SUPPORTING INFORMATION

Modulating the reactivity of phosphanylidenephosphoranes towards water with Lewis acids

F. Dankert, ${ }^{[a]}$ M. Fischer, ${ }^{[a]}$ and C. Hering-Junghans*[a]
${ }^{[a]}$ Dr. Fabian Dankert, Dr. Malte Fischer, Dr. Christian Hering-Junghans
Leibniz-Institut für Katalyse e.V. (LIKAT)
Albert-Einstein Straße 29a, 18059 Rostock, Germany
E-mail: christian.hering-junghans@catalysis.de
Website: https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse

This file includes:

\qquad
1 Experimental2
2 Structure elucidation and refinement 4
3 Syntheses of compounds 30
4 Spectra to demonstrate reactivity 93
5 Computational details 95
6 References 103

1 Experimental

General Information. If not stated otherwise, all manipulations were carried out under oxygen- and moisture-free conditions under an inert atmosphere of argon using meticulous Schlenk techniques. All reactants (except demin. $\mathrm{H}_{2} \mathrm{O}$ and HCl in $\mathrm{Et}_{2} \mathrm{O}$) were stored and handled in a mBraun glovebox. Solvents and reactants were either obtained from commercial sources, local trade or synthesized as depicted in Table S1. Activation of molecular sieves was achieved through heating with a heatgun at $>600^{\circ} \mathrm{C}$ and applying vacuum for several hours.

Table S1: Origin and purification of solvents and reactants.

Substance	Origin	Purification
Mes*PPMe ${ }_{3}$	Synthesized according to literature procedures. ${ }^{[1]}$	-
${ }^{\text {Mes }}$ TerPPM ${ }^{\text {a }}$	Synthesized according to literature procedures. ${ }^{[1]}$	-
$\mathrm{Dip}^{\text {TerPPMe }} 3$	Synthesized according to literature procedures. ${ }^{[1]}$	-
$B A r^{F}$	Synthesized according to literature procedures. ${ }^{[2]}$	
$\mathrm{H}_{2} \mathrm{O}$ (demineralized)	Local trade	-
GaCl_{3}	Alfa Aesar, ultra dry, 99.999\%	Packed under Ar and used as received, transferred to glovebox
Gal_{3}	Alfa Aesar, ultra dry, 99.999\%	Packed under Ar and used as received, transferred to glovebox
$2 \mathrm{M} \mathrm{HCl} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}$	SIGMA ALDRICH	Packed under Ar and used as received.
Benzene	local trade	Dried over Na /benzophenone, stored over activated, $3 \AA$ molecular sieves
Toluene	local trade	Purified with a solvent Purification system, partially condensed to $3 \AA ̊$ molecular sieves and transferred to glovebox
MeCN	SIGMA ALDRICH, HPLC grade $\geq 99.9 \%$	Purified with a solvent Purification system, distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ and stored over $3 \AA$ molecular sieves

Table S1 continued.

Substance	Origin	Purification
DCM	Local trade	Purified with a solvent Purification system, distilled from CaH_{2} and stored over $3 \AA$ molecular sieves
$\mathrm{C}_{6} \mathrm{D}_{6}$	euro-isotope	Dried over $\mathrm{Na} /$ benzophenone, freshly distilled prior to use
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	euro-isotope	Dried over CaH_{2}, freshly distilled prior to use
n-hexane	local trade	Stored over activated, $3 \AA$ molecular sieves
n-pentane	SIGMA ALDRICH, $>99 \%$	Cannulated to activated, $3 \AA$ molecular sieves

NMR spectra were recorded on Bruker spectrometers (AVANCE 400 or Fourier 300) and were referenced internally to the deuterated solvent (${ }^{13} \mathrm{C}: \mathrm{C}_{6} \mathrm{D}_{6} \delta_{\text {ref }}=128.06 \mathrm{ppm}$; $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2} \delta_{\text {ref }}=54.000\right)$ or to protic impurities in the deuterated solvent $\left({ }^{1} \mathrm{H}: \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H} \delta_{\text {ref }}=\right.$ $7.16 \mathrm{ppm} ; \mathrm{CDHCl}_{2} \delta_{\text {ref }}=5.32$. All measurements were carried out at ambient temperature unless denoted otherwise. NMR signals were assigned using experimental data (e.g. chemical shifts, coupling constants (=J), integrals) where applicable.

IR spectra of crystalline samples or purified powders were recorded on a Bruker Alpha II FT-IR spectrometer equipped with an ATR unit at ambient temperature under an argon atmosphere. Relative intensities are reported according to the abbreviations: very weak (=vw), weak (=w), medium (=m), strong (=s), very strong (=vs), broad (=br).

Elemental analyses were tried to obtain with a Leco Tru Spec elemental analyzer device.

Mass spectra were obtained using a Thermo Electron MAT 95-XP (EI) and an Agilent 1200/6210 Time-of-Flight LC-MS (ESI) device.

2 Structure elucidation and refinement

X-ray Structure Determination: X-ray quality crystals were selected in Fomblin YR1800 perfluoroether (Alfa Aesar) at ambient temperature. The samples were cooled to 150(2) K during measurement if not stated otherwise. The data were collected on a STOE IPDS II diffractometer or a Bruker Apex II Duo diffractometer using MoK ${ }_{\alpha}$ ($\lambda=0.71073 \AA$) or CuK_{α} radiation $(\lambda=1.54178 \AA$), respectively. The structures were solved by intrinsic phasing (SHELXT) ${ }^{[3]}$ and refined by full matrix least squares procedures $(S H E L X L)^{[4]}$ within the Olex2 platform. ${ }^{[5]}$ Semi-empirical absorption corrections (multiscan and additional spherical absorption correction) were applied to the diffraction data recorded with the STOE device using the LANA application within the STOE X-AREA platform. ${ }^{[6]}$ Semi-empirical absorption corrections (multiscan and additional spherical absorption correction) were applied to the diffraction data collected with the Bruker device using the SADABS application within the APEX II platform. ${ }^{[7]}$ All non-hydrogen atoms were refined anisotropically, hydrogen atoms were included in the refinement at calculated positions using a riding model. P-H protons were in all cases refined as independent isotropic atoms according to reasonable electron density indicating the respective $\mathrm{P}-\mathrm{H}$ position. All special refinement details (if required) for disordered or twinned structures as well as molecular structure representations are summarized down below. A summary on standard crystallographic parameters is also provided.

Special Refinement Details:

2:Mes*: The obtained colorless needles were found to be twinned. A suitable .hklff file was written using the twinning tool within Olex2. BASF (Batch scale or also twin scale factor) converged to $0.920(2)$ for the main and $0.080(2)$ for the minor component. Hence the internal R value $R_{\text {int }}$ is given as n / a (see table $S 2$).

3:Mes ${ }^{\text {Ter }}$: The compound is found to crystallize in the non-centrosymmetric, orthorhombic space group Aea2. The absolute structure parameter converged to a value of $0.066(10)$. A subsequent TWIN LAW was employed (inversion twinning, $-1,0$, $0,0,-1,0,0,0,-1)$ and BASF 0.066(10).

4:Mes*: The compound is found to crystallize in the non-centrosymmetric, orthorhombic space group $P m n 2_{1}$. The absolute structure parameter converged to a value of $0.174(18)$. A subsequent TWIN LAW was employed (inversion twinning, $-1,0$, $0,0,-1,0,0,0,-1)$ and BASF $0.174(18)$. The $t B u$ group in para-position is disordered around the center of inversion. Split positions have occupancies of 0.5 . Note that half of the tBu group is symmetry generated using $1-\mathrm{X},+\mathrm{Y},+\mathrm{Z}$. Note that comparably high residual electron density around heavy atoms is generally due to absorption effects.

4: ${ }^{\text {Mes }}$ Ter: The whole O-Gal3 appears to be slightly disordered. However, no suitable disorder model could be refined for the Gal_{3} fragment. We therefore decided to just split the oxygen atom into two positions using an equal anisotropic displacement parameter (EADP) due to close proximity (O1 and O1A). Occupancies were set to 0.5. The unresolved disorder causes higher electron density around this fragment.

6:Mes*: The tBu group in para position appeared to be rotationally disordered. To fix the disorder SADI as well as EADP commands were applied. According to the free
variable (FVAR), the components converged to occupancies of approximately 0.79 and 0.21 .

6: ${ }^{\text {Dip }}$ Ter: The compound crystallizes as its dichloromethane solvate. Two dichloromethane molecules show a reasonable refinement when given occupancy 1. A third DCM molecule is found, however, occupancy 1 is unreasonable. We tried to estimate its occupancy using a free occupancy, but refinement was unstable in this case. We therefore set the occupancy to 0.7 and reached reasonable anisotropic displacement of this solvent molecule. To fix disorder around two of the refined DCM positions, DFIX and EADP commands were applied. For the final refinement we subsequently employed the SQUEEZE implementation within OLEX2 to model a solvent mask for a further disordered co-crystalline DCM molecule.

7:Mes*: Note that comparably high residual electron density around heavy atoms is generally due to absorption effects.

8:Mes*:

The tBu group in para position appeared to be rotationally disordered. To fix the disorder SADI, DANG as well as EADP commands were applied. According to FVAR2, the components converged to occupancies of approximately 0.73 and 0.27 . Each halogen position revealed electron density with about 220 pm and $>250 \mathrm{pm}$ from the central Ga position indicating simultaneous Cl / I-bonding. Therefore, we refined a mixed substituted GaX_{3} moiety following the general formula $\left.\mathrm{GaCl}_{x}\right|_{3-x}$. Three free variables we applied to each halogen position which converged to total occupancy of $\mathrm{Cl}_{2.1}$ and $\mathrm{I}_{0.9}$ following the formula $\left.\mathrm{GaCl}_{x}\right|_{3-x}$. Due to their close proximity, the Cl and I positions were each refined to have the same EADP. The three different FVARs converged approximately as follows: FVAR3: CI: 0.34, I: $0.66 ;$ FVAR4: CI: $0.85, \mathrm{I}: 0.15$ and FVAR5: CI: 0.95, I: 0.05

9:MesTer: The compound crystallized with two independent molecules. It is notable that we have refined the structure as a superstructure. An initial refinement with the following cell of $\mathbf{a}=12.9253(16) \mathbf{b}=14.2118(17) \mathbf{c}=19.491(3), \boldsymbol{\alpha}=76.41$ (1) $\boldsymbol{\beta}=$ 75.29(1) $\mathbf{Y}=$ 69.769(9) failed due to severe disorder of one independent molecule within the asymmetric unit. However, comparably weak superstructure reflections were considered next and a new cell of $\mathbf{a}=12.9253 \mathbf{b}=21.2504 \mathbf{c}=24.9838, \boldsymbol{\alpha}=109.535 \boldsymbol{\beta}$ $=97.03 \boldsymbol{\gamma}=90.092$ was applied. A subsequent refinement then turned out to be successful. However, the central aryl rings as well as parts of the flanking aryl rings still seem to be disordered. No suitable disorder model could be refined for both independent molecules, though. Hence, we employed a series of SIMU, RIGU and ISOR restraints.

11:Mes*: Note that comparably high residual electron density around heavy atoms is generally due to absorption effects

12: ${ }^{\text {Dip }}$ Ter: The PMe_{3} unit as well as the H atom at P showed disorder through tilting of the P-P bond. Two split positions were successfully refined with occupancies of approximately 0.85 and 0.15 according to FVAR2. The $\mathrm{GaCl}_{4}{ }^{-}$anion is also disordered through tilting and two split positions were refined. The occupancies are estimated to be 0.58 and 0.42 according to FVAR3. For one C atom of the minor occupied PMe_{3} unit an EADP command was applied. To fix the disorder around $\mathrm{GaCl}_{4}{ }^{-}$, several DFIX, DANG and SADI restraints had to be used.

Molecular Structure Representations: All molecular structure representations in the ESI as well as the main article have been prepared with the Diamond software package. ${ }^{[8]}$ A mixed representation of ellipsoid plots as well as wires/sticks was chosen for clarity. All ellipsoids are represented at the 50% probability level unless stated otherwise.

Figure S1: Molecular structure of 1: ${ }^{\text {Dip Ter }}$ in the crystal. Selected bond lengths $[\mathrm{pm}]$ and angles $[\mathrm{j}]$: C1P1 179.70(12), O1-P1 147.19(11), C1-P1-O1 118.69(5).

Figure S2: Molecular structure of 2:Mes* in the crystal. Selected bond lengths [pm] and angles []: C1P1 183.32(44), O1-P1 147.50(45), P1-P2 225.71(20), C19-P2 184.08(53), C1-P1-P2 105.88(16), C19-P2-P1 101.21(16).

Figure S3: Molecular structure of 3: ${ }^{\text {Mes }}$ Ter in the crystal. Selected bond lengths [pm] and angles [${ }^{\circ}$]: C1P1 177.45(26), O1-P1 152.48(24), O1-Ga1 187.08(21), C1-P1-O1 110.98(11).

Figure S4: Molecular structure of 4:Mes* in the crystal including disordered parts. Atoms depicted with \# and half of the molecule in general are symmetry generated using 1-x, y, z. Selected bond lengths [pm] and angles []: C1-P1 177.99(49), O1-P1 153.02(38), O1-Ga1 188.34(36), C1-P1-O1 119.48(20), P1-O1-Ga1 130.98(23).

Figure S5: Molecular structure of 4: ${ }^{\text {Mes }} \mathbf{T e r}$ in the crystal including disordered parts. Selected bond lengths [pm] and angles []: C1-P1 178.38(45), O1-P1 152.62(93), O1-Ga1 187.54(86), C1-P1-O1 107.51(39), P1-O1-Ga1 136.05(57).

Figure S6: Molecular structure of 5:Mes* in the crystal. Selected bond lengths [pm] and angles [${ }^{\circ}$]: C1P1 178.60(14), O1-P1 152.73(13), O1-B1 153.71(22), C1-P1-O1 .111.62(6), P1-O1-B1 136.04(10).

Figure S7: Molecular structure of 6:Mes* in the crystal including disordered parts. Selected bond lengths [pm] and angles [0]: C1-P1 186.41(22), P1-P2 217.47(9), P1-Ga1 234.75(7), C1-P1-P2 100.77(7), C1-P1Ga1 130.13(7), Ga1-P1-P2 102.59(3).

Figure S8: Molecular structure of 6: ${ }^{\text {Dip }}$ Ter in the crystal. Selected bond lengths [pm] and angles [${ }^{\circ}$]: : C1P1 184.45(22), P1-P2 215.81(8), P1-Ga1 235.86(7), C1-P1-Ga1 109.54(7), C1-P1-P2 117.40(7), Ga1-P1-P2 99.87(3).

Figure S9: Molecular structure of 7:Mes* in the crystal. Selected bond lengths [pm] and angles ["]: C1P1 185.94(81), P1-P2 217.94(29), P1-Ga1 236.43(22), C1-P1-P2 100.93(27), C1-P1-Ga1 130.39(26), Ga1-P1-P2 104.75(9).

Figure S10: Molecular structure of 8:Mes* in the crystal including disordered parts. Transparent ellipsoids indicate minor occupied atom positions (see special refinement details). Selected bond lengths [pm] and angles [${ }^{\circ}$: C1-P1 186.45(43), P1-P2 217.98(16), P1-Ga1 235.09(12), C1-P1-P2 100.51(13), C1-P1-Ga1 130.60(14), Ga1-P1-P1 103.32(6).

Figure S11: Molecular structure of one of two crystallographic independent discrete ion pairs of 9: ${ }^{\text {Mes }}$ Ter in the crystal. Selected bond lengths [pm] and angles []: P1-P2 216.28(24), P1-Ga1 239.52(18), Ga1-P3 239.76(16), P3-P4 216.43(23), P1-Ga1-P3 103.76(6), Ga1-P1-P2 103.35(7), Ga1-P3-P4 102.74(8).

Figure S12: Molecular structure of the discrete ion pair 10:Mes* in the crystal. Selected bond lengths [pm] and angles []: C1-P1 184.35(50), P1-P2 222.35(20), C1-P1-P2 97.41(17).

Figure S13: Molecular structure of the discrete ion pair 11:Mes* in the crystal. Atoms depicted with \# and half of the molecule in general are symmetry generated using $2-x, 1-y, 1-z$. A symmetry generated [Mes*P(H)PMe $\left.{ }^{3}\right]^{+}$ion is not displayed. Selected bond lengths [pm] and angles [${ }^{\circ}$]: C1-P1 184.07(43), P1P2 221.29(19), Ga1-I1 248.74(8), Ga1-I2 253.31(7), Ga1-I3 252.86(6), Ga1-O1 187.29(27), Ga2-O1 188.62(33), Ga2-I4 250.59(6), Ga2-I5 249.61(7), O1‥O1\# 251.25(36), Ga2…Ga2\# 281.05(9), C1-P1-P2 98.81(16), Ga1-O1-Ga2 129.33(15), O1-Ga2-O1\# 83.59(12), Ga2-O1-Ga2\# 96.40(13).

Figure S14: Molecular structure of the discrete ion pair 12:Mes* in the crystal. Selected bond lengths [pm] and angles []: C1-P1 183.43(14), P1-P2 221.84(7), C1-P1-P1 97.14(5).

Figure S15: Molecular structure of the discrete ion pair 12: ${ }^{\text {Mes }}$ Ter in the crystal. Selected bond lengths [pm] and angles [${ }^{\circ}$]: C1-P1 184.07(42), P1-P2 218.68(15), C1-P1-P2 107.04(14).

Figure S16: Molecular structure of the discrete ion pair 12: ${ }^{\text {Dip }}$ Ter in the crystal including disordered parts. Selected bond lengths [pm] and angles [${ }^{\circ}$: C1-P1 184.49(29), P1-P2 216.92(18), C1-P1-P2 106.71(9).

Summary of X-ray Crystallographic Refinement:

Table S2: Crystallographic details \#1. * = twin refinement was employed (see special refinement details).

Compound	1:DipTer*	2:Mes*
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{OP}$	$\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{OP}_{2}$
Formula weight	446.58	570.78
Temperature/K	150(2)	150(2)
Crystal system	monoclinic	monoclinic
Space group	$P 2_{1 / n}$	$P 2_{1} / n$
a / \AA A	12.2456(2)	11.2606(7)
b / \AA ¢	16.9887(3)	10.4141(8)
c / \AA	13.3272(2)	30.070(2)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	100.3830(8)	99.501(5)
$\gamma /{ }^{\circ}$	90	90
Volume/ \AA^{3}	2727.15(8)	3477.9(4)
Z	4	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.088	1.090
μ / mm^{-1}	0.119	1.304
$F(000)$	968.0	1256.0
Crystal size/mm ${ }^{3}$	$0.43 \times 0.23 \times 0.17$	$0.19 \times 0.04 \times 0.03$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	CuK $\alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	3.924 to 57.998	5.96 to 120.142
Index ranges	$\begin{aligned} & -16 \leq h \leq 12,-22 \leq \\ & k \leq 23,-18 \leq 1 \leq 18 \end{aligned}$	$\begin{aligned} & -12 \leq h \leq 12,0 \leq \\ & k \leq 11,0 \leq 1 \leq 33 \end{aligned}$
Reflections collected	33442	5098*
Independent reflections	$\begin{aligned} & 7254\left[R_{\text {int }}=0.0251,\right. \\ & \left.R_{\text {sigma }}=0.0233\right] \end{aligned}$	$\begin{aligned} & 5098\left[R_{\text {int }}=n / a^{*},\right. \\ & \left.R_{\text {sigma }}=0.1200\right] \end{aligned}$
Data/restraints/parameters	7254/0/305	5098/0/371
Goodness-of-fit on F^{2}	1.057	1.036
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\begin{aligned} & R_{1}=0.0461 \\ & w_{2}=0.1221 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0848 \\ & \mathrm{wR}_{2}=0.2077 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & R_{1}=0.0581 \\ & w R_{2}=0.1318 \end{aligned}$	$\begin{aligned} & R_{1}=0.1141 \\ & w R_{2}=0.2235 \end{aligned}$
Largest diff. peak/hole / e \AA^{-3}	0.43/-0.26	0.52/-0.33
Absolute structure parameter	-	-
CCDC \#	2166339	2166340

Table S3: Crystallographic details \#2.

Compound	3: ${ }^{\text {Mes }}$ Ter	4:Mes*	4: ${ }^{\text {Mes }}$ Ter
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{GaOP}$	$\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{Gal}_{3} \mathrm{OP}$	$\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{Gal}_{3} \mathrm{OP}$
Formula weight	538.49	744.82	812.84
Temperature/K	150(2)	150(2)	150(2)
Crystal system	orthorhombic	orthorhombic	triclinic
Space group	Aea2	Pmn 2_{1}	$P-1$
a/Å	19.5931(10)	14.8750(8)	10.8322(12)
b/Å	19.2681(9)	7.1776(5)	11.4626(12)
c / \AA	13.4080(7)	11.9265(6)	13.0010(14)
$\alpha /{ }^{\circ}$	90	90	107.115(8)
$\beta /{ }^{\circ}$	90	90	104.929(8)
$\gamma /{ }^{\circ}$	90	90	99.870(9)
Volume/ \AA^{3}	5061.8(4)	1273.35(13)	1436.3(3)
Z	8	2	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.413	1.943	1.880
μ / m^{-1}	1.481	4.784	4.251
$F(000)$	2208.0	704.0	768.0
Crystal size/mm ${ }^{3}$	$0.29 \times 0.27 \times 0.23$	$0.31 \times 0.23 \times 0.22$	$0.31 \times 0.28 \times 0.19$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.158 to 54.996	4.378 to 56.98	3.468 to 50.992
Index ranges	$\begin{aligned} & -25 \leq h \leq 25,-24 \leq \\ & k \leq 24,-17 \leq \mathrm{I} \leq 17 \end{aligned}$	$\begin{aligned} & -19 \leq h \leq 19,-9 \leq \\ & k \leq 9,-16 \leq 1 \leq 15 \end{aligned}$	$\begin{aligned} & -12 \leq h \leq 13,-13 \leq \\ & k \leq 13,-15 \leq \mathrm{l} \leq 14 \end{aligned}$
Reflections collected	36150	17392	14121
Independent reflections	$\begin{aligned} & 5634\left[R_{\text {int }}=0.0262,\right. \\ & \left.R_{\text {sigma }}=0.0211\right] \end{aligned}$	$\begin{aligned} & 3232\left[R_{\text {int }}=0.0239,\right. \\ & \left.R_{\text {sigma }}=0.0134\right] \end{aligned}$	$\begin{aligned} & 5355\left[R_{\text {int }}=0.0124,\right. \\ & \left.R_{\text {sigma }}=0.0162\right] \end{aligned}$
Data/restraints/parameters	5634/1/286	3232/1/144	5355/3/282
Goodness-of-fit on F^{2}	0.997	1.130	1.110
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\begin{aligned} & R_{1}=0.0250 \\ & w R_{2}=0.0590 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0175, \\ & \mathrm{wR}_{2}=0.0445 \end{aligned}$	$\begin{aligned} & R_{1}=0.0450 \\ & w R_{2}=0.1294 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & R_{1}=0.0293 \\ & w_{2}=0.0597 \end{aligned}$	$\begin{aligned} & R_{1}=0.0177 \\ & w R_{2}=0.0446 \end{aligned}$	$\begin{aligned} & R_{1}=0.0550 \\ & w R_{2}=0.1334 \end{aligned}$
Largest diff. peak/hole / e \AA^{-3}	0.46/-0.15	1.07/-0.31	3.38/-1.59
Absolute structure parameter	0.066(10)	0.174(18)	-
CCDC \#	2166341	2166342	2166343

Table S4: Crystallographic details \#3.

Compound	5:Mes*	6:Mes*	6: ${ }^{\text {Dip Ter-2.7DCM }}$
Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{BF}_{15} \mathrm{PO}$	$\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{Cl}_{3} \mathrm{GaP}_{2}$	$\mathrm{C}_{35.7} \mathrm{H}_{51.4} \mathrm{Cl}_{8.4} \mathrm{GaP}_{2}$
Formula weight	806.39	528.52	910.01
Temperature/K	150(2)	150(2)	150(2)
Crystal system	triclinic	monoclinic	monoclinic
Space group	$P-1$	$P 2_{1 / n}$	$P 2_{1 / n}$
a / \AA A	10.1182(9)	8.8319(9)	11.0543(14)
$\mathrm{b} / \AA{ }^{\text {a }}$	10.1216(9)	29.260(2)	25.215(2)
$c / A ̊$	19.4301(18)	10.3380(11)	16.013(3)
$\alpha /{ }^{\circ}$	88.8323(25)	90	90
$\beta /{ }^{\circ}$	82.0559(25)	94.085(8)	96.350(12)
$\gamma /{ }^{\circ}$	63.1869(22)	90	90
Volume/ \AA^{3}	1756.9(3)	2664.8(5)	4436.1(10)
Z	2	4	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.524	1.317	1.363
μ / mm^{-1}	0.188	1.459	1.222
$F(000)$	820.0	1104.0	1878.0
Crystal size/mm ${ }^{3}$	$0.35 \times 0.19 \times 0.03$	$0.06 \times 0.18 \times 0.24$	$0.31 \times 0.21 \times 0.16$
Radiation	MoKa ($\lambda=0.71073$)	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.238 to 60	4.188 to 53.996	3.026 to 52.996
Index ranges	$\begin{aligned} & -14 \leq h \leq 14,-14 \leq \\ & k \leq 14,-27 \leq 1 \leq 27 \end{aligned}$	$\begin{aligned} & -11 \leq h \leq 11,-28 \leq \\ & k \leq 37,-13 \leq 1 \leq 10 \end{aligned}$	$\begin{aligned} & -12 \leq h \leq 13,-31 \leq \\ & k \leq 31,-20 \leq \mathrm{l} \leq 20 \end{aligned}$
Reflections collected	81470	15355	57514
Independent reflections	$\begin{aligned} & 10248\left[R_{\text {int }}=0.0365,\right. \\ & \left.R_{\text {sigma }}=0.0244\right] \end{aligned}$	$\begin{aligned} & 5757\left[R_{\text {int }}=0.0254\right. \\ & \left.R_{\text {sigma }}=0.0465\right] \end{aligned}$	$\begin{aligned} & 9185\left[R_{\text {int }}=0.0277,\right. \\ & \left.R_{\text {sigma }}=0.0173\right] \end{aligned}$
Data/restraints/parameters	10248/0/504	5757/30/281	9185/6/458
Goodness-of-fit on F^{2}	1.018	0.924	1.080
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\begin{aligned} & R_{1}=0.0408 \\ & w_{2}=0.0971 \end{aligned}$	$\begin{aligned} & R_{1}=0.0372 \\ & w R_{2}=0.0847 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0374, \\ & w \mathrm{R}_{2}=0.1173 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & R_{1}=0.0588 \\ & w R_{2}=0.1083 \end{aligned}$	$\begin{aligned} & R_{1}=0.0623 \\ & w R_{2}=0.0889 \end{aligned}$	$\begin{aligned} & R_{1}=0.0451 \\ & w R_{2}=0.1206 \end{aligned}$
Largest diff. peak/hole / e \AA^{-3}	0.44/-0.33	0.71/-0.35	0.80/-0.46
Absolute structure parameter	-	-	-
CCDC \#	2166344	2166345	2166346

Table S5: Crystallographic details \#4.

Compound	7:Mes*	8:Mes*	9: ${ }^{\text {Mes }}$ Ter
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{Gal}_{3} \mathrm{P}_{2}$	$\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{Cl}_{2.13} \mathrm{Gal}_{0.86} \mathrm{P}_{2}$	$\mathrm{C}_{54} \mathrm{H}_{68} \mathrm{Cl}_{6} \mathrm{Ga}_{2} \mathrm{P}_{4}$
Formula weight	802.87	607.63	1193.10
Temperature/K	150(2)	150(2)	150(2)
Crystal system	monoclinic	monoclinic	triclinic
Space group	$P 2_{1 / n}$	$P 2_{1} / n$	$P-1$
a/Å	9.1316(9)	8.9087(6)	12.9253(12)
b/Å	29.821(2)	29.337(2)	21.2504(19)
c / \AA	10.5682(10)	10.4157(8)	24.984(2)
$\alpha /{ }^{\circ}$	90	90	109.535(7)
$\beta /{ }^{\circ}$	91.854(8)	92.781(6)	97.030(7)
$\gamma /{ }^{\circ}$	90	90	90.092(7)
Volume/ \AA^{3}	2876.4(4)	2718.9(3)	6412.0(10)
Z	4	4	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.854	1.484	1.236
μ / mm^{-1}	4.294	2.327	1.221
$F(000)$	1536	1229.0	2464.0
Crystal size/mm ${ }^{3}$	$0.2 \times 0.18 \times 0.06$	$0.37 \times 0.12 \times 0.10$	$0.2 \times 0.18 \times 0.1$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	2.732 to 50.996	4.154 to 50.996	3.096 to 51
Index ranges	$\begin{aligned} & -10 \leq h \leq 11,-32 \leq \\ & k \leq 36,-12 \leq 1 \leq 12 \end{aligned}$	$\begin{aligned} & -10 \leq h \leq 10,-35 \leq \\ & k \leq 35,-12 \leq 1 \leq 12 \end{aligned}$	$\begin{aligned} & -15 \leq h \leq 15,-25 \leq \\ & k \leq 25,-30 \leq \mathrm{l} \leq 30 \end{aligned}$
Reflections collected	22699	22538	71835
Independent reflections	$\begin{aligned} & 5340\left[R_{\text {int }}=0.0321,\right. \\ & \left.R_{\text {sigma }}=0.0320\right] \end{aligned}$	$\begin{aligned} & 5049\left[R_{\text {int }}=0.0240,\right. \\ & \left.R_{\text {sigma }}=0.0252\right] \end{aligned}$	$\begin{aligned} & 23897\left[R_{\text {int }}=0.0798,\right. \\ & \left.R_{\text {sigma }}=0.1210\right] \end{aligned}$
Data/restraints/parameters	5340/0/256	5049/25/272	23897/189/1147
Goodness-of-fit on F^{2}	1.054	1.103	0.873
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\begin{aligned} & R_{1}=0.0550 \\ & w R_{2}=0.1676 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0472 \\ & \mathrm{wR}_{2}=0.1211 \end{aligned}$	$\begin{aligned} & R_{1}=0.0691 \\ & w R_{2}=0.1642 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & R_{1}=0.0755, \\ & w R_{2}=0.1770 \end{aligned}$	$\begin{aligned} & R_{1}=0.0600 \\ & w R_{2}=0.1245 \end{aligned}$	$\begin{aligned} & R_{1}=0.1467 \\ & w R_{2}=0.1839 \end{aligned}$
Largest diff. peak/hole / e \AA^{-3}	1.47/-3.07	1.24/-0.56	0.97/-0.65
Absolute structure parameter	-	-	-
CCDC \#	2166347	2166348	2166512

Table S6: Crystallographic details \#5.

Compound	10:Mes*	11:Mes*
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{Gal}_{4} \mathrm{P}_{2}$	$\mathrm{C}_{42} \mathrm{H}_{78} \mathrm{Ga}_{4} \mathrm{l}_{10} \mathrm{O}_{2} \mathrm{P}_{4}$
Formula weight	930.78	2286.80
Temperature/K	150(2)	150(2)
Crystal system	monoclinic	triclinic
Space group	$P 2_{1 / C}$	$P-1$
a / \AA A	10.074(3)	10.1303(6)
b / \AA ¢	13.570(3)	12.8964(8)
c / \AA	23.577(7)	14.0935(9)
$\alpha /{ }^{\circ}$	90	81.618(2)
$\beta /{ }^{\circ}$	96.77(2)	81.678(2)
$\gamma /{ }^{\circ}$	90	71.362(2)
Volume/ \AA^{3}	3200.7(15)	1716.55(18)
Z	4	1
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.932	2.212
μ / mm^{-1}	4.825	6.171
$F(000)$	1752.0	1060.0
Crystal size/mm ${ }^{3}$	$0.06 \times 0.03 \times 0.01$	$0.22 \times 0.08 \times 0.011$
Radiation	MoKa ($\lambda=0.71073$)	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.468 to 53.998	2.938 to 57.754
Index ranges	$\begin{aligned} & -12 \leq h \leq 12,-17 \leq \\ & k \leq 17,-30 \leq \mathrm{I} \leq 30 \end{aligned}$	$\begin{aligned} & -13 \leq h \leq 13,-17 \leq \\ & k \leq 17,-19 \leq \mathrm{l} \leq 19 \end{aligned}$
Reflections collected	6978	69738
Independent reflections	$\begin{aligned} & 6978\left[R_{\text {int }}=0.0435,\right. \\ & \left.R_{\text {sigma }}=0.0735\right] \end{aligned}$	$\begin{aligned} & 8990\left[R_{\text {int }}=0.0447\right. \\ & \left.R_{\text {sigma }}=0.0271\right] \end{aligned}$
Data/restraints/parameters	6978/0/269	8990/0/296
Goodness-of-fit on F^{2}	0.748	1.027
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\begin{aligned} & R_{1}=0.0307 \\ & w R_{2}=0.0546 \end{aligned}$	$\begin{aligned} & R_{1}=0.0355 \\ & w R_{2}=0.0897 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & R_{1}=0.0704 \\ & w R_{2}=0.0600 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0482 \\ & \mathrm{wR}_{2}=0.0971 \end{aligned}$
Largest diff. peak/hole / e \AA^{-3}	0.81/-0.72	3.02/-2.50
Absolute structure parameter	-	-
CCDC \#	2166349	2166350

Table S7: Crystallographic details \#6.

Compound	12:Mes*	12: ${ }^{\text {Mes }}$ Ter	12: ${ }^{\text {Dip Ter }}$
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{Cl}_{4} \mathrm{GaP}_{2}$	$\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{Cl}_{4} \mathrm{GaP}_{2}$	$\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{Cl}_{4} \mathrm{GaP}_{2}$
Formula weight	564.98	633.01	717.16
Temperature/K	150(2)	150(2)	150(2)
Crystal system	monoclinic	monoclinic	triclinic
Space group	$P 2_{1 / n}$	$P 2_{1 / n}$	$P-1$
a / \AA A	10.6965(3)	8.2634(4)	9.7565(3)
$\mathrm{b} / \AA{ }^{\text {a }}$	10.6920(2)	13.3291(7)	11.7069(4)
$c / A ̊$	24.8307(8)	28.2426(13)	17.4299(6)
$\alpha /{ }^{\circ}$	90	90	92.053(2)
$\beta /{ }^{\circ}$	101.014(3)	91.478(4)	104.767(2)
$\gamma /{ }^{\circ}$	90	90	104.411(2)
Volume/ \AA^{3}	2787.50(13)	3109.7(3)	1853.99(11)
Z	4	4	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.346	1.352	1.285
μ / mm^{-1}	1.492	1.346	4.629
$F(000)$	1176.0	1304.0	748.0
Crystal size/mm ${ }^{3}$	$0.27 \times 0.14 \times 0.12$	$0.23 \times 0.21 \times 0.13$	$0.34 \times 0.23 \times 0.11$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$	CuK α ($\lambda=1.54178$)
2Θ range for data collection/ ${ }^{\circ}$	3.342 to 58.464	2.884 to 53	5.272 to 133.226
Index ranges	$\begin{aligned} & -14 \leq h \leq 14,-14 \leq \\ & k \leq 12,-34 \leq \mathrm{I} \leq 33 \end{aligned}$	$\begin{aligned} & -10 \leq h \leq 10,-16 \leq \\ & k \leq 16,-35 \leq \mathrm{l} \leq 35 \end{aligned}$	$\begin{aligned} & -11 \leq h \leq 11,-13 \leq \\ & k \leq 13,-20 \leq 1 \leq 20 \end{aligned}$
Reflections collected	42166	42012	23411
Independent reflections	$\begin{aligned} & 7539\left[R_{\text {int }}=0.0234,\right. \\ & \left.R_{\text {sigma }}=0.0201\right] \end{aligned}$	$\begin{aligned} & 6455\left[R_{\text {int }}=0.0278,\right. \\ & \left.R_{\text {sigma }}=0.0202\right] \end{aligned}$	$\begin{aligned} & 6527\left[R_{\text {int }}=0.0429,\right. \\ & \left.R_{\text {sigma }}=0.0396\right] \end{aligned}$
Data/restraints/parameters	7539/0/269	6455/0/320	6527/24/451
Goodness-of-fit on F^{2}	0.987	1.164	1.023
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\begin{aligned} & R_{1}=0.0280 \\ & w_{2}=0.0737 \end{aligned}$	$\begin{aligned} & R_{1}=0.0483 \\ & w R_{2}=0.1351 \end{aligned}$	$\begin{aligned} & R_{1}=0.0406 \\ & w R_{2}=0.1045 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & R_{1}=0.0386 \\ & w R_{2}=0.0759 \end{aligned}$	$\begin{aligned} & R_{1}=0.0596 \\ & w R_{2}=0.1378 \end{aligned}$	$\begin{aligned} & R_{1}=0.0480 \\ & w R_{2}=0.1108 \end{aligned}$
Largest diff. peak/hole / e \AA^{-3}	0.50/-0.21	0.73/-0.31	0.50/-0.51
Absolute structure parameter	-	-	-
CCDC \#	2166351	2166511	2166352

3 Syntheses of compounds

Additional Information. All starting materials synthesized by literature procedures (see table S1) were synthesized with slight modifications. All analytical data was in good agreement with those published in earlier works. In this work, the following abbreviations are used for the organic framework around P.

Mes*

${ }^{\text {Mes }}$ Ter

${ }^{\text {Dip }}$ Ter

Figure S17: Structural motifs and their abbreviations relevant for this ESI.

As the phospha-Wittig reagents are sensitive towards light, we recommend wrapping all flasks with tinfoil and switching off the lights in the laboratory and fume hoods. Especially the MesTer derivative is experienced to decompose quickly due to light sensitivity. Also, thermal instability is experienced, especially when adding Lewis acids. The respective Lewis acid-base adducts show an extremely (!) high sensitivity towards traces of moisture, which is why impurities in some cases could not be suppressed even with rigorous Schlenk techniques, freshly dried solvents and J-Young NMR tubes with PTFE valves. Therefore, in some cases, not all analytic data has been provided and/or impurities are marked with an arterisk/hashtag in the respective spectra. The provided NMR spectra were processed and analyzed with the MestReNova ${ }^{[9]}$ software package. Resonances are depicted with the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; hept, septet; dec, decet; m, multiplet; dd, doublet of doublets; dm, doublet of multiplets; doct, doublet of octets; ddt, doublet of doublet of triplets; tt , triplet of triplets; tm, triplet of multiplets; ps, pseudo; br, broad. IR spectra were
processed and analysed using either the OPUS ${ }^{[10]}$ and/or the OMNIC ${ }^{[11]}$ software package.

Important Note: The highly reactive nature of the compounds prevented the collection of satisfactory CHN-data. The deviations are currently in between 3 to 5% for both C and H values. Even though in very rare cases suitable values could be observed, we refuse to provide these because in our eyes there is no evidence beyond a reasonable doubt that the material is pure at the point of measurement. However, the state-of-the-art characterization such as with NMR spectroscopy (see displayed spectra) demonstrates the existence and in the cases of stable compounds analytical pureness of the herein published compounds if not stated otherwise. We are aware that Elemental Analysis is an important purity control, but reliable results were not obtained. As CHN analysis is unfortunately already prone to manipulations (see ref. ${ }^{[12]}$) we decided to not provide any values and provide high-resolution mass spectrometry data for all compounds.

3.1 Mes*P(H) ${ }_{2} \mathrm{O}$ (1:Mes*)

A 0.050 g portion of Mes*PPMe3 $(0.14 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 3 mL of benzene. One drop of water (excess) is then carefully added to the solution. Upon stirring the solution for 30 min ., the characteristic yellow colour fades and the reaction is then stopped. The solvent is removed under reduced pressure to obtain a beige powder. Careful(!) washing with 1 mL of n-pentane at $-78^{\circ} \mathrm{C}$ followed by thorough drying in vacuo yields 1:Mes* as a colorless powder ($76 \%, 0.106 \mathrm{mmol}, 0.032 \mathrm{~g}$).

Mes* ${ }^{*}(0) D_{2}\left(1:\right.$ Mes $\left.^{*}-\boldsymbol{d}_{2}\right)$

Mes*PPMe ${ }_{3}(0.018 \mathrm{~g}, 0.05 \mathrm{mmol})$ was dissolved in 0.6 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$ followed by addition of one drop of $\mathrm{D}_{2} \mathrm{O}$. The reaction solution was shaken and regularly controlled by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy which revealed conversion to Mes* $\mathrm{P}(\mathrm{O}) \mathrm{D}_{2}$ (1:Mes*- $\boldsymbol{d}_{\mathbf{2}}$) accompanied by release of PMe_{3}.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=7.61\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PH}}=474.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{P}(\mathrm{H})_{2} \mathrm{O}\right), 7.48(\mathrm{~d}, \mathrm{~J}=$ $\left.4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 1.53+1.52\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $75.5 \mathrm{MHz}, 298 \mathrm{~K}): \delta=157.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=8.5 \mathrm{~Hz}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 154.0\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=3.0 \mathrm{~Hz}, p-\right.$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 126.9\left(\mathrm{~d}, \mathrm{ArC}_{\mathrm{ipso}}\right)^{*}, 123.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=12.1 \mathrm{~Hz}, \mathrm{ArCH}\right), 38.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=3.7 \mathrm{~Hz}, \mathrm{o}-\right.$ $\left.C\left(\mathrm{CH}_{3}\right) 3\right), 35.2\left(p-\mathrm{C}\left(\mathrm{CH}_{3}\right) 3\right), 33.9\left(o-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.1\left(\mathrm{~s}, \mathrm{p}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, ppm. * = overlap with $\mathrm{C}_{6} \mathrm{D}_{6}$ signal and assigned with a ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC spectrum. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 122 \mathrm{MHz}\right.$, 298K): $\delta=-13.28\left(\mathrm{~s}, \mathrm{P}(\mathrm{H})_{2} \mathrm{O}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=-13.28\left(\mathrm{t},{ }^{1}{ }^{1} \mathrm{PH}\right.$ $\left.=475.0 \mathrm{~Hz}, ~ P(\mathrm{H})_{2} \mathrm{O}\right)$ ppm. IR (ATR, cm ${ }^{-1}$): 2956 (s$), 2870(\mathrm{~m}), 2436 \mathrm{v}_{\text {sym }}(\mathrm{P}-\mathrm{H})(\mathrm{m}), 1598$ (m), 1536 (w), 1463 (m), 1414 (m), 1364 (m), 1283 (m), 1238 (m), 1215 (s), 1176 (vs), 1163 (s), 1127 (m), 1063 (m), 1026 (s), 926 (m), 909 (m), 878 (m), 805 (m), 758 (m), 719 (m), 676 (w), 653 (w), 608 (m), 493 (w), 474 (m), 436 (w). MS (ESI-TOF): expected: m/z =
$295.2191\left[\mathrm{M}+\mathrm{H}^{+}\right.$; found: $\mathrm{m} / \mathrm{z}=295.2182[\mathrm{M}+\mathrm{H}]^{+}$. EA: calculated: $\mathrm{C} 73.43, \mathrm{H}$ 10.61; found: C 73.68, H 10.47.

Mes* $\mathbf{P}(\mathbf{O}) \mathrm{D}_{2}$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=1.20\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{p}-\mathrm{C}_{\mathrm{q}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}\right), 1.50\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{o}-\mathrm{C}_{\mathrm{q}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}\right)$, 7.47 (d, J = $4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\text {Aryl }}$) ppm.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(122 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=-13.7\left(\mathrm{p},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{D}}=73.0 \mathrm{~Hz}\right) \mathrm{ppm}$.

Figure S18: ${ }^{1} \mathrm{H}$ NMR of 1:Mes* (given in $\mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S19: $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR of 1:Mes* (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 75.5 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S20: ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 1:Mes* (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S21: ${ }^{31}$ P NMR of 1:Mes* (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

$3.2{ }^{\text {Mes }} \operatorname{TerP}(\mathrm{H})_{2} \mathrm{O}\left(1:^{\mathrm{Mes}} \mathrm{Ter}\right)$

A 0.050 g portion of ${ }^{\text {Mes }} \mathrm{TerPPMe}_{3}(0.12 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 1.5 mL of benzene. One drop of water (excess) is then carefully added to the solution. Upon stirring the solution at ambient temperature overnight, the characteristic yellow colour fades and the reaction is then stopped. The solvent is removed under reduced pressure to obtain a beige powder. Careful(!) washing with 1 mL of n-pentane at ambient temperature followed by thorough drying in vacuo yields 1:MesTer as a slight beige powder (58\%, $0.07 \mathrm{mmol}, 0.025 \mathrm{~g})$.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right): ~ \delta=7.18-7.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{p}-\mathrm{ArH})^{\star}, 6.85-6.82(\mathrm{~m}, 6 \mathrm{H}, \mathrm{m}-\mathrm{H}$ of Mes \& m-ArH), $6.69\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PH}}=476.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{P}(\mathrm{H})_{2} \mathrm{O}\right), 2.18\left(\mathrm{~s}, 6 \mathrm{H}, p-\mathrm{CH}_{3}\right.$ of Mes), 2.04 ($\mathrm{s}, 12 \mathrm{H}, m-\mathrm{CH}_{3}$ of Mes) ppm. *Overlap with $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ signal. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 75.5 \mathrm{MHz}\right.$, 298K): $\delta=146.5$ ($\mathrm{d},{ }^{1}{ }^{\mathrm{J}} \mathrm{CP}=11.0 \mathrm{~Hz}$, ArC $_{\text {ipso }}$), 138.0 (s, $p-C$ of Mes), 136.6 ($s, m-C$ of Mes), 136.4 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=5.9 \mathrm{~Hz}, \mathrm{o}-\mathrm{ArC}$), 133.3 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=1.3 \mathrm{~Hz}$, $\mathrm{ArC}_{\mathrm{q}}$ of Mes), 131.1 ($\mathrm{s}, \mathrm{o}-\mathrm{C}$ of Mes), 129.0 ($\mathrm{d},{ }^{3}{ }^{\mathrm{CP}}=8.8 \mathrm{~Hz}, m-\operatorname{ArC}$), 128.9 ($\mathrm{s}, \mathrm{p}-\mathrm{ArC}$), 21.2 ($\mathrm{s}, p-\mathrm{CH}_{3}$ of Mes), 21.1 (s , $m-\mathrm{CH}_{3}$ of Mes) ppm. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 121.5 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=-16.49\left(\mathrm{~s}, P(\mathrm{H})_{2} \mathrm{O}\right) \mathrm{ppm}$. ${ }^{31}$ P NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right): ~ \delta=-16.49\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PH}}=476.7 \mathrm{~Hz}, P(\mathrm{H})_{2} \mathrm{O}\right) \mathrm{ppm}$. IR (ATR,
 1449 (s), 1377 (w), 1304 (w), 1244 (w), 1179 (s), 1167 (vs), 1124 (s), 1098 (w), 1085 (w), 1056 (w), 1022 (s), 1001 (w), 903 (w), 860 (w), 841 (s), 805 (s), 750 (s), 735 (m), 698 (s), $589(\mathrm{~m}), 560(\mathrm{w}), 520(\mathrm{~m}), 500(\mathrm{~m}), 451(\mathrm{~m}) . \mathbf{M S}\left(\mathrm{HR}, \mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{1} \mathrm{P}_{1}[\mathrm{M}+\mathrm{H}]^{+}$ (found): 363.1878 (363.1880); calc. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{1} \mathrm{P}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$(found): 385.1692 (385.1701).

Figure S22: ${ }^{1} H$ NMR of 1:Mes $\boldsymbol{T e r}$ (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S23: $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR of 1:Mes $\boldsymbol{T e r}$ (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 75.5 \mathrm{MHz}, 298 \mathrm{~K}$).
\qquad

Figure S24: ${ }^{31}{ }^{1}\left\{{ }^{1} H\right\}$ NMR of 1:MesTer (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S25: ${ }^{31}$ P NMR of 1:Mes Ter (given in $\mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

$3.3{ }^{\text {Dip }} \operatorname{TerP}(\mathrm{H})_{2} \mathrm{O}$ (1: ${ }^{\text {Dip }}$ Ter)

A 0.050 g portion of ${ }^{\text {Dip }} \mathrm{TerPPMe}_{3}(0.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 2 mL of benzene. One drop of water (excess) is then carefully added to the solution. Upon stirring the solution at ambient temperature overnight, the characteristic yellow colour fades and the reaction is then stopped. The solvent is removed under reduced pressure to obtain a beige powder. Careful(!) washing with 1 mL of n-pentane at $-78^{\circ} \mathrm{C}$ followed by thorough drying in vacuo yields 1:DipTer as a slight beige powder ($69 \%, 0.069 \mathrm{mmol}$, 0.031 g). By layering a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of 1: ${ }^{\text {Dip }}$ Ter with n-pentane, suitable crystals for SC-XRD were obtained in the shape of colorless blocks.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=7.33-7.29(\mathrm{~m}, 2 \mathrm{H}, \operatorname{ArH}), 7.18(\mathrm{~s}, 2 \mathrm{H}, \operatorname{ArH}), 7.15-7.05$ (m, 4H, ArH)*, $6.85\left(\mathrm{~d},{ }^{1}{ }^{\mathrm{PH}}=476.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.72\left(\right.$ hept, $\left.^{3}{ }^{3} \mathrm{HH}=6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 2 \mathrm{H}\right), 1.25$ ($\left.\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 12 \mathrm{H}\right), 1.04\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 12 \mathrm{H}\right)$. *overlap with $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ signal. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 101 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=147.4\left(\mathrm{~s}, \mathrm{o}-\mathrm{C}_{\mathrm{Dip}}\right), 145.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=\right.$ 10.7 Hz , ipso-CAryl), 136.2 ($\mathrm{d},{ }^{3}{ }_{\mathrm{CP}}=6.1 \mathrm{~Hz}$, ipso-C of Dip), 131.8 (s, p-CAry) 131.6 ($\mathrm{d},{ }^{3}{ }^{3} \mathrm{CP}$ $\left.=1.7 \mathrm{~Hz}, m-C_{\text {Aryl }}\right), 129.9\left(\mathrm{~d}^{2}{ }^{2} \mathrm{~J}_{\mathrm{CP}}=8.7 \mathrm{~Hz}, o-\right.$ Caryl $), 129.7$ ($\mathrm{s}, p-\mathrm{C}$ of Dip), 123.3 ($\mathrm{s}, m-\mathrm{C}$ of Dip), 31.4 (s, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.4\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.9\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $162 \mathrm{MHz}, 298 \mathrm{~K}): \delta=-16.27\left(\mathrm{~s}, \mathrm{P}(\mathrm{H})_{2} \mathrm{O}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right)$: $\delta=-16.27\left(\mathrm{~d},{ }^{1}{ }^{\mathrm{P}} \mathrm{PH}=476.7 \mathrm{~Hz}, P(\mathrm{H})_{2} \mathrm{O}\right)$ ppm. IR (ATR, cm^{-1}): $2958(\mathrm{~s}), 2925(\mathrm{~m}), 2867$ (m), $2359 \mathrm{v}_{\text {sym }}(\mathrm{P}-\mathrm{H})(\mathrm{w}), 1593$ (w), 1577 (w), 1566 (w), 1459 (m), 1382 (m), 1362 (m), 1327 (w), 1310 (w), 1250 (w), 1194 (s), 1125 (w), 1103 (w), 1087 (w), 1055 (m), 1032 (s), 1002 (w), 967 (w), 935 (w), 900 (w), 883 (w), 829 (w), 805 (s), 756 (vs), 706 (m), 687 (w), 610 (w), 587 (w), 566 (w), 527 (w), 511 (w), 463 (w), 437 (s). MS (HR, ESI ${ }^{+}$) calc. for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{1} \mathrm{P}_{1}$ $[\mathrm{M}+\mathrm{H}]^{+}$(found): 447.2817 (447.2824); calc. for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{Na}_{1} \mathrm{O}_{1} \mathrm{P}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$(found): 469.2631 (469.2641).

Figure S26: ${ }^{1} \mathrm{H}$ NMR of 1:Dip $\boldsymbol{T e r}$ (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S27: $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR of 1:DipTer (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 101 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S28: $\left.{ }^{31} P^{1} \mathrm{H}\right\}$ NMR of 1:Dip Ter (given in $\mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}, 162 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S29: ${ }^{31}$ P NMR of 1:DipTer (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 162 \mathrm{MHz}, 298 \mathrm{~K}$).

3.4 Mes*P(H)O-P(H)Mes* (2:Mes*)

A 20 mg portion of $\mathbf{1 : M e s}$ * is suspended in 2 mL of MeCN . Heating the solution to reflux for 5 min . with a heatgun and slow cooling to $6^{\circ} \mathrm{C}$ yields a few, small colorless needles of 2:Mes* suitable for SC-XRD. For crystallographic details see table S2.

3.5 [Mes*P(H) $\left.)_{2} \mathrm{OGaCl}_{3}\right]$ (3:Mes*)

A 0.050 g portion of Mes*PPMe $3(0.14 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 1.5 mL of benzene. One drop of water (excess) is then carefully added to the solution. Upon stirring the solution for 30 min ., a characteristic yellow colour fades and the reaction is then stopped. The solvent is removed under reduced pressure to obtain a beige powder which is then thoroughly(!) dried in vacuo. Subsequently, 0.025 of $\mathrm{GaCl}_{3}(0.14 \mathrm{mmol}$, $1.0 \mathrm{eq})$ are added. The mixture is dissolved in 1.5 mL of benzene and stirred for 15 min . The solvent is then again removed under reduced pressure and the residue is washed with 2 mL of n-pentane. After drying, dissolving in 1 mL of DCM and placing the solution at $-32^{\circ} \mathrm{C}$, 3:Mes* is obtained in the form of colorless, crystalline blocks (60%, $0.084 \mathrm{mmol}, 0.040 \mathrm{~g})$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=8.01\left(\mathrm{~d},{ }^{1}{ }^{\mathrm{JPH}}=530.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{P}(\mathrm{H})_{2} \mathrm{O}\right), 7.63(\mathrm{~d}, \mathrm{~J}=$ $\left.5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\text {Ar }}\right), 1.60+1.59\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $75.5 \mathrm{MHz}, 298 \mathrm{~K}): \delta=159.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=10.1 \mathrm{~Hz}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 154.0\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=3.1 \mathrm{~Hz}, p-\right.$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 125.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=13.9 \mathrm{~Hz}, \mathrm{ArCH}\right), 39.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{pC}}=3.9 \mathrm{~Hz}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.1(\mathrm{~s}, \mathrm{p}-$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.2\left(\mathrm{~s}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.1\left(\mathrm{~s}, \mathrm{p}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, not observed: $\left.\left(\mathrm{ArC}_{\mathrm{ipso}}\right) .{ }^{\mathbf{3 1}} \mathbf{P} \mathbf{P}{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=1.21\left(\mathrm{~s}, \mathrm{P}(\mathrm{H})_{2} \mathrm{O}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right)$: $\delta=1.21\left(\mathrm{t},{ }^{1}{ }^{\mathrm{P}} \mathrm{PH}=530.5 \mathrm{~Hz}, P(\mathrm{H})_{2} \mathrm{O}\right) \mathrm{ppm} . \operatorname{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right)^{\star}: 2964(\mathrm{~m}), 1594(\mathrm{~m}), 1533(\mathrm{w})$, 1488 (w), 1468 (w), 1404 (w), 1370 (m), 1238 (w), 1213 (w), 1193 (w), 1163 (w), 1086 (vs), 1047 (s), 1015 (s), 923 (w), 886 (w), 783 (w), 758 (w), 710 (w), 656 (w), 624 (m), 531 (s), 496 (w), 441 (w).* P-H stretching vibration is supressed and thus not observed (see also ref. ${ }^{[13]}$). MS (HR, ESI ${ }^{+}$); under ESI ${ }^{+}$MS conditions, only ligand 1:Mes* was observed: calc. for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{1} \mathrm{P}_{1}[\mathrm{M}+\mathrm{H}]^{+}$(found): 295.2191 (295.2194); calc. for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{Na}_{1} \mathrm{O}_{1} \mathrm{P}_{1}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$ (found) 317.2004 (317.2012).

Figure S30: ${ }^{1} \mathrm{H}$ NMR of 3:Mes* (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, 298 \mathrm{~K}$).
Mơ N

MNOA
ハiల!

Figure S31: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 3:Mes* (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}, 298 \mathrm{~K}$).
\qquad

| 650 | 600 | 550 | 500 | 450 | 400 | 350 | 300 | 250 | 200 | 150 | 100 | 50 | 0 | -50 | -100 | -150 | -200 | -250 | |
| :--- |

Figure S32: ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 3:Mes* (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S33: ${ }^{31}$ P NMR of 3:Mes* (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

$3.6\left[\mathrm{Mes}^{\mathrm{Ter}} \mathrm{P}(\mathrm{H})_{2} \mathrm{OGaCl}_{3}\right]$ (3:MesTer)

A 0.050 g portion of ${ }^{\text {Mes }} \mathrm{TerPPMe}_{3}(0.118 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 1.5 mL of benzene. Subsequently, two small drops of water are carefully added to the solution. After stirring overnight, the solvent is removed under reduced pressure and the obtained slight beige powder is thoroughly dried in vacuo. Then, 0.021 g of $\mathrm{GaCl}_{3}(0.118 \mathrm{mmol}$, 1.0 eq) are added, and the mixture is dissolved in 2.5 mL benzene. After stirring for another 45 min ., the solvent is again removed under reduced pressure and the obtained white powder is extracted with 2 mL of DCM. After filtration, the solvent is again removed under reduced pressure and the crude product suspended in 1.8 mL of benzene. Heating the suspension up to $80^{\circ} \mathrm{C}$ using a heat-gun gives a clear solution which is then placed at $6^{\circ} \mathrm{C}$ for recrystallization. After a few days, colorless block-shaped crystals of 3:Mes Ter are obtained ($0.046 \mathrm{~g}, 0.085 \mathrm{mmol}, 72 \%$).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=7.99-7.93(\mathrm{~m}, 1 \mathrm{H}, p-\mathrm{ArH}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{m}-$ ArH), 7.03 ($\mathrm{m}, 4 \mathrm{H}, m-H$ of Mes), $6.84\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PH}}=533.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{P}(H)_{2} \mathrm{O}\right), 2.36\left(\mathrm{~s}, 6 \mathrm{H}, p-\mathrm{CH}_{3}\right.$ of Mes), 1.99 (s, 12H, $m-\mathrm{CH}_{3}$ of Mes) ppm. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=$ 149.0 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=13.2 \mathrm{~Hz}, \mathrm{o}-\mathrm{ArC}$), 140.1 ($\mathrm{s}, p-\mathrm{C}$ of Mes), 137.5 ($\mathrm{s}, p-\mathrm{ArC}$), 136.6 ($\mathrm{s}, \mathrm{o}-\mathrm{C}$ of Mes), 134.1 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=6.8 \mathrm{~Hz}, \mathrm{ArC}_{\mathrm{q}}$ of Mes), $130.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=10.4 \mathrm{~Hz}, m-\mathrm{ArC}\right), 129.5(m-\mathrm{C}$ of Mes), 120.7 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=123.5 \mathrm{~Hz}, \mathrm{ArC}_{\text {ipso }}$), 21.3 ($s, p-\mathrm{CH}_{3}$ of Mes), 20.9 ($s, m-\mathrm{CH}_{3}$ of Mes) ppm. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=3.62\left(\mathrm{~s}, \mathrm{P}(\mathrm{H})_{2} \mathrm{O}\right) \mathrm{ppm} .{ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=3.63$ (pstt, $\left.{ }^{1} \mathrm{~J}_{\mathrm{PH}}=532.5 \mathrm{~Hz}, \mathrm{~J}=4.2 \mathrm{~Hz}, P(\mathrm{H})_{2} \mathrm{O}\right)^{*} \mathrm{ppm}$. *Unknown fine-coupling observed here giving a pseudo triplet of triplets. IR (ATR, $\left.\mathrm{cm}^{-1}\right)^{\star *}: 2977.33$ (w), 2919.56 (w), 2855.31 (w), 1609.32 (m), 1564.70 (m), 1451.43 (s), 1380.88 (w), 1302.53 (vw), 1268.19 (vw), 1180.02 (w), 1134.82 (s), 1072.61 (s), 1053.12 (s), 1011.85 (s), 994.62 (s), 893.35 (m), 851.28 (s), 843.60 (s), 813.01 (s), 755.95 (m), 737.13 (m), 680.91 (s), 578.10 (s), 561.62(m), 533.44 (s), 500.28 (w), 446.62 (s). **P-H stretching
vibration is supressed and thus not observed. MS (HR, ESI ${ }^{+}$; under ESI ${ }^{+}$MS conditions, only ligand 1: ${ }^{\text {Mes }}$ Ter was observed: calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{1} \mathrm{P}_{1}[\mathrm{M}+\mathrm{H}]^{+}$(found): 363.1878 (363.1881); calc. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{1} \mathrm{P}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$(found): 385.1692 (385.1702).

Figure S34: ${ }^{1} \mathrm{H}$ NMR of $3:{ }^{\text {Mes }} \boldsymbol{T e r}$ (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S35: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 3:Mes $\boldsymbol{T e r}$ (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S36: $\left.{ }^{31} P^{1} \mathrm{H}\right\}$ NMR of 3:Mes $\boldsymbol{T e r}$ (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S37: ${ }^{31} P$ NMR of 3:Mes $\boldsymbol{T e r}$ (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

3.7 [Mes*P(H) $\left.{ }_{2} \mathrm{OGal}_{3}\right]$ (4:Mes*)

A 0.050 g portion of $\mathrm{Mes}^{*} \mathrm{PPMe}_{3}(0.14 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 2 mL of benzene. Two drops of water (excess) are then carefully added to the solution. Upon stirring the solution for 30 min ., a characteristic yellow colour fades and the reaction is then stopped. The solvent is removed under reduced pressure to obtain a beige powder which is then thoroughly(!) dried in vacuo. Subsequently, 0.063 of $\mathrm{Gal}_{3}(0.14 \mathrm{mmol}, 1.0$ eq) are added. The mixture is dissolved in 4 mL of benzene and stirred for 10 min . The solvent is then again removed under reduced pressure to obtain a colorless grease. The grease is dissolved on 2 mL of n-pentane and is vigorously stirred for 5 min . Over time, 4:Mes* precipitates from the solution as a white powder. Carefully decanting the solvent off and drying the powder in vacuo finally yields 4:Mes* as a crystalline, palewhite powder ($0.127 \mathrm{mmol}, 0.095 \mathrm{~g}, 91 \%$). Block-shaped crystals suitable for SC-XRD were obtained from a layered 4:Mes* DCM/n-Pentane mixture (1:6) at $-32^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=8.00\left(\mathrm{~d},{ }^{1}{ }^{\mathrm{JPH}}=527.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{P}(\mathrm{H})_{2} \mathrm{O}\right), 7.63(\mathrm{~d}, \mathrm{~J}=$ $\left.5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 1.61+1.61\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $75.5 \mathrm{MHz}, 298 \mathrm{~K}): \delta=159.64\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=10.1 \mathrm{~Hz}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 158.9\left(\mathrm{~d}^{4}{ }^{4} \mathrm{~J}_{\mathrm{PC}}=3.2 \mathrm{~Hz}, p-\right.$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 125.29\left(\mathrm{~d},{ }^{3} \mathrm{JPC}_{\mathrm{PC}}=13.9 \mathrm{~Hz}, \mathrm{ArCH}\right), 112.88\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=107.5 \mathrm{~Hz}, \mathrm{ArC}_{\mathrm{ipso}}\right), 39.49(\mathrm{~d}$, $\left.{ }^{3} \int_{\mathrm{PC}}=3.8 \mathrm{~Hz}, o-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.1\left(\mathrm{~s}, \mathrm{p}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.3\left(\mathrm{~s}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.1\left(\mathrm{~s}, \mathrm{p}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=-1.85\left(\mathrm{~s}, \mathrm{P}(\mathrm{H})_{2} \mathrm{O}\right) \mathrm{ppm} .{ }^{\mathbf{3 1} \mathbf{P} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, ~\right.}$ $122 \mathrm{MHz}, 298 \mathrm{~K}): \delta=-1.85\left(\mathrm{t},{ }^{1}{ }^{\mathrm{JPH}}=527.8 \mathrm{~Hz}, P(\mathrm{H})_{2} \mathrm{O}\right) \mathrm{ppm}$. IR (ATR, $\left.\mathrm{cm}^{-1}\right)^{*}: 2960.33(\mathrm{~s})$, 2865.08 (w), 1590.92 (m), 1530.45 (w), 1464.90 (m), 1401.17 (w), 1368.40 (m), 1236.66 (w), 1209.70 (w), 1191.13 (w), 1160.45 (w), 1079.07 (vs), 1037.75 (s), 1007.20 (vs), 919.52 (w), 887.43 (w), 808.29 (vw), 756.08 (w), 709.29 (m), 655.23 (w), 625.90 (m), 525.99 (s), 486.84 (m), 436.04 (w), 416.81 (vw). * P-H stretching vibration is supressed and thus not observed. MS (HR, ESI ${ }^{+}$); under ESI ${ }^{+}$MS conditions, only ligand 1:Mes* was observed:
calc. for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{1} \mathrm{P}_{1}[\mathrm{M}+\mathrm{H}]^{+}$(found): 295.2191 (295.2189); calc. for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{Na}_{1} \mathrm{O}_{1} \mathrm{P}_{1}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$(found) 317.2004 (317.2010).

Figure S38: ${ }^{1} \mathrm{H}$ NMR of 4:Mes* (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, 298 \mathrm{~K}$).

20~フ

Figure S39: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 4:Mes* (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S40: ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 4:Mes* (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S41: ${ }^{31}$ P NMR of 4:Mes* (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

$3.8 \quad\left[\begin{array}{l}\text { Mes } \\ T e r P \\ (H) \\ 2\end{array} \mathrm{OGaI}_{3}\right]$ (4:Mes Ter$)$

A 0.050 g portion of ${ }^{\text {Mes }} \mathrm{TerPPMe}_{3}(0.118 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 1.5 mL of benzene. Subsequently, two small drops of water are carefully added to the solution. After stirring overnight, the solvent is removed under reduced pressure and the obtained slight beige powder is thoroughly dried in vacuo. Then, 0.054 g of $\mathrm{Gal}_{3}(0.118 \mathrm{mmol}$, 1.0 eq) are added, and the mixture is dissolved in 2 mL benzene. After stirring for another 30 min ., the solvent is again removed under reduced pressure and the obtained white powder is extracted with 2 mL of DCM. After filtration, the solvent is again removed under reduced pressure and the crude product dissolved in 0.5 mL of benzene. Concentrating the solution until saturation is reached, yields block-shaped crystals at $6^{\circ} \mathrm{C}$ among traces of a white powder. Decanting off the supernatant and recrystallizing the obtained crystals from benzene at $6^{\circ} \mathrm{C}$ again followed by washing with 2 mL of n-hexane yields pure 4: ${ }^{\text {Mes }} \mathbf{T e r}$ as colourless blocks $(0.037 \mathrm{~g}, 0.046 \mathrm{mmol}$, 39\%).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=7.98-7.94(\mathrm{~m}, 1 \mathrm{H}, p-\mathrm{ArH}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{m}-$ ArH), 7.02-7.03 (m, 4H, m-H of Mes), 6.70 (d, ¹ $\left.{ }^{\mathrm{JPH}}=529.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{P}(\mathrm{H})_{2} \mathrm{O}\right), 2.35$ (s, 6H, $p-\mathrm{CH}_{3}$ of Mes), 2.01 ($\mathrm{s}, 12 \mathrm{H}, m-\mathrm{CH}_{3}$ of Mes) ppm. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 110 \mathrm{MHz}, 298 \mathrm{~K}\right)$: $\delta=149.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=13.0 \mathrm{~Hz}, o-\operatorname{ArC}\right), 140.0(\mathrm{~s}, \mathrm{p}-\mathrm{C}$ of Mes), 137.3 ($\mathrm{s}, \mathrm{p}-\mathrm{ArC}$), 136.5 (s, o C of Mes), 134.3 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=6.8 \mathrm{~Hz}$, ArCq of Mes), $130.4\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{CP}}=10.4 \mathrm{~Hz}, m-\operatorname{ArC}\right.$), 129.6 ($m-\mathrm{C}$ of Mes), 120.1 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=123.4 \mathrm{~Hz}, \mathrm{ArC}_{\text {ipso }}$), 21.5 ($\mathrm{s}, p-\mathrm{CH}_{3}$ of Mes), $21.2\left(\mathrm{~s}, m-\mathrm{CH}_{3}\right.$ of Mes) ppm. ${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=-1.47\left(\mathrm{~s}, \mathrm{P}(\mathrm{H})_{2} \mathrm{O}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=-1.47\left(p s-\mathrm{tm},{ }^{1} \mathrm{~J}_{\mathrm{PH}}=529.9 \mathrm{~Hz}, P(\mathrm{H})_{2} \mathrm{O}\right)^{*} \mathrm{ppm}$. *Unknown fine-coupling observed here giving a pseudo triplet of multiplets. IR (ATR, cm^{-1}): 2972.83 (w), 2913.22 (m), 2853.64 (w), 1609.28 (m), 1565.57 (m), 1451.36 (m), 1434.48 (m), 1394.43 (w), 1378.80 (m), 1300.49 (w), 1267.97 (m), 1180.77 (w), 1132.85
(w), 1070.51 (s), 1048.75 (vs), 1009.96 (s), 991.42 (s), 951.31 (s), 888.97 (w), 847.11 (s), 811.47 (s), 755.60 (m), 736.10 (m), 709.19 (w), 679.75 (m), 578.69 (m), 559.78 (m), 525.93 (s), 499.04 (m), 453.21 (m), 439.03 (s). MS (HR, ESI ${ }^{+}$); under ESI ${ }^{+}$MS conditions, only ligand 1:MesTer was observed: calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{1} \mathrm{P}_{1}[\mathrm{M}+\mathrm{H}]^{+}$(found): 363.1878 (363.1880); calc. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{1} \mathrm{P}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$(found): 385.1692 (385.1695).

Figure S42: ${ }^{1} \mathrm{H}$ NMR of 4: ${ }^{\text {Mes }} \boldsymbol{T}$ er (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S43: $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR of 4: ${ }^{\text {Mes }} \boldsymbol{T e r}$ (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 110 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S44: $\left.{ }^{31} \mathrm{P}^{1}{ }^{1} \mathrm{H}\right\}$ NMR of 4: ${ }^{\text {Mes }} \boldsymbol{T e r}$ (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S45: ${ }^{31} \mathrm{P}$ NMR of 4: ${ }^{\text {Mes }} \boldsymbol{T e r}$ (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}$).

3.9 [Mes*P(H) $\left.{ }_{2} \mathrm{OB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]\left(5: \mathrm{Mes}^{*}\right)$

A 0.075 g portion of $\mathrm{Mes}^{*} \mathrm{P}(\mathrm{O}) \mathrm{H}_{2}(0.255 \mathrm{mmol}, 1.0 \mathrm{eq})$ and $0.130 \mathrm{~g} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ ($0.255 \mathrm{mmol}, 1.0 \mathrm{eq}$) were dissolved in 3 mL of benzene. The reaction mixture was stirred for three hours at room temperature. All volatile components were then removed under vacuum. The remaining slightly yellow solid was washed with n-pentane ($2 \times 4 \mathrm{~mL}$) and dried under vacuum to give 5:Mes* as a colorless solid (50\%, $0.128 \mathrm{mmol}, 0.103 \mathrm{~g})$. Block-shaped crystals suitable for SC-XRD were obtained by layering a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of 5:Mes* with n-pentane and subsequent slow evaporation.
${ }^{1} \mathbf{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta=7.30\left(\mathrm{~d},{ }^{1}{ }^{\mathrm{JPH}}=542.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{P}(\mathrm{H})_{2} \mathrm{O}\right), 7.22(\mathrm{~d}, \mathrm{~J}=$ $4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Ar $), 1.13\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{~s}, 18 \mathrm{H}, C H_{3}\right) \mathrm{ppm} .{ }^{11} \mathbf{B}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(96 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, 298 K): $\delta=0.0$ (brs, $\left.B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 75.5 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=158.8$ (d, $\left.{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=8.0 \mathrm{~Hz}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 158.0\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=3.3 \mathrm{~Hz}, p-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 124.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=12.6 \mathrm{~Hz}\right.$, ArCH), $38.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=3.3 \mathrm{~Hz}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.3\left(\mathrm{~s}, \mathrm{p}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.4\left(\mathrm{~s}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.6(\mathrm{~s}$, $\left.p-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, not observed: $\left(\mathrm{ArC}_{\text {ipso }}\right) .{ }^{19} \mathbf{F}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(282 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=-163.6$ to -163.8 ($\mathrm{m}, 6 \mathrm{~F}, m-\mathrm{F}_{\mathrm{Ar}} \mathrm{B}$), $-157.2\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{FF}}=20.7 \mathrm{~Hz}, 3 \mathrm{~F}, p-\mathrm{F}_{\mathrm{Ar}} \mathrm{B}\right),-133.8$ to $-134.0(\mathrm{~m}, 6 \mathrm{~F}$, $\left.o-\mathrm{F}_{\mathrm{Ar}} \mathrm{B}\right) ;\left(\Delta \delta{ }^{19} \mathrm{~F}_{m, p}=6.5 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=6.1$ (hept, $\left.{ }^{4} J_{\mathrm{PFF}}=7.2 \mathrm{~Hz}, \mathrm{P}(\mathrm{H})_{2} \mathrm{O}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=6.1\left(\mathrm{t},{ }^{1}{ }^{\mathrm{P}} \mathrm{PH}=543.1 \mathrm{~Hz}\right.$, $\left.P(\mathrm{H})_{2} \mathrm{O}\right) \mathrm{ppm}$.

Figure S46: ${ }^{1} \mathrm{H}$ NMR of 5:Mes* (given in $\mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S47: ${ }^{11}{ }^{1}\left\{{ }^{1} H\right\}$ NMR of 5:Mes* (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 96 \mathrm{MHz}, 298 \mathrm{~K}$).

V

- 냉 Nin Nin

Figure S48: $\left.{ }^{13} \mathrm{C}^{\dagger}{ }^{1} \mathrm{H}\right\}$ NMR of 5:Mes* (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 75.5 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S49: ${ }^{19}$ F NMR of 5:Mes* (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 282 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S50: ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 5:Mes* (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S51: ${ }^{31}$ P NMR of 5:Mes* (given in ppm, $\mathrm{C}_{6} \mathrm{D}_{6}, 122 \mathrm{MHz}$, 298K).

3.10 [Mes*P(PMe $\left.{ }^{2}\right) \mathrm{GaCl}_{3}$] (6:Mes*)

A 100 mg portion of $\mathrm{Mes}^{*} \mathrm{PPMe}_{3}(0.283 \mathrm{mmol}, 1.0 \mathrm{eq})$ together with 0.050 g of GaCl_{3} ($0.283 \mathrm{mmol}, 1.0 \mathrm{eq}$) are placed in a Schlenk tube. At $-78^{\circ} \mathrm{C}, 5 \mathrm{~mL}$ of toluene are added, and the obtained suspension is stirred for 20 min . at that temperature. The cooling bath is then removed, and the suspension is stirred for another 20 min . The solvent is then filtered off and the white precipitate is thoroughly dried in vacuo. A pale-white powder is obtained with 6:Mes* as the main product (crude yield: 0.110 g). The contamination with $\left[\mathrm{Mes}^{*} \mathrm{P}(\mathrm{H})\left(\mathrm{PMe}_{3}\right)\right][\mathrm{An}](\mathrm{An}=$ anion $)$ is experienced to be up to 20% at this stage. To obtain analytically pure material, meticulous recrystallization is necessary. The crude product is therefor suspended in 1.5 mL of freshly dried, and distilled toluene. Subsequently, just as much freshly dried, and distilled DCM is added until a clear colorless solution is obtained. Placing the solution at $-78^{\circ} \mathrm{C}$ precipitates pure 6:Mes* as a (micro-)crystalline powder after a few days ($0.040 \mathrm{mmol}, 0.021 \mathrm{~g}$, 14\%). A few crystals suitable for SC-XRD are obtained from the crude product after dissolving in DCM and placing a concentrated solution at $-32^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=7.46\left(\mathrm{dd}, J=3.5,0.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 1.63(\mathrm{~s}, 18 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.53\left(\mathrm{dd}^{2}{ }^{2} \mathrm{~J}_{\mathrm{PH}}=12.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=3.5 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ of PMe 3$), 1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 101 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=161.8\left(\mathrm{~s}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)^{\star}, 153.4\left(\mathrm{~s}, \mathrm{p}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)^{\star}$, 123.2-123.1 (m, ArCH), $39.4\left(\mathrm{~d}^{3} \mathrm{~J}_{\mathrm{PC}}=3.5 \mathrm{~Hz}, o-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.5\left(\mathrm{~s}, \mathrm{p}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.6(\mathrm{~d}$, $\left.{ }^{\mathrm{ts}} \int_{\mathrm{PC}}=6.2 \mathrm{~Hz}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.4\left(\mathrm{~s}, \mathrm{p}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 14.3\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=44.2 \mathrm{~Hz}^{2}{ }^{2} J_{\mathrm{CP}}=9.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of PMe_{3}), (not observed: ($\mathrm{ArC}_{\text {ipso }}$) ppm. * Assigned with ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC spectrum. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta=21.32\left(\mathrm{~d},{ }^{1}{ }^{\mathrm{JPP}}=395.4 \mathrm{~Hz}, \mathrm{R}-\mathrm{PPMe}\right)_{3}$, $-95.48(b r-\mathrm{d}$,
 $=395.4 \mathrm{~Hz}, \mathrm{R}-\mathrm{PPMe})^{2}{ }^{\star *},-95.48\left(b r-\mathrm{d}^{1} \mathrm{~J}_{\mathrm{PP}}=396.2 \mathrm{~Hz}, \mathrm{R}-\mathrm{PPMe}\right)^{* *}$ ppm. ${ }^{* *}$ poor signal to noise ratio, proton coupling could not be resolved properly, resonances assigned as
doublet of multiplets. IR (ATR, cm${ }^{-1}$): 2961 (s), 2870 (m), 1593 (m), 1532 (w), 1466 (m), 1401 (m), 1364 (s), 1296 (w), 1237 (m), 1212 (m), 1179 (s), 1127 (m), 1096 (s), 1061 (w), 1010 (s), 960 (vs), 903 (w), 879 (m), 857 (w), 783 (w), 750 (s), 718 (m), 676 (w), 652 (w), 637 (m), 613 (w), 520 (m), 467 (w), 439 (w).

Figure S52: ${ }^{1} \mathrm{H}$ NMR of 6:Mes* (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}$).
$\stackrel{\circ}{\stackrel{\circ}{\dot{n}}} \stackrel{1}{1}$

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Figure S53: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 6:Mes* (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 101 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S54: $1 \mathrm{H}-{ }^{13} \mathrm{C}$ NMR HSQC(top) and HMBC (bottom) spectrum of 6:Mes*.

Figure S55: ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 6:Mes* (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}$). *: trace amounts of [Mes*P(H)PMe ${ }_{3}$][An].

\qquad

Figure S56: ${ }^{31} P$ NMR of 6:Mes* (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}$).

$3.11\left[{ }^{\mathrm{Dip}} \mathrm{TerP}\left(\mathrm{PMe}_{3}\right) \mathrm{GaCl}_{3}\right]$ (6: ${ }^{\mathrm{Dip} T e r)}$

A 0.050 g portion of ${ }^{\text {Dip }} \mathrm{TerPPMe}_{3}(0.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ together with 0.017 g of GaCl_{3} are placed in a Schlenk tube. At $-78^{\circ} \mathrm{C}, 3 \mathrm{~mL}$ of toluene are added, and the obtained suspension is stirred for 30 min . Then cooling is stopped, and the cold solvent is filtered off. The residue is thoroughly dried in vacuo to obtain 55 mg of crude 6: ${ }^{\text {Dip }}$ Ter. The compound can be recrystallized in 20 mg batches. For this purpose, crude 6:Dip Ter is suspended in 1.5 mL of n-heptane. Just as much DCM is added until everything has dissolved and a clear solution is obtained. At $-32^{\circ} \mathrm{C}, 5 \mathrm{mg}$ of extremely(!) sensitive 6: ${ }^{\text {Dip }}$ Ter $\cdot x D C M$ is obtained. The amount of single crystals were just enough for SC-XRD and IR spectroscopy (<0.007 mmol, <0.005 g, <7\%: first batch).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{crude}\right): \delta=12.87\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=412.5 \mathrm{~Hz}, \mathrm{R}-\mathrm{PPMe}{ }_{3}\right)$, -85.73 (br-d, ${ }^{1} \mathrm{~J}_{\mathrm{PP}}=411.9 \mathrm{~Hz}$, R-PPMe ${ }_{3}$) ppm. IR (ATR, pure, cm^{-1}): 3064.87 (w), 2957.15 (s), 2925.42 (m), 2867.02 (m), 1591.54 (w), 1557.03 (w), 1463.13 (m), $1423.70(\mathrm{~m})$, 1383.63 (m), 1362.40 (m), 1311.62 (m), 1288.66 (m), 1249.32 (m), 1180.62 (w), 1125.06 (w), 1056.16 (w), 1039.26 (w), 950.22 (vs), 856.93 (w), 822.10 (m), 803.81 (s), 755.18 (vs), 678.44 (m), 658.62 (w), 579.45 (m), 469.91 (w), 430.28 (w), 408.64 (w).

Figure S57: ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR of crude 6:Dip $\boldsymbol{T e r}$ (given in ppm, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right)$. *[DipTerP(H)PMe 3][An]. \#DipTerPPMe 3 (through decomposition in solution).

3.12 [Mes*P(PMe_{3}) Gal_{3}] (7:Mes*)

A 0.150 g portion of Mes*PPMe $3(0.43 \mathrm{mmol}, 1.0 \mathrm{eq})$ together with 0.194 g of $\mathrm{Gal}_{3}(0.43$ mmol, 1.0 eq) are placed in a Schlenk flask. Upon cooling to $-78^{\circ} \mathrm{C}, 5 \mathrm{~mL}$ of toluene are added. The obtained suspension is stirred for 30 min . at that temperature and cooling is stopped. After stirring for another 30 min at ambient temperature, the solvent is filtered off. The remaining residue is thoroughly washed with 5 mL of benzene and is dried in vacuo. Dissolving the crude product in 5 mL of DCM, layering with 8 mL of n hexane and placing the flask at $6^{\circ} \mathrm{C}$ yields large yellow block-shaped crystals after three days. After decanting and drying in vacuo, 7:Mes* is obtained as slight yellow crystalline blocks which are suitable for SC-XRD ($0.163 \mathrm{mmol}, 0.131 \mathrm{~g}, 38 \%$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=7.47\left(\mathrm{dd}, J=3.4 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 1.69$ (s, 18H, CH3), $1.61\left(\mathrm{dd}^{2} \mathrm{~J}_{\mathrm{PH}}=12.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=3.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ of PMe 3$), 1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$ ppm. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 101 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=161.4\left(\mathrm{dd},{ }^{3} J_{\mathrm{CP}}=12.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{CP}}=6.1\right.$ $\left.\mathrm{Hz}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 153.6-153.5\left(\mathrm{~m}, \mathrm{p}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)^{*}, 123.4\left(\mathrm{dd}^{3}{ }^{3} \mathrm{~J}_{\mathrm{CP}}=7.6 \mathrm{~Hz}^{4}{ }^{4} \mathrm{~J}_{\mathrm{CP}}=2.9 \mathrm{~Hz}, \mathrm{ArCH}\right)$, $122.6\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=53.9 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=9.8 \mathrm{~Hz}, \mathrm{ArC}_{\text {ipso }}\right), 39.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=2.5 \mathrm{~Hz}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.6(\mathrm{~s}$, $\left.p-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.6\left(\mathrm{~d}^{\mathrm{ts}} \mathrm{J}_{\mathrm{PC}}=5.9 \mathrm{~Hz}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.4\left(\mathrm{~s}, p-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 14.7\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=43.8 \mathrm{~Hz}\right.$, ${ }^{2} \mathrm{~J}_{\mathrm{CP}}=8.7 \mathrm{~Hz}, \mathrm{CH}_{3}$ of $\left.\mathrm{PMe}_{3}\right) \mathrm{ppm}$. *Unknown C-P coupling. ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $162 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta=21.67\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=423.0 \mathrm{~Hz}, \mathrm{R}-\mathrm{PPMe} 3\right.$), $-86.37\left(b r-\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=423.1 \mathrm{~Hz}\right.$, R-PPMe ${ }_{3}$) ppm. ${ }^{31} \mathbf{P}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta=21.36$ (ps-doct, ${ }^{1}{ }^{1} \mathrm{PP}=395.4 \mathrm{~Hz}$, $\left.{ }^{2} J_{\mathrm{PH}}=12.6 \mathrm{~Hz}, \mathrm{R}-\mathrm{PPMe}\right)^{* *}$, $\left.-86.38\left(b r-\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=422.6 \mathrm{~Hz}, \mathrm{R}-\mathrm{PPMe}\right)\right)^{* *} \mathrm{ppm} .{ }^{* *}$ Expected doublet of decets could not be resolved. IR (ATR, cm ${ }^{-1}$): 2952 (s), 2908 (m), 2865 (m), 1582 (w), 1519 (w), 1463 (m), 1402 (s), 1353 (m), 1310 (w), 1291 (m), 1235 (m), 1208 (m), 1126 (m), 949 (vs), 875 (s), 855 (m), 747 (s), 673 (m), 650 (w), 593 (w), 574 (w), 504 (w), 462 (w), 435 (w), 407 (m).

Figure S58: ${ }^{1} \mathrm{H}$ NMR of 7:Mes* (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}$ 298K).

\checkmark	ψ	$\xrightarrow{\sim}$

Figure S59: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 7:Mes* (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 101 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S60: ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 7:Mes* (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}$). *traces of an unknown decomposition product.

 Figure S61: ${ }^{31} \mathrm{P}$ NMR of 7:Mes* (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}$). *traces of an unknown decomposition product.

3.13 Mes* ${ }^{*}\left(\right.$ PMe $\left._{3}\right)-$ GaCl $_{1} \mathrm{I}_{3-\mathrm{x}}$ (8:Mes*)

After dissolving 7:Mes* in DCM and stirring the solution vigorously in DCM, the recrystallization does afford a few platelet-shaped crystals of 8:Mes* when placing an n-hexane layered solution at $-32^{\circ} \mathrm{C}$ for several days.

$3.14\left[\left({ }^{\text {Mes }} \mathrm{TerP}\left(\mathrm{PMe}_{3}\right)\right)_{2} \mathrm{GaCl}_{2}\right] \mathrm{GaCl}_{4}\left(9:{ }^{\text {Mes }} \mathrm{Ter}\right)$

A 0.100 g portion of ${ }^{\text {Mes }} \mathrm{TerPPMe}_{3}(0.238 \mathrm{mmol}, 1.0 \mathrm{eq})$ and 0.042 of $\mathrm{GaCl}_{3}(0.238 \mathrm{mmol}$, 1.0 eq) are placed in a Schlenk tube. At $-78^{\circ} \mathrm{C}, 5 \mathrm{~mL}$ of toluene are added. The resulting suspension is stirred for one hour at that temperature. The cooling bath is then removed, and the obtained white suspension is stirred for another 20 min . at ambient temperature. The solvent is carefully filtered off to obtain 0.120 g of crude 9: ${ }^{\text {Mes }} \mathbf{T e r}$. The best obtained batch showed a contamination of about 7\% of [$\left.{ }^{\mathrm{Mes}} \operatorname{TerP}(\mathrm{H}) \mathrm{PMe}_{3}\right][\mathrm{An}]$ (estimated by means of ${ }^{31} \mathrm{P}$ NMR) - no analytically pure material could be obtained, even employing freshly dried and distilled solvents as well as meticulous Schlenk techniques. A few small colourless platelets of 9:MesTer for SC-XRD can be grown. For this purpose, 4 mL of n-heptane are added to the crude product. Just as much DCM is then added until a colorless, clear solution is obtained. Placing the solution at $-32^{\circ} \mathrm{C}$ yields platelet-shaped crystals after a few days.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=7.54-7.48(\mathrm{~m}, 1 \mathrm{H}, p-\mathrm{ArH}), 7.09-7.05(\mathrm{~m}, 4 \mathrm{H}, m-$ H of Mes), 6.97 (br-s, 2H, $m-\mathrm{ArH}$), 2.35 ($s, 6 \mathrm{H}, p-\mathrm{CH}_{3}$ of Mes), 2.27 (br-s,6H,m-CH3 of Mes), 1.99 (br-s, $6 \mathrm{H}, m-\mathrm{CH}_{3}$ of Mes), $1.46\left(\mathrm{dd}^{2}{ }^{2} \mathrm{~J}_{\mathrm{PH}}=12.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=4.8 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ of PMe $)$) ppm. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=13.13\left(\mathrm{~d},{ }^{1}{ }^{1} \mathrm{PP}=410.3 \mathrm{~Hz}\right.$, RPPMe $)$, $-86.37\left(b r-d_{1}{ }^{1} \mathrm{~J}_{\mathrm{PP}}=408.6 \mathrm{~Hz}, \mathrm{R}-\mathrm{PPMe}_{3}\right) \mathrm{ppm} .{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right):$
 $\mathrm{Hz}, \mathrm{R}-\mathrm{PPMe})_{3}{ }^{* *}$ ppm. **Expected doublet of decets could not be resolved.

Figure S62: ${ }^{1} \mathrm{H}$ NMR of 9:Mes Ter (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, 298 \mathrm{~K}$). *[$\left.{ }^{\text {Mes }} \operatorname{TerP(H)PMe}{ }_{3}\right][\mathrm{An}]$.

Figure S63: ${ }^{31}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 9:Mes Ter (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}$). *[MesTerP(H)PMe ${ }^{\text {M }}$ [An].

3.15 [Mes*P(H)(PMe $\left.)^{3}\right]$ Gal $_{4}$ (10:Mes*)

A 0.075 g portion of Mes*PPMe3 $(0.075 \mathrm{~g}, 0.21 \mathrm{mmol}, 1.0 \mathrm{eq})$ together with $\mathrm{Gal}_{3}(0.096$ $\mathrm{g}, 0.21 \mathrm{mmol}, 1.0 \mathrm{eq}$) are cooled to $-78^{\circ} \mathrm{C}$. Then, 4 mL of toluene are added, and the obtained suspension is stirred for 5 min . at that temperature. The cooling bath is removed, and the suspension is stirred for a further hour at ambient temperature (wrap flask with tin-foil!). The solvent is then filtered off and the residue is thoroughly washed with 3 mL of moisture contaminated n-hexane. After drying the crude product in vacuo, the residue is dissolved in 1.5 mL of DCM. The obtained solution is then layered with 5 mL of n -hexane and subsequently placed at $-32^{\circ} \mathrm{C}$. After a few days, a few block-shaped crystals of 10:Mes* were obtained among powdery material. Careful sorting of the single crystals allowed an NMR spectroscopic investigation. Crystals were just enough for SC-XRD and ${ }^{1} \mathrm{H} /{ }^{31} \mathrm{P} /{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=7.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.53\left(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $5.80\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{PH}}=226.0 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}(H) \mathrm{PMe}_{3}\right), 1.69\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=13.2 \mathrm{~Hz}^{3}{ }^{3} \mathrm{~J}_{\mathrm{PH}}=\right.$ $1.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}$ of PMe_{3}), $1.61\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.54\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \quad$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=20.87\left(\mathrm{~d},{ }^{1}{ }^{1} \mathrm{pp}=291.8 \mathrm{~Hz}, \mathrm{R}-\right.$ $\mathrm{P}(\mathrm{H}) \mathrm{PMe})_{3}$, $-87.00\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=290.7 \mathrm{~Hz}, \mathrm{R}-\mathrm{P}(\mathrm{H}) \mathrm{PMe} \mathrm{B}_{3}\right) \mathrm{ppm} .{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}\right.$, 298K): $\delta=20.87\left(\mathrm{dm},{ }^{1}{ }^{\mathrm{JPP}}=292.6 \mathrm{~Hz}, \mathrm{R}-\mathrm{P}(\mathrm{H}) \mathrm{PMe}\right)^{*},-87.00\left(\mathrm{dd},{ }^{1}{ }^{\mathrm{JPP}}=291.3 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{PH}}=\right.$ $\left.226.0 \mathrm{~Hz}, \mathrm{R}-P(\mathrm{H}) \mathrm{PMe}_{3}\right)$ ppm. * An expected doublet of decet of doublets could not be resolved.

Figure S65: ${ }^{1} \mathrm{H}$ NMR of 10:Mes* (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}$). *Unknown decomposition product.

Figure S66: ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 10:Mes* (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S67: ${ }^{31} P$ NMR of 10:Mes* (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

$3.16\left[\text { Mes }^{*} \mathrm{P}(\mathrm{H})\left(\mathrm{PMe}_{3}\right)\right]_{2} \mathrm{Ga}_{4} \mathrm{O}_{2} \mathrm{I}_{10}$ (11:Mes*)

When recrystallizing the crude product of the synthesis of $\mathbf{1 0} \mathbf{0}$ Mes* from a layered DCM/n-hexane(non-absolute) solution (1:2) at $6^{\circ} \mathrm{C}$, a few very small platelet-shaped crystals of 11:Mes* can be obtained for SC-XRD (see table S6 for details).

3.17 [Mes*P(H)(PMe 3)]GaCl 4 (12:Mes*)

A 150 mg portion of Mes*PPMe3 $(0.43 \mathrm{mmol}, 1.0 \mathrm{eq})$ together with 0.076 g of GaCl_{3} ($0.43 \mathrm{mmol}, 1.0 \mathrm{eq}$) are placed in a Schlenk tube. Upon cooling at $-78^{\circ} \mathrm{C}, 5 \mathrm{~mL}$ of toluene are added, and the obtained suspension is stirred for 30 min . at that temperature. The cooling bath is then removed, and 0.22 mL of 2 M HCl in $\mathrm{Et}_{2} \mathrm{O}(0.43 \mathrm{mmol}$ of $\mathrm{HCl}, 1.0$ eq) are immediately added to the solution. After stirring for another 30 min . at ambient temperature, the solvent filtered off and the obtained residue is washed with 5 mL of benzene. Then, the obtained colorless residue is dissolved in 5 mL of DCM. The slight cloudy solution is filtered, and the obtained colorless solution is layered with 8 mL of hexane. The respective flask is kept at $6^{\circ} \mathrm{C}$ overnight and is then placed at $-32^{\circ} \mathrm{C}$. After two days, large colorless platelet-shaped crystals of 10:Mes* are obtained which are suitable for SC-XRD ($0.19 \mathrm{mmol}, 0.110 \mathrm{~g}, 45 \%$ - first batch). After decanting the solution and placing again at $-32^{\circ} \mathrm{C}$, a second batch of crystals is obtained after a few days. Combining the crystals yields 0.150 g of $\mathbf{1 0}$:Mes* ($0.27 \mathrm{mmol}, 62 \%$ - combined yield).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=7.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.52\left(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $5.77\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{PH}}=226.3 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}(H) \mathrm{PMe} \mathrm{e}\right), 1.63\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=13.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=\right.$ $1.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}$ of PMe_{3}), $1.60\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.53\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 101 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=159.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=7.1 \mathrm{~Hz}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 159.1$158.9\left(\mathrm{~m}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)^{\star}, 154.6\left(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, p-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)^{\star *}, 124.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=4.4 \mathrm{~Hz}, \mathrm{ArCH}\right)$, $124.3\left(\mathrm{dd},,^{3} J_{\mathrm{CP}}=7.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{CP}}=4.4 \mathrm{~Hz}, \mathrm{ArCH}\right), 115.7\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=34.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=10.8 \mathrm{~Hz}\right.$, ArC ${ }_{\text {ipso }}$), $[39.2+38.6]\left(\mathrm{s}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.7\left(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, p-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)^{\star *}, 34.9\left(\mathrm{~d},{ }^{\mathrm{ts}} \mathrm{J}_{\mathrm{CP}}=11.9\right.$ $\left.\mathrm{Hz}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.3\left(\mathrm{~s}, \mathrm{o}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.3\left(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, p-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)^{* *}, 12.1\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=41.5\right.$ $\mathrm{Hz},{ }^{2} J_{\mathrm{CP}}=4.2 \mathrm{~Hz}, \mathrm{CH}_{3}$ of PMe_{3}) ppm. * An expected doublet of doublets from ${ }^{3} \mathrm{~J}_{\mathrm{CP}}$ and ${ }^{4} J_{\mathrm{CP}}$ coupling could not be resolved. ** Unknown C-P coupling. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $162 \mathrm{MHz}, 298 \mathrm{~K}): \delta=20.90\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=291.0 \mathrm{~Hz}, \mathrm{R}-\mathrm{P}(\mathrm{H}) P \mathrm{Me}_{3}\right),-87.23\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=291.0 \mathrm{~Hz}\right.$,

R-P(H)PMe $\left.{ }_{3}\right)$ ppm. ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=20.90\left(\mathrm{dm},{ }^{1}{ }^{1} \mathrm{PP}=290.4 \mathrm{~Hz}\right.$, $\left.\mathrm{R}-\mathrm{P}(\mathrm{H}) \mathrm{PMe})^{2}\right)^{* * *},-87.25\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=291.0 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{PH}}=226.3 \mathrm{~Hz}, \mathrm{R}-P(\mathrm{H}) \mathrm{PMe} \mathrm{P}_{3}\right) \mathrm{ppm} .{ }^{* * *}$ Expected doublet of decet of doublets could not be resolved. IR (ATR, cm^{-1}): 2952 (s), 2908 (m), 2865 (m), 2380 vsym (P-H) (vw), 1582 (m), 1519 (w), 1463 (m), 1402 (s), 1353 (m), 1310 (w), 1291 (m), 1235 (m), 1208 (m), 1126 (m), 949 (vs), 875 (s), 855 (m), 747 (s), 673 (s), 650 (m), 593 (w), 574 (w), 504 (w), 462 (w), 435 (m), 407 (w). MS (HR, ESI ${ }^{+}$); calc. for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{P}_{2}\left[\mathrm{M}-\mathrm{GaCl}_{4}\right]^{+}$(found): 353.2532 (353.2526).

Figure S68: ${ }^{1} \mathrm{H}$ NMR of 12:Mes* (given in ppm, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$. *Solvent signal.

Figure S69: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 12:Mes* (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 101 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S70: ${ }^{31}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 12:Mes* (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S71: ${ }^{31} P$ NMR of 12:Mes* (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}$).

3.18 [$\left.{ }^{\text {Mes }} \operatorname{TerP}(\mathrm{H})\left(\mathrm{PMe}_{3}\right)\right] \mathrm{GaCl}_{4}$ (12: ${ }^{\text {Mes }} \mathrm{Ter}$)

A 0.100 g portion of ${ }^{\text {MesTerPPMe }} 3(0.238 \mathrm{mmol}, 1.0 \mathrm{eq})$ together with 0.042 g of GaCl_{3} ($0.238 \mathrm{mmol}, 1.0 \mathrm{eq}$) are placed in a Schlenk tube. At $-78^{\circ} \mathrm{C}, 5 \mathrm{~mL}$ of toluene are added, and the resulting suspension is stirred for 30 min . at that temperature. The cooling bath is then removed and 0.14 mL of 2 M HCl in $\mathrm{Et}_{2} \mathrm{O}(0.238 \mathrm{mmol}, 1.0 \mathrm{eq})$ are immediately added to the solution. The mixture is stirred until a colorless, clear solution is obtained and the solvent is removed under reduced pressure. After thoroughly drying in vacuo, 12: ${ }^{\text {Mes }}$ Ter is obtained as a pale-white microcrystalline powder in quantitative yield (>99\%, 0.238 mmol).
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=7.73-7.67(\mathrm{~m}, 1 \mathrm{H}, p-\mathrm{ArH}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}, m-$ ArH), 7.11-7.08 (m, 4H, m-H of Mes), $4.33\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{PH}}=231.4 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{R}-\right.$ $\mathrm{P}(\mathrm{H}) \mathrm{PMe}_{3}$), 2.39 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$ of Mes), 2.17 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$ of Mes), 2.09 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$ of Mes), $\left.1.54\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=13.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=3.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3} \text { of } \mathrm{PMe}\right)_{3}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, 75.5 MHz, 298K)*: $\delta=147.5,139.5,137.4,136.3,135.2,131.1,130.3,130.1,129.6,129.4$, 122.8, [21.3, 21.3, 21.2, 21.2] ($\mathrm{s}, \mathrm{CH}_{3}$ of Mes), 12.3 (dd, ${ }^{1} \mathrm{~J}_{\mathrm{CP}}=43.0 \mathrm{~Hz}^{2}{ }^{2}{ }_{\mathrm{CP}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}$ of PMe_{3}) ppm. *Due to chemical inequivalence of most of the C -atoms and poor signal to noise ratio, the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum did not reveal all resonances. All aromatic C resonances which were found with a $1 \mathrm{H} / 13 \mathrm{C}$ HMBC spectrum and that show reasonable correlations are listed. A clear assignment becomes questionable. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta=13.91\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{pp}}=298.1 \mathrm{~Hz}, \mathrm{R}-\mathrm{P}(\mathrm{H}) P \mathrm{Me}_{3}\right)$, $-93.99(\mathrm{~d}$, $\left.{ }^{1}{ }^{1} \mathrm{pp}=298.1 \mathrm{~Hz}, \mathrm{R}-\mathrm{P}(\mathrm{H}) \mathrm{PMe} \mathrm{P}_{3}\right) \mathrm{ppm} .{ }^{\mathbf{3 1} \mathbf{P}} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=13.91(\mathrm{dm}$, $\left.{ }^{1} J_{\mathrm{PP}}=297.9 \mathrm{~Hz}, \mathrm{R}-\mathrm{P}(\mathrm{H}) P \mathrm{Me}_{3}\right)^{\star *}$, $-93.99\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=297.7 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{PH}}=230.9 \mathrm{~Hz}\right.$, R-P(H)PMe3)** ppm. **Expected doublet of decet of doublets could not be resolved. IR

1559 (w), 1448 (s), 1407 (s), 1377 (s), 1316 (vw), 1296 (w), 1182 (w), 1161 (w), 1136 (w), 1109 (w), 1084 (w), 1034 (m), 1014 (m), 957 (vs), 916 (s), 855 (s), 849 (s), 807 (s), 773 (w), 751 (m), 737 (m), 698 (m), 680 (w), 586 (m), 559 (w), 547 (w), 496 (w), 465 (w), 447 (w). MS (HR, ESI ${ }^{+}$; calc. for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{P}_{2}\left[\mathrm{M}-\mathrm{GaCl}_{4}\right]^{+}$(found): 421.2219 (421.2220).

Figure S72: ${ }^{1} \mathrm{H}$ NMR of 12: ${ }^{\text {Mes }} \boldsymbol{T e r}$ (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S73: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (high-field region only) of 12: ${ }^{\text {Mes }} \boldsymbol{T e r}$ (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S74: ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC NMR (low-field region only) of 12: ${ }^{\text {Mes }} \boldsymbol{T e r}$ (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$).

Figure S75: $\left.{ }^{31} P_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 12:Mes $\boldsymbol{T e r}$ (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S76: ${ }^{31} P$ NMR of 12: ${ }^{\text {Mes }}$ Ter (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 122 \mathrm{MHz}, 298 \mathrm{~K}$).

$3.19\left[{ }^{\text {Dip }} \operatorname{TerP}(\mathrm{H})\left(\mathrm{PMe}_{3}\right)\right] \mathrm{GaCl}_{4}\left(12\right.$: $^{\text {Dip }}$ Ter $)$

A 0.050 g portion of ${ }^{\mathrm{Dip}} \mathrm{TerPPMe}_{3}(0.100 \mathrm{mmol}, 1.0 \mathrm{eq})$ together with 0.017 g of GaCl_{3} ($0.100 \mathrm{mmol}, 1.0 \mathrm{eq}$) are placed in a Schlenk tube. At $-78^{\circ} \mathrm{C}, 3 \mathrm{~mL}$ of toluene are added, and the resulting suspension is stirred for 30 min . at that temperature. The cooling bath is then removed and 0.05 mL of 2 M HCl in $\mathrm{Et}_{2} \mathrm{O}(0.100 \mathrm{mmol}, 1.0 \mathrm{eq})$ are immediately added to the solution. The mixture is stirred for another hour at ambient temperature followed by concentration to about 1.5 mL of toluene. After subsequent filtration, the solvent is removed under reduced pressure and the white precipitate is thoroughly dried in vacuo. 12: ${ }^{\text {Dip }}$ Ter is obtained as a pale white microcrystalline powder (0.057 g , 0.079 mmol, 79\%). Platelet-shaped crystals for SC-XRD are obtained from a saturated heptane/DCM mixture which is slowly evaporated in an Ar-flush at ambient temperature.
${ }^{1}$ H NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=7.67-7.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.43-7.40 (m, 2H, ArH), 7.38-7.34 (m, 4H, ArH), $4.22\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{PH}}=234.3 \mathrm{~Hz}{ }^{2}{ }^{2} \mathrm{~J}_{\mathrm{PH}}=9.3 \mathrm{~Hz}\right.$, $\mathrm{P}(H) \mathrm{PMe}_{3}$), 2.70 (hept, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 2 \mathrm{H}$), 2.44 (hept, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$, $2 \mathrm{H}), 1.44\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=13.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=3.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{PMe}_{3}\right), 1.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}\right), 1.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}\right), 1.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}\right)$, $1.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 101 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=$ 147.9 (s), 146.3 (s), 146.1 ($\mathrm{dd}^{1}{ }^{1} \mathrm{~J}_{\mathrm{CP}}=11.9 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=4.6 \mathrm{~Hz}$, ipso-CAry) 137.7 (d, J=2.4 $\mathrm{Hz}), 132.1(p s-\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz})^{\star}, 131.1(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}), 131.0(\mathrm{~s}), 125.0(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}), 32.01$ (d, J = 4.9 Hz), [31.5, 26.8, 26.1] (s, CH(CH3 $\left.)_{2}\right)$), $23.8(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 23.14(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz})$, 12.1 (dd, ${ }^{1} J_{\mathrm{CP}}=43.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}$ of PMe_{3}) ppm. * Most likely an unresolved doublet of doublets. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 162 \mathrm{MHz}, 298 \mathrm{~K}\right)$: $\delta=13.24\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=290.8 \mathrm{~Hz}\right.$, R-P(H)PMe $)$, $-92.45\left(\mathrm{~d},{ }^{1}{ }^{\mathrm{PP}}=288.8 \mathrm{~Hz}, \mathrm{R}-P(\mathrm{H}) \mathrm{PMe}_{3}\right) \mathrm{ppm} .{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 162 \mathrm{MHz}\right.$,

298K): $\delta=13.24\left(\mathrm{dm},{ }^{1}{ }^{\mathrm{JPP}}=287.0 \mathrm{~Hz}, \mathrm{R}-\mathrm{P}(\mathrm{H}) \mathrm{PMe}\right)^{* *},-92.46\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=290.0 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{PH}}=\right.$ $234.5 \mathrm{~Hz}, \mathrm{R}-\mathrm{P}(\mathrm{H}) \mathrm{PM}_{3}$) ppm. **Expected doublet of decet of doublets could not be resolved. IR (ATR, cm ${ }^{-1}$): 3061 (w), 2960 (s), 2925 (m), 2911 (m), 2869 (w), 2318 v sym $^{\text {(}}$ (H) (vw), 1591 (w), 1562 (w), 1458 (s), 1410 (m), 1386 (m), 1364 (m), 1323 (w), 1297 (s), 1250 (m), 1179 (w), 1161 (w), 1127 (w), 1109 (w), 1056 (w), 1041 (w), 957 (vs), 912 (m), 883 (vw), 857 (m), 821 (m), 808 (s), 794 (s), 760 (vs), 706 (w), 686 (w), 677 (w), 634 (w), 587 (w), 548 (w), 527 (w), 502 (w), 471 (w), 431 (w). MS (HR, ESI ${ }^{+}$); calc. for $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{P}_{2}$ [M$\left.\mathrm{GaCl}_{4}\right]^{+}$(found): 505.3158 (505.3152).

Figure S77: ${ }^{1} \mathrm{H}$ NMR of 12:Dip Ter (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}$).

$\begin{array}{llllllllllllllllllllllllllllllll}150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10\end{array}$
Figure S78: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 12:Dip ${ }^{\text {Ter }}$ (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 101 \mathrm{MHz}, 298 \mathrm{~K}$).
\qquad

Figure S79: ${ }^{31} P\left\{{ }^{1} H\right\}$ NMR of 12:Dip $\boldsymbol{T e r}$ (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S80: ${ }^{31} P$ NMR of 12:DipTer (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}$).

4 Spectra to demonstrate reactivity

Figure S81: ${ }^{1} \mathrm{H}$ NMR of 7:Mes*+ 1 eq $\mathrm{H}_{2} \mathrm{O}$ (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, 298 \mathrm{~K}$).
\qquad

Figure S82: $\left.{ }^{31} P^{1}{ }^{1} \mathrm{H}\right\}$ NMR of 7:Mes* +1 eq $\mathrm{H}_{2} \mathrm{O}$ (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S83: Summary of ${ }^{\top} \mathrm{H}$ NMRs of Mes $^{*} P(H) P M e_{3}[A n]$ with regard to the characteristic doublet of doublets (given in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, 298 \mathrm{~K}$).

Dissolved 7:Mes* + excess $\mathrm{H}_{2} \mathrm{O}$

Figure S84: ${ }^{1} \mathrm{H}$ NMR showing 1:Mes* if 7:Mes* is converted with an excess of $\mathrm{H}_{2} \mathrm{O}$ (given in $\mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $300 \mathrm{MHz}, 298 \mathrm{~K})$. *Unknown PMe_{3} containing compound, \#unknown OH -containing compound.

5 Computational details

Computations were carried out using Gaussian09 ${ }^{[14]}$ or ORCA 4.2.1 ${ }^{[15]}$ and the standalone version of NBO 6.0. ${ }^{[16-19]}$

Structure optimizations employed the hybrid DFT functional PBEO ${ }^{[20-22]}$ in conjunction with Grimme's dispersion correction $D 3(B J){ }^{[23,24]}$ and the def2-SVP basis set ${ }^{[25]}$ (notation PBEO-D3/def2-SVP). All structures were fully optimized and confirmed as minima by frequency analyses. Partial charges were determined by Natural Population analysis using the NBO program.

More accurate estimates of the electronic energy were obtained by single-point DLPNO-CCSD $(T) /$ def2-TZVP ${ }^{[26]}$ computations (notation DLPNO-CCSD(T)/def2-TZVP//PBE-D3/def2-SVP). The T_{1} diagnostic was evaluated in each case to ensure reliable results. (Empirically, $\operatorname{CCSD}(\mathrm{T})$ results with T_{1} values smaller than 0.02 are considered reliable.) ${ }^{[27]}$

Please note that all computations were carried out for single, isolated molecules in the gas phase (ideal gas approximation). There may well be significant differences between gas phase and condensed phase.

5.1 Summary of calculated data

Table S8. Summary of calculated data, including electronic energies and thermal corrections.

Compd.	NIMAG	ZPE $\left[\mathrm{kcal} \cdot \mathrm{mol}^{-1}\right]$	$E_{\text {tot }}{ }^{[\mathrm{a}]}$	$\Delta G^{[b]}$	$E_{\text {CCSD(T) }}{ }^{[\mathrm{cc}]}$	T_{1}
I:Mes*	0	341,8849	$-1503,8422$	0,4890	$-1503,3024$	0,0098
6:Mes*	0	345,2917	$-4808,1626$	0,4839	$-4806,1730$	0,0098
$\mathbf{G a C l}_{\mathbf{3}}$	0	2,4730	$-3304,2426$	$-0,0263$	$-3302,8069$	0,0106

[a] Total SCF energy in a.u.; [b] thermal correction to Gibbs energy in a.u. (298 K unless stated otherwise); [c] single-point DLPNO-CCSD(T)/def2-TZVP energy.

5.2 Thermochemistry

To evaluate the thermodynamic feasibility of the reactions described in the manuscript their respective $\Delta_{R} G^{\circ}{ }_{298}$ values were determined on the DLPNO-CCSD(T)/def2-TZVP // PBE0-D3/def2-SVP level of theory.

Mes*P(PMe ${ }_{3}$ ($\mathbf{(: M e s *)}$) $\mathrm{GaCl}_{3} \rightarrow$ Mes* $^{*}\left(\mathrm{GaCl}_{3}\right) \mathrm{PMe}_{3}$ (6:Mes*)
$\Delta_{R} G^{\circ}{ }_{298}=-111.35 \mathrm{KJ} \cdot \mathrm{mol}^{-1}$

5.3 Bonding and NBO Analysis

The electronic structure of I:Mes* and 6:Mes* was investigated using the full model. First the Kohn-Sham orbitals (PBEO-D3/def2-SVP) were inspected and the LUMO +2 to HOMO-2 along with their respective energies are depicted below.

Figure S85. Relevant Kohn-Sham orbitals of I:Mes* (PBE0-D3/def2-SVP).

$\mathrm{HOMO}-2$
-6.48 eV

LUMO $-0.38 \mathrm{eV}$

LUMO + 1
0.31 eV

Figure S86. Relevant Kohn-Sham orbitals of 6:Mes* (PBE0-D3/def2-SVP).

HOMO-2
$-7.21 \mathrm{eV}$

LUMO + 1
$-0.47 \mathrm{eV}$

Next NBO analyses were carried out on the PBEO-D3/ def2-SVP level of theory and additionally Wiberg-Bond-Indices (WBI) were determined and NLMOs (Natural localized molecular orbitals) were calculated. The results of these natural bond orbital analyses for I:Mes* and 6:Mes* are summarized below.

Summary of NBO results for I:Mes*:

NPA Charges

```
P 9 -0.19511
```

P 221.13056

WBIs

P9-P22 1.1750

Bonding

32. (1.93887) LP (1) P 9	$s(71.65 \%)$ p $0.39(28.30 \%) d 0.00(0.04 \%)$
33. (1.70278) LP (2) P 9	$s(0.00 \%) p 1.00(99.79 \%) d 0.00(0.21 \%)$

49. (1.95136) BD (1) P 9- P 22
(39.71\%) 0.6301* P 9 s(12.14\%)p 7.15(86.85\%)d 0.08(1.00\%)
(60.29\%) 0.7765* P 22 s(30.93\%)p 2.21(68.51\%)d 0.02(0.55\%)

$\mathbf{2}^{\text {nd }}$ order perturbation [kcal/mol]

33. LP (2) P 9	121. $\mathrm{BD}^{*}(1) \mathrm{C} 11-\mathrm{P} 22$	11.42
33. LP (2) P 9	125. $\mathrm{BD}^{*}(1) \mathrm{C} 12-\mathrm{P} 22$	11.40

Figure S87. Selected NLMOs of I:Mes* (PBEO/def2-SVP).

Summary of NBO results for 6:Mes*:

NPA charges

Ga 1.04199
P 2 -0.11740
P 31.19223
Cl $4-0.47486$
Cl 5 -0.50139
Cl 6 -0.46152

Wiberg Bond Indices

Ga1-P2 0.6324
P2-P3 0.9889

Bonding

61. (1.84909) LP (1) P $2 \quad s(42.35 \%) p$ 1.36(57.55\%)d 0.00(0.10%)
62. (1.91838) BD (1)Ga 1-P 2
(22.16\%) $0.4708^{*} G a 1 s(31.06 \%) p$ 2.21(68.59\%)d 0.01 ($\left.0.35 \%\right)$
(77.84\%) 0.8823* P 2 s(22.26\%)p 3.48(77.55\%)d 0.01(0.19\%)
63. (1.95668) BD (1) P 2-P 3
(42.90\%) 0.6550* P 2 s(12.74\%)p 6.77(86.30\%)d 0.07(0.96\%)
(57.10\%) 0.7556* P 3 s(26.70\%)p 2.72(72.64\%)d 0.02(0.66\%)

Figure S88. Selected NLMOs of Mes*P(H)CN (PBEO/def2-SVP).

5.4 Optimized structures (.xyz-files)

5.4.1 Mes*PPMe ${ }_{3}$ (I:Mes*)

61

Mes*PPMe3 @ PBE0-D3/def2-SVP

C
C
C
C
C
H
H
P
C
C
C
H
H
H
H
H
H
H
H
H
P
C
C
C
C
H
H
H
H
H
H
H
H
H
C
C
C
C
H
H
H
H
H
H
H
H
H
C
C
C
C
C
0.2346584164
-0.4676743255
1.5299714218
0.2813484369
2.1851641123
1.5707610096
2.0453003060
2.1287822599
-2.3457968223
-4. 2416149124
-1.7373217796
-1.7955103648
-4.7285267477
-4. 6902193397
-4.3884096860
-0.6683543966
-1.8517853551
-2. 2218823165
-1.8977382466
-0.7314176669
-2.3213415591
-2.4691283389
-0.1951079944
-1. 2325577702
-0.7771708417
0.9883327570
-0.8221765112
-2.1385521465
-1. 5085183185
-0.0460575267
-1.0365919774
-1.6913547432
0.6389100242
1.7999449915
1.4065694294
3.5564372209
3.4533922894
4.5799135889
4.0528871208
2.7267819805
3.1291565343
4.4294145907
4.6617457693
5.5754271536
4.2995482277
5.0242705753
4.1950635691
3.3532116725
-0.2905543778
-0.8670364772
-1.3513782416
1.2410236160
0.0071056498
1.2283335021
-1. 2053001063 0.0520905517
-1.1469641347
2.1750245373
-2.0736091805
-0.0289709590
-0.0849671675
-1.4419726653
1.3724553063
0.8027681963
-0.9826609458
-0.1007530830
-1.5028601018
-1.2854228009
-2. 3801792065 1.1982014586
1.4825434647
2.2923549726
-0.0441979074
-2. 5400233419
-3.3035515506
-2.2407742339
-3.4951586007
-3.5800015984
-2.6993301825
-4.2352389991
-1.7021285954
-3.1828538072
-1. 6345872159
-4.3736653114
-3.0260015340
-3.8680565341
0.0330097880
-0.7659799608
-0.6343110404
1.4404299021
-0. 3024026147
-1.8013970273
-0.8036717770
-0.0826824719
-0.6563648180
-1.6707735599
1.3827973128
2.0498104304
1.9718383649
2.5662121632
2.2658609696
3.2823489863
-0.6144890782
-0.7017813725
-0.0756576836
-0.6264159387
0.2793246109
-0.0901499635
0.0635832742
0.0379205355
-0.7156822651 1.7988646127
2.3141292177
2.3293027974
1.3719470263
1.3512913560
2.8884237361
2.0619223442
3.3974588935
2.0185588756
3.4111361717
2.0728406565
2.0467420334
1.3883558696
-1. 2564472054
-0.4246378576
-2.6476693740
-1.4714764696
0.5587790215
-0. 2859558172
-0.9449636950
-3. 2699196244
-3.1570494914
-2.5809649411
-2.0348520778
-2.0482051238
-0.5240063061
0.9554642271
2.2627716066
0.0253300455
1.2885113596
2.9482957186 2.0806087662
2.7728620068
-0.9237293165
0.4974422225
-0. 2134220191
1.8031921869
0.3830554439
1.9518539559
-1. 2257532393
-2.6191836590
-0.3811755529

C	0.8582529240	3.5648073756	-1.4328064164
H	-0.1199766151	1.7611445120	-3.2508780557
H	-1.7596290438	1.6277890509	-2.5584136416
H	-1.1602575636	3.2052944293	-3.1149841421
H	-0.9481191840	3.5614128890	0.6044556137
H	-1.6621944543	4.2098620415	-0.8891583917
H	-2.2347850697	2.6444075945	-0.2471010929
H	0.4761414259	4.4367318203	-1.9849925884
H	1.2667755116	3.9410585091	-0.4825223034
H	1.6835685832	3.1310846444	-2.0176832249

5.4.2 Mes*P(GaCl_{3}) PMe_{3} (6:Mes*)

65				
Mes*P(GaCl3)PMe3 @ PBE0-D3/def2-SVP				
Ga	2.9893596371	-0.1756642114	-0.5351483910	
P	0.8521701696	0.6940295826	0.0292446060	
P	0.8262597114	0.5608208994	2.1975169129	
Cl	3.6070631599	-2.2052771432	-0.0150374400	
Cl	4.0750346475	1.2180262572	0.8226054676	
Cl	3.1975954513	0.2883754636	-2.6516620584	
C	-0.8717874090	0.1385738776	-0.3800652751	
C	-1.3795153823	-1.1934352547	-0.3358961394	
C	-1.3892788764	2.6375501934	-1.0697375422	
C	-1.7829053795	1.2217408907	-0.5653446872	
C	-0.5208147029	-2.4577744609	-0.5298875811	
C	-3.1487604596	0.9685360260	-0.3746064942	
H	-3.8444795887	1.7985530861	-0.4494817316	
C	-3.6541726740	-0.2981901699	-0.1055842852	
C	-0.7886608717	3.5351143163	0.0246388014	
H	-1.4316764749	3.5430384011	0.9204437504	
H	-0.7185691596	4.5711874038	-0.3428063254	
H	0.2186349162	3.2071659386	0.3060268367	
C	0.3617221484	-2.2787539330	-1.7737777024	
H	-0.2656097780	-2.2398826761	-2.6773930990	
H	1.0658540536	-3.1176541162	-1.8724481058	
H	0.9520975700	-1.3557157855	-1.7620929193	
C	-0.4263442059	2.5135652806	-2.2631762895	
H	0.5281459562	2.0326305389	-2.0098167834	
H	-0.1885535531	3.5153138758	-2.6535900943	
H	-0.8913508681	1.9325431947	-3.0740830672	
C	-2.7546565910	-1.3626795141	-0.1719817100	
H	-3.1467206138	-2.3743352962	-0.0887221667	
C	-0.8487353121	0.1834216942	2.7737931153	
H	-1.5585353756	0.8796966133	2.3050164634	
H	-0.8883777283	0.2786218746	3.8688867549	
H	-1.1216641089	-0.8358657964	2.4713786967	
C	1.9735347218	-0.5689201259	3.0371983045	
H	1.8180953781	-1.6064300988	2.7198055304	
H	1.8234966687	-0.4776405103	4.1236274030	
H	2.9960516597	-0.2633892849	2.7712218697	
C	0.3081317078	-2.7562963418	0.7199722360	
H	1.0235048218	-1.9550285958	0.9193348331	
H	0.8975207622	-3.6749209345	0.5842053513	
H	-0.3481397845	-2.8946242007	1.5950482591	
C	-2.6230692062	3.3846973406	-1.6049618437	
H	-3.1695189544	2.7972534089	-2.3578519977	
H	-2.2873055478	4.3148803224	-2.0864093369	

H	-3.3257796181	3.6731974678	-0.8086103867
C	-1.3796283775	-3.7026726172	-0.7923635193
H	-1.9670087921	-4.0078424561	0.0871388404
H	-0.7116440080	-4.5411020179	-1.0394899900
H	-2.0660700246	-3.5619282335	-1.6407453145
C	1.2536084290	2.1912355371	2.8632519829
H	2.2402747224	2.4597063969	2.4577026992
H	1.2925642537	2.1574828155	3.9622235019
H	0.5116074545	2.9292689457	2.5324968545
C	-5.1313500596	-0.5621544947	0.1819104344
C	-5.9524102451	0.7273837438	0.2079625100
H	-5.5859819635	1.4295864102	0.9725072681
H	-7.0018079670	0.4956803863	0.4447219541
H	-5.9396928997	1.2414300135	-0.7651066755
C	-5.2509859931	-1.2433460901	1.5533261870
H	-4.7052638054	-2.1981112741	1.5826202836
H	-6.3065213980	-1.4525368045	1.7888313864
H	-4.8451879855	-0.5986232712	2.3485328854
C	-5.7065753108	-1.4842338843	-0.9030929082
H	-5.6180764553	-1.0216968403	-1.8978955869
H	-6.7727848868	-1.6832285604	-0.7108928198
H	-5.1869847826	-2.4531369688	-0.9360247436

5.4.3 GaCl_{3}

4

GaCl3
Ga $\quad-0.4681829441$
Cl -1.5283218854
Cl 1.6520949395
$1.06244578-0.0122598$
-1. 528321886
$1.0624457793-0.0122598$
$-0.77376873-0.0122598$

6 References

[1] P. Gupta, J-E. Siewert, T. Wellnitz, M. Fischer, W. Baumann, T. Beweries, C. HeringJunghans, Dalton Trans., 2021, 50, 1838-1844.
[2] K. Bläsing, J. Bresien, R. Labbow, D. Michalik, A. Schulz, M. Thomas, A. Villinger, Angew. Chem. Int. Ed. 2019, 58, 6540-6544.
[3] G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3-8.
[4] G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3-8.
[5] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
[6] X-AREA and LANA; Stoe \& Cie: Darmstadt, Germany, 2020.
[7] SADABS within APEX2; Bruker AXS Inc.: Madison, WI, 2010.
[8] K. Brandenburg, DIAMOND V. 4.6.5, 2021.
[9] Mestrelab Research S.L., MestReNova V. 9.0.1-13254, 2014.
[10] OPUS; Version 7.2; Bruker Opt. GmbH: Ettlingen, Germany, 2012.
[11] OMNIC; Version 9.11.697, 2017.
[12] W. Kandioller, J. Theiner, B. K. Keppler, C. R. Kowol, Inorg. Chem. Front, 2022, 9, 412-416.
[13] J. Bresien, K. Faust, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2015, 54, 69266930.
[14] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. WilliamsYoung, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[15] F. Neese, WIREs Comput. Mol. Sci. 2018, 8, e1327.
[16] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold, NBO 6.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013.
[17] J. E. Carpenter, F. Weinhold, J. Mol. Struct.: THEOCHEM 1988, 169, 41-62.
[18] F. Weinhold, J. E. Carpenter, The Structure of Small Molecules and Ions, Plenum Press, 1988.
[19] F. Weinhold, C. R. Landis, Valency and Bonding. A Natural Bond Orbital DonorAcceptor Perspective, Cambridge University Press, 2005.
[20] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
[21] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396-1396.
[22] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158-6170.
[23] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
[24] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
[25] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-305.
[26] a) C. Riplinger, F. Neese, J. Chem. Phys. 2013, 138, 034106; b) D. G. Liakos, M. Sparta, M. K. Kesharwani, J. M. L. Martin, F. Neese, J. Chem. Theory Comput. 2015, 11, 1525-1539; c) C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, F. Neese, J. Chem. Phys. 2016, 144, 024109
[27] C. J. Cramer, Essentials of Computational Chemistry: Theories and Models, John Wiley \& Sons, Ltd, Chichester, UK, 2004.

