. Anal. Calcd for C₄₀H₄₇Cl₂CoP₂RuS₃: C, 52.40; H, 5.17. Found: C, 52.33; H, 5.47.

Synthesis of $[Cp*Co(\mu-1\kappa^3 SSS': 2\kappa^2 SS-tpdt)RuCl(N_2)(dppe)][BPh_4]$ (4). Under a

dinitrogen atmosphere, NaBPh₄ (34 mg, 0.10 mmol) was added to a solution of **3** (92 mg, 0.10 mmol) in CH₂Cl₂ (8 mL) at room temperature. The mixture was stirred for 10 h and the color of the reaction solution gradually changed from yellow to brown-red. The resulting solution was filtered and dried in vacuum to provide a dark-brown powder **4** (87 mg, 0.71 mmol, 71%). Single-crystals suitable for X-ray diffraction analysis were grown by slow diffusion of *n*-hexane into a CH₂Cl₂ solution of **4** at room temperature. ¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 1.68–2.44 (m, 4H, PPh₂(CH₂)₂PPh₂), 2.62–3.46 (m, 8H, tpdt-*H*), 6.87–7.87 (m, 40H, Ph-*H*), 1.60 (s, 15H, Cp*-CH₃). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, ppm): δ 51.85 (s). IR (KBr, cm⁻¹): 3053, 2981, 2908, 2131(v_{N=N}), 1579, 1483, 1435, 1375, 1120, 825, 702. HRMS (ESI, *m/z*) calcd for C₄₀H₄₇ClCoN₂P₂RuS₃ [**4**–BPh₄]⁺, 909.0452, found 909.0455. There is no satisfactory data of elemental analysis obtained even though several attempts have been made due to its thermal instability.

A sample of ¹⁵N-**4** was synthesized using an analogous synthetic procedure starting from ¹⁵N₂ in 64% yield. The ¹H NMR spectrum of ¹⁵N-**4** is similar to that of the unlabeled complex **4**. ¹⁵N NMR (40.569 MHz, CD₂Cl₂, ppm): δ 297.27 (d, *J* = 4.0 Hz, Ru–*N*_a=N), 310.22 (s, free N₂), 339.22 (d, *J* = 4.0 Hz, Ru–N=*N*_β). IR (KBr, cm⁻¹): 3053, 2981, 2912, 2060(v_{15N=15N}), 1579, 1481, 1435, 1265, 1097, 814, 704.

Synthesis of [Cp*Co(*μ*-1*κ*³*SSS*':2*κ*²*SS*-tpdt)RuCl(dppe)][BPh4] (5). Complex **3** (92 mg, 0.10 mmol) and NaBPh₄ (34 mg, 0.10 mmol) were dissolved in CH₂Cl₂ (8 mL) and stirred at room temperature for 10 h. The resulting brown-red solution was filtered and dried in vacuum to provide a dark-brown powder **5** (67 mg, 0.56 mmol, 56%). Single-crystals suitable for X-ray diffraction analysis were grown by slow diffusion of *n*-hexane into a CH₂Cl₂ solution of **5** at room temperature. ¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 1.83 (m, 4H, PPh₂(CH₂)₂PPh₂), 2.23–3.62 (m, 8H, tpdt-*H*), 6.86–7.47 (m, 40H, Ph-*H*), 1.31 (s, 15H, Cp*-CH₃). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, ppm): δ 65.67 (s), 92.77 (s). IR (KBr, cm⁻¹): 3055, 2981, 2914, 1579, 1481, 1433, 1377, 1095, 816, 704, 613. HRMS (ESI, *m*/*z*) calcd for C₄₀H₄₇ClCoP₂RuS₃ [**5**–BPh₄]⁺, 881.0385, found 881.0370. Anal. Calcd for C₆₄H₆₇BClCoP₂RuS₃: C, 64.03; H, 5.63. Found: C, 63.80; H, 5.81.

Typical procedure for the catalytic reduction of N₂ to N(SiMe₃)₃. In a Schlenk flask equipped with a stir bar, KC₈ (135 mg, 1000 μ mol) was suspended in THF (5 mL). Me₃SiCl (127 μ L, 1000 μ mol) was added to the suspension, followed by a solution of catalyst in THF (50 μ L, 20 mM, 1.0 μ mol). The reaction mixture was stirred at room

temperature for 24 h. After addition of dodecane (10 μ L) as an internal standard for gas chromatography (GC) analysis, graphite and KCl were removed by filtration. The resultant clear filtrate was subjected to GC analyses. Yields of N(SiMe₃)₃ were determined as the average of at least three trials.

III. References

- Y. Zhang, D. Yang, Y. Li, X. Zhao, B. Wang and J. Qu, *Catal. Sci. Technol.*, 2019, 9, 6492–6502.
- 2. Z. Xu, H. Gong, M. Chen, R. Luo, W. Qian, Q. Peng and Z. Hou, *Catal. Commun.*, 2019, **129**, 105743–105747.
- 3. G. M. Sheldrick, SADABS, Program for Area Detector Adsorption Correction, Institute for Inorganic Chemistry, University of Göttingen: Germany, 1996.
- 4. L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786–790.
- 5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- 6. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8.

IV. X-ray Crystallographic Data

	1	2 Et ₂ O THF	3 THF
Formula	$C_{50}H_{53}Cl_2CoP_2RuS_3$	$C_{82}H_{91}BClCoO_2P_2RuS_3$	$C_{44}H_{55}Cl_2CoOP_2RuS_3$
Formula weight	1042.94	1472.92	988.90
Crystal dimensions (mm ³)	$0.20 \times 0.12 \times 0.10$	$0.24\times 0.16\times 0.12$	$0.40\times 0.21\times 0.18$
Crystal system	Monoclinic	Monoclinic	triclinic
Space group	$P2_1/n$	$P2_1/c$	P-1
a (Å)	13.0207(7)	11.460(3)	11.4855(10)
b (Å)	24.9378(13)	30.325(6)	12.5440(11)
c (Å)	14.6486(7)	21.269(4)	15.9637(14)
α(9	90	90	94.842(2)
β ()	104.173(1)	94.809(4)	105.592(2)
γ(9	90	90	93.863(2)
Volume (Å ³)	4611.7(4)	7366(3)	2197.7(3)
Ζ	4	4	2
<i>T</i> (K)	220.0	233.0	295.0
D_{calcd} (g cm ⁻³)	1.502	1.328	1.494
$\mu (\mathrm{mm}^{-1})$	1.043	0.642	1.092
F (000)	2144	3080	1020
No. of rflns. collected	60775	68494	35296
No. of indep. rflns. / R_{int}	9928 / 0.0401	12976 / 0.1347	10702 / 0.0744
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	8666	8025	6177
Data / restraints / parameters	9928 / 1 / 556	12976 / 64 / 845	10702 / 71 / 492
$R_1 / wR_2 [I_0 > 2\sigma(I_0)]$	0.0327 / 0.0773	0.0749 / 0.1578	0.0581 / 0.1031
R_1 / wR_2 (all data)	0.0409 / 0.0841	0.1394 / 0.1777	0.1323 / 0.1268
GOF (on F^2)	1.120	1.062	1.021
Largest diff. peak and hole (e $Å^{-3}$)	0.52 / -0.60	1.45 / -1.04	0.70 / -0.84
CCDC No.	2161675	2161676	2161677

Table S1. Crystallographic data for 1, 2 Et₂O THF and 3.

	4 CH ₂ Cl ₂	5 CH ₂ Cl ₂
Formula	$C_{65}H_{69}BCl_3CoN_2P_2RuS_3$	$C_{65}H_{69}BCl_3CoP_2RuS_3$
Formula weight	1313.50	1285.48
Crystal dimensions (mm ³)	0.18 imes 0.13 imes 0.12	$0.22 \times 0.17 \times 0.15$
Crystal system	monoclinic	monoclinic
Space group	$P2_1/c$	$P2_1/n$
a (Å)	12.0693(9)	12.0693(10)
b (Å)	14.2710(10)	27.421(2)
c (Å)	35.980(3)	18.1837(15)
α()	90	90
β ()	93.294(2)	101.051(2)
γ(⁹	90	90
Volume (Å ³)	6186.9(8)	5906.5(8)
Ζ	4	4
<i>T</i> (K)	200.0	200.0
D_{calcd} (g cm ⁻³)	1.410	1.446
$\mu (\mathrm{mm}^{-1})$	0.836	0.873
F (000)	2712	2656
No. of rflns. collected	59823	64814
No. of indep. rflns. / R_{int}	10888 / 0.0857	14408 / 0.0777
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	7782	8880
Data / restraints / parameters	10888 / 1125 / 964	14408 / 1 / 690
$R_1 / wR_2 [I_0 > 2\sigma(I_0)]$	0.0932 / 0.1776	0.0537 / 0.0981
$R_1 / w R_2$ (all data)	0.1330 / 0.1882	0.1166 / 0.1188
GOF (on F^2)	1.164	1.016
Largest diff. peak and hole (e $Å^{-3}$)	1.01 / -1.08	1.12 / -0.62
CCDC No.	2161678	2161679

Table S2. Crystallographic data for 4 CH2Cl2 and 5 CH2Cl2.

Figure S1. ORTEP diagram of **1**. Thermal ellipsoids are shown at 50% probability level. All hydrogen atoms are omitted for clarity.

Table S3.	. Selected	bond	distances	and	angles	for	1.
-----------	------------	------	-----------	-----	--------	-----	----

Distances (Å)			
Co1…Ru1	3.5600(2)		
Co1–S1	2.2552(1)	Ru1–S1	2.4647(1)
Ru1–Cl1	2.4025(1)	Ru1–Cl2	2.4166(1)
Ru1–P1	2.3492(1)	Ru1–P2	2.3469(1)
Angles ()			
Co1–S1–Ru1	97.82(2)	Co1–S2–Ru1	98.33(2)
Torsion angle ()			
S1–Co1Ru1–S2	164.603(3)		

Figure S2. ORTEP diagram of **2** Et₂O THF. Thermal ellipsoids are shown at 50% probability level. The non-coordinate Et₂O and THF molecule, all hydrogen atoms and the BPh_4^- anion are omitted for clarity.

Table S4. Selected bond distances and angles for $2 \text{ Et}_2\text{O}$ THF.

Distances (Å)			
Co1…Ru1	3.5045(13)		
Co1–S1	2.2336(18)	Ru1–S1	2.4412(17)
Co1–S3	2.2076(19)	Ru1–Cl1	2.3942(18)
Ru1–P1	2.2283(18)	Ru1–P2	2.3310(18)
Angles ()			
Co1–S1–Ru1	97.03(6)	Co1–S2–Ru1	99.44(6)
Torsion angle ()			
S1–Co1Ru1–S2	163.542(95)		

Figure S3. ORTEP diagram of **3** THF. Thermal ellipsoids are shown at 50% probability level. The non-coordinate THF molecule, all hydrogen atoms are omitted for clarity.

Table S5.	Selected	bond	distances	and	angles	for 3	THF.
-----------	----------	------	-----------	-----	--------	-------	------

Distances (Å)			
Co1…Ru1	3.5445(8)		
Co1–S1	2.2446(13)	Ru1–S1	2.4421(13)
Ru1–Cl1	2.3946(11)	Ru1–Cl2	2.4431(10)
Ru1–P1	2.2542(12)	Ru1–P2	2.2733(14)
Angles ()			
Co1–S1–Ru1	98.19(4)	Co1–S2–Ru1	95.47(4)
Torsion angle ()			
S1–Co1Ru1–S2	165.065(65)		

Figure S4. ORTEP diagram of **4** CH₂Cl₂. Thermal ellipsoids are shown at 50% probability level. All disordered atoms, non-coordinate CH₂Cl₂ molecule, all hydrogen atoms and the BPh₄⁻ anion are omitted for clarity.

Table S6. Selected bond distances and angles for $4 \text{ CH}_2\text{Cl}_2$.

Distances (Å)			
Co1…Ru1	3.547(15)		
Co1–S1	2.173(19)	Ru1–S1	2.441(15)
Ru1–Cl1	2.374(16)	Ru1–N1	1.965(20)
Ru1–P1	2.535(9)	N1-N2	1.022(40)
Angles ()			
Co1–S1–Ru1	100.3(7)	Ru1–N1–N2	166.4(23)
Torsion angle ()			
S1–Co1Ru1–S2	167.6(10)		

Figure S5. ORTEP diagram of **5** CH₂Cl₂. Thermal ellipsoids are shown at 50% probability level. The non-coordinate CH₂Cl₂ molecule, all hydrogen atoms and the BPh_4^- anion are omitted for clarity.

Table S7. Selected bond distances and angles for 5 CH₂Cl₂.

Distances (Å)			
Co1…Ru1	3.3744(2)		
Co1–S1	2.2357(2)	Ru1–S1	2.4306(1)
Co1–S3	2.2199(1)	Ru1–Cl1	2.4001(1)
Ru1–P1	2.2138(1)	Ru1–P2	2.2925(1)
Angles ()			
Co1–S1–Ru1	92.535(4)	Co1–S2–Ru1	94.937(4)
Torsion angle ()			
S1–Co1Ru1–S2	152.504(5)		

V. NMR Spectra

Figure S6. The ¹H NMR spectrum of **1** in CD₂Cl₂.

Figure S7. The ${}^{31}P{}^{1}H$ NMR spectrum of 1 in CD₂Cl₂.

Figure S8. The ¹H NMR spectrum of 2 in CD₂Cl₂.

Figure S9. The ${}^{31}P{}^{1}H$ NMR spectrum of 2 in CD₂Cl₂.

Figure S10. The ¹H NMR spectrum of 3 in CD₂Cl₂.

Figure S11. The ${}^{31}P{}^{1}H$ NMR spectrum of 3 in CD₂Cl₂.

Figure S12. The ¹H NMR spectrum of 4 in CD₂Cl₂.

Figure S13. The ${}^{31}P{}^{1}H$ NMR spectrum of 4 in CD₂Cl₂.

Figure S14. The ¹⁵N NMR spectrum of ¹⁵N-4 in CD₂Cl₂.

ΩΩ	\sim	ပပ
- N	\sim	N N
ດ່ ດ່	o.	トア
N N	~	ດ ດ
ო ო	e	N N
\leq		\sim

Figure S15. The ¹H NMR spectrum of 5 in CD₂Cl₂.

Figure S16. The ${}^{31}P{}^{1}H$ NMR spectrum of 5 in CD₂Cl₂.

Figure S17. The time-dependent ¹H NMR spectra of the reversible conversion between **4** and **5** at 35 °C in the first 2 h and at -35 °C in the following 4 h.

VI. IR Spectra

Figure S18. The IR (KBr) spectrum of 1.

Figure S19. The IR (KBr) spectrum of 2.

Figure S20. The IR (KBr) spectrum of 3.

Figure S21. The IR (KBr) spectrum of 4.

Figure S22. The IR (KBr) spectrum of ¹⁵N-4.

Figure S23. The overlapping IR (KBr) spectra of ¹⁴N-4 (blue) and ¹⁵N-4 (red).

Figure S24. The IR (KBr) spectrum of 5.

VII. ESI High Resolution Mass Spectra

Figure S25. The high resolution mass spectrum of 2 in CH₂Cl₂.

(a) The signal at *m/z* 1007.0864 corresponds to [2–BPh₄]⁺. (b) Calculated isotopic distribution (upper) and the amplifying experimental diagram for [2–BPh₄]⁺ (bottom).
(a)

Figure S26. The high resolution mass spectrum of 4 in CH₂Cl₂.

(a) The signal at *m/z* 909.0452 corresponds to [4–BPh₄]⁺. (b) Calculated isotopic distribution (upper) and the amplifying experimental diagram for [4–BPh₄]⁺ (bottom).
(a)

Figure S27. The high resolution mass spectrum of 5 in CH₂Cl₂.

(a) The signal at *m/z* 881.0370 corresponds to [5–BPh₄]⁺.
(b) Calculated isotopic distribution (upper) and the amplifying experimental diagram for [5–BPh₄]⁺ (bottom).
(a)

VIII. GC analysis

Figure S28. Standard working curve for quantitative GC analysis of N(SiMe₃)₃.

Figure S29. Typical example of GC analyses for the product mixture of the catalytic silulation reaction in Entry 5 of Table 1 with dodecane (20 μ L) added as an internal standard.

