Supporting Information

A Copper(II) Coordination Compound under Water-oxidation Reaction at Neutral Conditions: Decomposition on the Counter Electrode

Younes Mousazade,^a Subhajit Nandy,^b Rahman Bikas,^c Pavlo Aleshkevych,^d Keun Hwa Chae,^b Milosz Siczek,^e Tadeusz Lis,^e Suleyman I. Allakhverdiev,^{f*} and Mohammad Mahdi Najafpour^{*a,g,h}

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran ^bAdvanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea ^cDepartment of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran ^dInstitute of Physics, Polish Academy of Sciences, Warsaw, 02-668, Poland ^eFaculty of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland ^fK. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia

^gCenter of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

^hResearch Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

*Corresponding authors: suleyman.allakhverdiev@gmail.com(SIA); mmnajafpour@iasbs.ac.ir(MMN)

Table of contents

Title	Page
Table S1 Crystallographic information of compound 1 .	S4
Table S2 Selected bond lengths and angles in the crystal structure of	S5
compound 1.	
Table S3 Hydrogen bond interactions in the crystal structure of compound	S6
1.	
Figure S1 Electrospray ionization (ESI) mass spectroscopy of compound 1	S8
in water.	
Figure S2 SEM and corresponding EDX mapping of the working electrode	S9
(FTO) in the presence of compound 1 at 0.11 V for 3 hours.	
Figure S3 SEM images of the working electrode (FTO) in the presence of	S10
compound 1 at 2.41 V for 3 hours.	
Figure S4 SEM and corresponding EDX mapping of the working electrode	S11
(FTO) in the presence of compound 1 at 2.41 V for 3 hours.	
Figure S5 SEM images of the working electrode (FTO) in the presence of	S12
compound 1 at 2.31 V for 3 hours.	
Figure S6 SEM and corresponding EDX mapping of the working electrode	S13
(FTO) in the presence of compound 1 at 2.31 V for 3 hours.	

Compound	1
net formula	C ₃₀ H ₂₄ CuN ₆ O ₆ ·2(NO ₃)·0.5(C ₂ H ₆ O)·0.75(H ₂ O)
<i>M_r</i> /g mol ⁻¹	788.66
crystal size/mm	0.27 × 0.22 × 0.09
Т/К	100
crystal shape, color	Block, Green
crystal system	Monoclinic
space group	P21/n
Absorption correction	Analytical
a/Å	12.800(4)
b/Å	21.718(7)
c/Å	24.685(7)
β/Å	94.90(3)
V/Å ³	6837(4)
Ζ	8
<i>D</i> _x /Mg m ⁻³	1.532
µ/mm⁻¹	0.71
F(000)	3244
Measured reflections	59580
Independent reflections	17274
Reflections with $l > 2\sigma(l)$	7995
Parameters	1026
R _{int}	0.134
θ range/°	3.0–24.5
T _{min} , T _{max}	0.880, 0.950
h,k,l	$-16 \rightarrow 15, -27 \rightarrow 27, -34 \rightarrow 28$
$R[F^2 > 2\sigma(F^2)]$	0.092
$R_w(F^2)$	0.252
S	1.01
Shift/error _{max}	< 0.001
Max electron density/e Å ⁻³	1.07
Min electron density/e Å ⁻³	-0.56
CCDC	2171141

Table S1 Crystallographic information of compound 1.

Bond	Length/Å	Bond	Angle/°
Cu1-011	1.961(3)	011–Cu1–O22	178.52(14)
Cu1-022	1.969(3)	011–Cu1–O21	88.08(14)
Cu1-021	2.056(4)	022-Cu1-021	90.67(14)
Cu1-023	2.107(4)	011–Cu1–O23	92.41(14)
Cu1-012	2.175(4)	022–Cu1–O23	88.88(14)
Cu1-013	2.178(4)	021–Cu1–O23	176.80(16)
Cu2-026	1.950(4)	011–Cu1–012	91.35(15)
Cu2–O24	1.966(4)	022–Cu1–O12	87.92(14)
Cu2-016	1.990(4)	021–Cu1–O12	92.54(15)
Cu2-015	1.991(4)	023-Cu1-012	90.61(13)
Cu2-014	2.254(4)	011–Cu1–O13	87.85(15)
Cu2-025	2.276(4)	022–Cu1–O13	92.99(15)
N11-011	1.342(5)	021–Cu1–O13	92.57(16)
N12-012	1.338(5)	023-Cu1-013	84.29(14)
N13-013	1.329(6)	012-Cu1-013	174.80(13)
N14-014	1.316(6)	026–Cu2–O24	174.43(17)
N15—015	1.335(5)	026–Cu2–O16	89.65(16)
N16-016	1.345(6)	024–Cu2–O16	95.32(16)
N21-021	1.339(6)	026–Cu2–O15	91.59(15)
N22—O22	1.336(5)	024–Cu2–O15	83.50(15)
N23—O23	1.344(5)	016-Cu2-015	178.22(17)
N24–O24	1.338(5)	026–Cu2–O14	91.78(17)
N25—O25	1.326(7)	024–Cu2–O14	85.95(14)
N26—O26	1.341(7)	016-Cu2-014	87.41(15)
		015–Cu2–O14	93.82(15)
		026–Cu2–O25	90.23(18)
		O24–Cu2–O25	92.02(16)
		016–Cu2–O25	92.84(16)
		015–Cu2–O25	85.88(15)
		014–Cu2–O25	177.97(15)

Table S2 Selected bond lengths and angles in the crystal structure of compound **1**.

. 3	· · · ·		· ·	
D-H···A	<i>D</i> –H	H···A	D···A	<i>D</i> –H···A
C21–H21…O14 ⁱ	0.95	2.36	3.153(7)	141
C51–H51…N23 ⁱⁱ	0.95	2.68	3.420(7)	136
C51–H51…O23 ⁱⁱ	0.95	2.43	3.359(7)	166
C101–H101…O2B	0.95	2.61	3.283(10)	129
C101–H101…O3 <i>B</i>	0.95	2.49	3.436(9)	173
C22–H22…O3 <i>D</i> ª	0.95	2.55	3.35(2)	142
C22–H22…O2 <i>E</i> b	0.95	2.45	3.18(2)	134
C22–H22···O3 <i>E</i> ^b	0.95	2.64	3.222(17)	120
C42–H42…O11 ⁱⁱ	0.95	2.44	3.099(6)	126
C52–H52…O23 ⁱⁱ	0.95	2.53	3.481(6)	175
C72–H72…O2 <i>W</i> /b ⁱⁱⁱ	0.95	2.50	3.170(9)	128
C102–H102…O3B	0.95	2.24	3.118(9)	153
C23–H23…O3 <i>C</i> ^{iv}	0.95	2.61	3.284(8)	128
C43–H43…O1 <i>C</i> ^v	0.95	2.61	3.506(9)	157
C43–H43…O2 <i>C</i> ^v	0.95	2.58	3.364(10)	140
C53–H53…O2 <i>W</i> /b ^v	0.95	2.44	3.132(10)	130
С73–Н73…О15	0.95	2.35	3.075(7)	132
C93–H93…O1 <i>D</i> a	0.95	2.54	3.33(2)	141
C93–H93…O1 <i>E</i> ^b	0.95	2.52	3.159(16)	125
C24–H24…O2A ^{iv}	0.95	2.46	3.147(8)	129
C54–H54…O3 <i>D</i> a ^{vi}	0.95	2.47	3.37(2)	157
C54–H54…O2 <i>E</i> b ^{vi}	0.95	2.35	3.266(18)	161
C74–H74…O21 ^{iv}	0.95	2.24	3.041(8)	142
C94–H94…O3 <i>C</i> ^{vii}	0.95	2.65	3.358(8)	132
C104–H104…O1 <i>B</i> ^{vii}	0.95	2.31	3.222(10)	160
C25–H25…O2B	0.95	2.42	3.341(11)	163
C55–H55…O3 <i>D</i> a ^{vi}	0.95	2.11	3.05(2)	173
C55–H55…O2 <i>E</i> b ^{vi}	0.95	2.50	3.44(2)	173
C75–H75…O22	0.95	2.60	3.317(8)	133
C75–H75…O13	0.95	2.32	3.179(7)	150
C105–H105…O1 <i>B</i> ^{vii}	0.95	2.33	3.225(10)	158
C26–H26…O26 ^{viii}	0.95	2.52	3.133(8)	123
C56–H56…O1 <i>B</i> ^{vii}	0.95	2.60	3.530(11)	168
С76–Н76…ОЗА ^{vii}	0.95	2.57	3.145(12)	119
C106–H106…N1D ^{vi}	0.95	2.46	3.280(9)	145
C106–H106…O1Da ^{vi}	0.95	2.61	3.39(3)	140
C106–H106…O3Da ^{vi}	0.95	2.39	3.31(2)	165
C106–H106…O1 <i>E</i> b ^{vi}	0.95	2.49	3.111(17)	123
C106–H106…O2 <i>E</i> b ^{vi}	0.95	2.62	3.56(2)	171
01 <i>F</i> –H1 <i>F</i> …O2 <i>C</i>	0.84	2.38	3.104(15)	144
01 <i>F</i> –H1 <i>F</i> …O1 <i>W</i> b	0.84	2.22	2.888(18)	136
C1 <i>F</i> –H13 <i>A</i> …O1 <i>W</i> ^b	0.99	2.51	3.07(3)	115

Table S3 Hydrogen bond interactions in the crystal structure of compound **1**.

C2F–H2FC…O1Da ^{ix}	0.98	2.49	3.03(4)	115
O1Ga−H1Ga…O1A ^{iv}	0.84	2.06	2.879(14)	164
C1Ga–H1GAa…N24	0.99	2.62	3.44(2)	141
C2Ga–H2GCa…O2C ^{vii}	0.98	2.33	3.289(19)	165
O1Wb-H11Wb…N1C	0.89	2.56	3.233(15)	133
O1Wb-H11Wb…O2C	0.89	2.09	2.860(15)	145
O1Wb-H11Wb…O3C	0.89	2.45	2.957(15)	117
01Wb–H11Wb…O1F	0.89	2.34	2.888(18)	120
O1Wb–H21Wb…O2B	0.92	2.25	3.086(15)	152
O2Wb–H12Wb…O2C	0.86	1.70	2.533(15)	162
O2Wb–H22Wb…O3Wb ^{vii}	0.86	2.39	3.23(2)	165
O3Wb-H23Wb…O1A ^{iv}	0.86	2.53	3.18(3)	133

Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) -x+1, -y, -z+1; (iii) -x+1/2, y-1/2, -z+1/2; (iv) x+1/2, -y+1/2, z+1/2; (v) -x+3/2, y-1/2, -z+1/2; (vi) x+1, y, z; (vii) -x+1, -y+1, -z+1; (viii) -x+2, -y+1, -z+1; (ix) x+1/2, -y+1/2, z-1/2.

Figure S1 Electrospray ionization (ESI) mass spectroscopy of compound 1 in water.

Figure S2 SEM and corresponding EDX mapping of the working electrode (FTO) in the presence of compound $\bf{1}$ at 0.11 V for 3 hours.

Figure S3 SEM images of the working electrode (FTO) in the presence of compound **1** at 2.41 V for 3 hours.

Figure S4 SEM and corresponding EDX mapping of the working electrode (FTO) in the presence of compound $\bf{1}$ at 2.41 V for 3 hours.

Figure S5 SEM images of the working electrode (FTO) in the presence of compound **1** at 2.31 V for 3 hours.

Figure S6 SEM and corresponding EDX mapping of the working electrode (FTO) in the presence of compound $\bf{1}$ at 2.41 V for 3 hours.