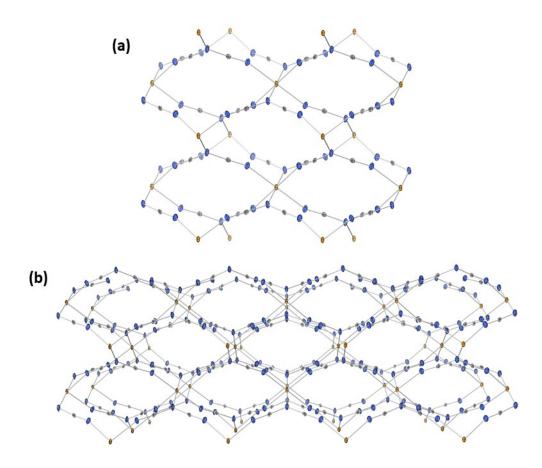
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Selective Photocatalytic CO₂ Reduction by Cobalt Dicyanamide

Sina Sadigh Akbari, Ferdi Karadas ***


‡ Department of Chemistry, Faculty of Science, Bilkent University, 06800 Ankara, Turkey.

UNAM - National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey.

* Corresponding author: Ferdi Karadas, Email: karadas@fen.bilkent.edu.tr.

Table S1 ATR- FTIR data of Co-dca sample.

Vibration	Wavenumber (cm ⁻¹)
δ(N−C≡N)	502
γ(N−C≡N)	526
δ(N−C≡N)	681
v(N-C)	963
v(N-C)	1314
ν(C≡N)	2207
ν(C≡N)	2270

Fig. S1 (a) 3D structure, and (b) perspective view of Co(dca)₂ (Color code: Co = orange; C = gray; N = blue).

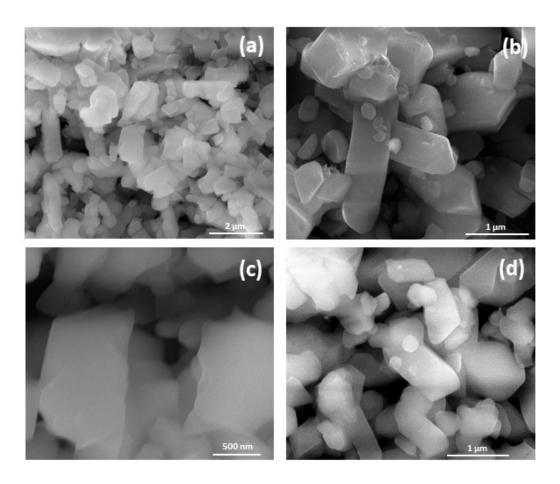


Fig. S2 (a-d) SEM images of Co-dca.

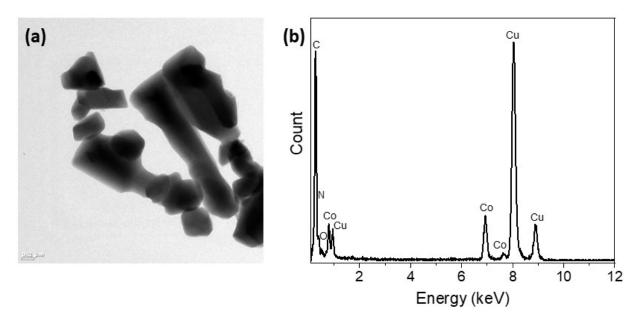


Fig. S3 (a) TEM image and (b) EDS elemental analysis of Co-dca. The signal for Cu is from the TEM grid.

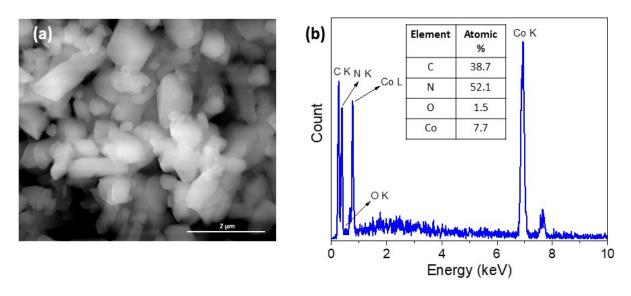
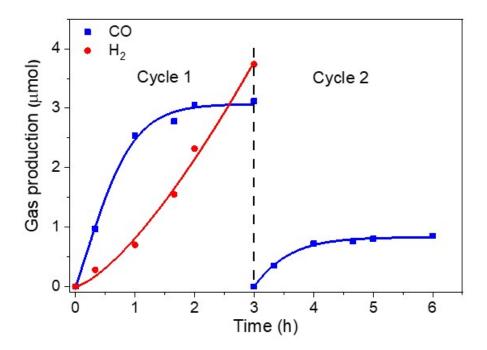
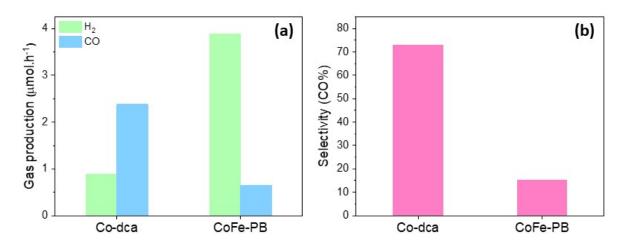




Fig. S4 (a) SEM image and (b) SEM-EDS analysis of Co-dca. Inset: The atomic ratio of all elements for the Co-dca.

Fig. S5 (a) Yields of H_2 and CO from the CO_2 under visible light irradiation over 2 cycles. Reaction conditions: 10 mg **Co-dca**, 3.74 mg [Ru(bpy)₃]Cl₂.6H₂O (0.5 mM), 8 mL acetonitrile, 2 mL TEOA, 25 °C, 30 min purging with CO_2 , under visible light irradiation ($\lambda > 420$ nm). After the first cycle, the catalyst was dispersed in a fresh solution, and 3.74 mg of Ru photosensitizer was added.

Fig. S6 Comparison of (a) the photocatalytic CO and H_2 evolution activity and (b) corresponding selectivity of photocatalytic CO_2 to CO conversion over H_2 evolution of **Co-dca** and CoFe-PB. Reaction conditions: 10 mg catalyst, 7.48 mg $[Ru(bpy)_3]Cl_2.6H_2O$ (1 mM), 8 mL acetonitrile, 2 mL TEOA, 25 °C, 30 min purging with CO_2 , under visible light irradiation ($\lambda > 420$ nm).

Preparation of CoFe-PB: For the synthesis of CoFe-PB, K₃[Fe(CN)₆] (2 mmol) was dissolved in deionized water (20 mL), then an aqueous solution of Co(NO₃)₂.6H₂O (3 mmol in 20 mL water) was added to the above solution at room temperature. The obtained slurry was stirred for 1 h and collected by centrifugation after rinsing with water. The obtained solid was dried at 75°C.

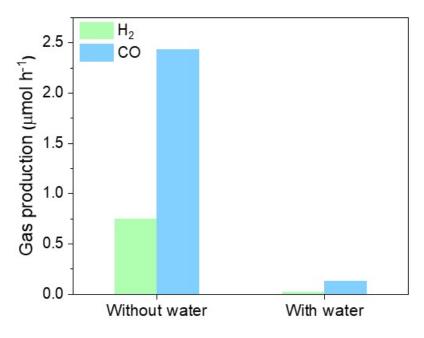
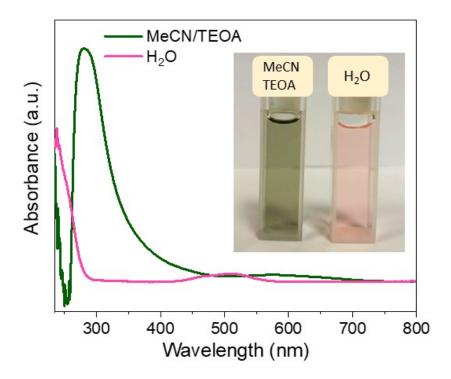
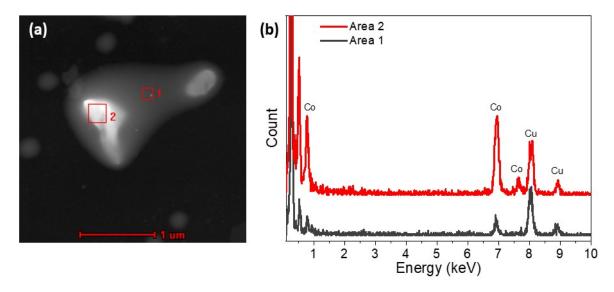




Fig. S7 Photocatalytic CO₂ reduction activity of Co-dca sample without water (MeCN/TEOA, 4/1, v/v) and with water (MeCN/H₂O/TEOA, 3/1/1, v/v/v).

Fig. S8 The UV-Vis absorption spectra of **Co-dca** (10 mg) in MeCN/TEOA and H₂O solutions. Inset: **Co-dca** powder dissolved in MeCN/TEOA and H₂O solutions.

Fig. S9 (a) HAADF-STEM images of **Co-dca** for post-catalytic sample. (b) EDS elemental analysis of selected areas. The signal for Cu is from the TEM grid.

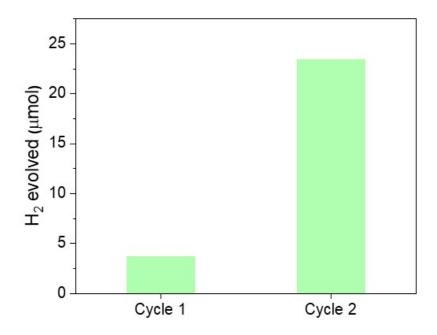


Fig. S10 The amount of H_2 evolved during the first and second cycles.