SUPPORTING INFORMATION FOR:

Closing the loop in the synthesis of heteroscorpionate-based aluminium helicates. Catalytic studies for cyclic carbonate synthesis.

Miguel A. Gaona,^a Felipe de la Cruz-Martínez,^a María P. Caballero,^a Enrique Francés-Poveda,^a Ana M. Rodríguez,^a Antonio Rodríguez-Diéguez,^c Michael North,^d José A. Castro-Osma,^{*,b} Agustín Lara-Sánchez^{*,a}

^aUniversidad de Castilla-La Mancha, Dpto. de Química Inorgánica, Orgánica y Bioquímica, Facultad

de Ciencias y Tecnologías Químicas, 13071-Ciudad Real, Spain. E-mail: <u>Agustin.Lara@uclm.es.</u>

^bUniversidad de Castilla-La Mancha, Dpto. de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, 02071-Albacete, Spain. E-mail: JoseAntonio.Castro@uclm.es.

^cUniversidad de Granada, Dpto. de Química Inorgánica, Facultad de Ciencias, Avda. de Fuentenueva s/n, 18071-Granada, Spain.

^dGreen Chemistry Centre of Excellence, Department of Chemistry, The University of York, York, YO10 5DD (UK).

Table of Contents

Figure S1. Tautomers of acetamide or thioacetamide heteroscorpionate ligands	S3
Figure S2. Variable temperature ¹ H NMR spectra in the region from 6.0 to 3.5 ppm	
for compound 9 in toluene- d_8	S4
Figure S3. Variable temperature ¹ H NMR spectra in the region from 6.3 to 3.3 ppm for com 27 in toluene- d_8	pound S5
Table S1. Crystallographic data for complexes 17 and 22	S 6
Table S2. Selected bond distances (Å) and angles (°) for complexes 17 and 22	S 7
General procedures for cyclic carbonates synthesis	S 8
Figure S4. NMR Spectra for 1,2-hexylene carbonate 29a in CDCl ₃	S9
Figure S5. NMR Spectra for propylene carbonate 29b in CDCl ₃	S10
Figure S6. NMR Spectra for 1,2-decylene carbonate 29c in CDCl ₃	S11
Figure S7. NMR Spectra for 1,2-dodecylene carbonate 29d in CDCl ₃	S12
Figure S8. NMR Spectra for glycerol carbonate 29e in DMSO- d_6	S13
Figure S9. NMR Spectra for 3-chloropropylene carbonate 29f in CDCl ₃	S14
Figure S10. NMR Spectra for 3-phenoxypropylene carbonate $29g$ in CDCl ₃	S15
Figure S11. NMR Spectra for 3-propargyloxypropylene carbonate 29h in CDCl ₃	S16
Figure S12. NMR Spectra for 3-vinyloxypropylene carbonate 29i in CDCl ₃	S17
Figure S13. NMR Spectra for styrene carbonate 29j in CDCl ₃	S18
Figure S14. NMR Spectra for 4-chlorostyrene carbonate 29k in CDCl ₃	S19
Figure S15. NMR Spectra for 4-bromostyrene carbonate 291 in CDCl ₃	S20
Figure S16. NMR Spectra for <i>cis</i> -cyclohexene carbonate 31a in CDCl ₃	S21
Figure S17. NMR Spectra for <i>cis</i> -cyclopentene carbonate 31b in CDCl ₃	S22
Figure S18. NMR Spectra for <i>trans</i> -1-phenyl-2-methylethylene carbonate 31c in CDCl ₃	S23
Figure S19. NMR Spectra for <i>trans</i> -1,2-diphenylethylene carbonate 31d in CDCl ₃	S24
References	S25

Figure S1. Tautomers of acetamide or thioacetamide heteroscorpionate ligands

Figure S2. Variable temperature ¹H NMR spectra in the region from 6.0 to 3.5 ppm for compound 9 in toluene- d_8

Figure S3. Variable temperature ¹H NMR spectra in the region from 6.3 to 3.3 ppm for compound 27 in toluene- d_8

	17	22	
Empirical formula	C ₃₆ H ₆₄ Al ₃ N ₅ O	C ₂₇ H ₄₅ Al ₂ N ₅ O	
Formula weight	663.86	509.64	
Temperature (K)	120(2)	290(2)	
Wavelength (Å)	0.71073	0.71073	
Crystal system	Monoclinic	Monoclinic	
Space group	Сс	P 2 ₁ /n	
a(Å)	20.2041(8)	11.7654(13)	
b(Å)	10.0613(7)	19.445(2)	
c(Å)	20.8767(11)	13.2565(15)	
α(°)	90	90	
β(°)	115.022(3)	97.2330(10)	
γ(°)	90	90	
Volume(Å ³)	3845.5(4)	3008.7(6)	
Z	4	4	
Density (calculated) (g/cm ³)	1.147	1.125	
Absorption coefficient (mm ⁻¹)	0.132	0.123	
F(000)	1448	1104	
Crystal size (mm ³)	0.17 x 0.17 x 0.12	0.42 x 0.39 x 0.26	
	$-20 \le h \le 20$	$-12 \le h \le 12$	
Index ranges	$-10 \le k \le 10$	$-20 \le k \le 17$	
	$-20 \le 1 \le 20$	-14 ≤ 1 ≤ 14	
Reflections collected	9512	15843	
	3824	3933	
Independent reflections	[R(int) = 0.050]	[R(int) = 0.0333]	
Data / restraints / parameters	3824 / 2 / 417	3933 / 0 / 325	
Goodness-of-fit on F ²	1.032	1.011	
	R1 = 0.0399	R1 = 0.0391	
Final R indices $[l > 2\sigma(l)]$	wR2 = 0.0932	wR2 = 0.0950	
Largest diff. peak / hole	0.213 / -0.202	0.156 / -0.173	

 Table S1. Crystallographic data for complexes 17 and 22

17		22			
Bond lengths (Å)					
Al(1)-N(5)	1.914(5)	Al(1)-N(5)	1.943(2)		
Al(1)-C(13)	1.959(7)	Al(1)-N(1)	1.951(2)		
Al(1)-C(15)	1.983(7)	Al(2)-O(1)	1.877(2)		
Al(1)-N(1)	1.984(5)	N(2)-C(11)	1.440(3)		
Al(2)-O(1)	1.868(4)	N(5)-C(12)	1.299(3)		
Al(2)-C(19)	1.950(7)	N(5)-C(13)	1.515(3)		
Al(2)-N(4)	1.958(5)	O(1)-C(12)	1.279(2)		
Al(2)-C(17)	1.960(7)	C(11)-C(12)	1.537(3)		
Al(3)-C(25)	1.984(7)				
Al(3)-C(21)	1.992(6)				
Al(3)-C(23)	1.992(7)				
Al(3)-O(1)	1.995(4)				
Angles (°)					
N(5)-Al(1)-C(13)	115.4(3)	N(5)-Al(1)-N(1)	96.69(8)		
N(5)-Al(1)-C(15)	117.4(3)	N(5)-Al(1)-C(24)	119.8(2)		
C(13)-Al(1)-C(15)	113.8(3)	C(24)-Al(1)-N(1)	108.7(1)		
N(5)-Al(1)-N(1)	92.8(2)	N(5)-Al(1)-C(23)	107.0(1)		
C(13)-Al(1)-N(1)	103.9(3)	C(24)-Al(1)-C(23)	118.9(1)		
O(1)-Al(2)- C(19)	111.5(2)	N(1)-Al(1)-C(23)	101.9(1)		
O(1)-Al(2)-N(4)	91.8(2)	O(1)-Al(2)-C(26)	104.6(1)		
C(19)-Al(2)-N(4)	113.1(3)	O(1)-Al(2)-C(25)	102.2(1)		
O(1)-Al(2)-C(17)	116.6(2)	C(26)-Al(2)-C(25)	115.4(2)		
C(19)-Al(2)-C(17)	116.3(3)	O(1)-Al(2)-C(27)	105.9(1)		
C(25)-Al(3)-C(21)	108.0(3)	C(26)-Al(2)-C(27)	112.1(1)		
C(25)-Al(3)-O(1)	112.7(2)	C(25)-Al(2)-C(27)	115.0(1)		
C(21)- Al(3)-O(1)	102.5(2)	O(1)-Al(2)-C(26)	104.7(1)		
C(23)-Al(3)-O(1)	104.2(3)	C(12)-N(5)-C(13)	118.6(2)		
C(25)- Al(3)-C(23)	112.9(3)	C(12)-N(5)-Al(1)	122.6(1)		
		C(13)-N(5)-Al(1)	117.6(1)		
		N(2)-C(11)-N(4)	111.7(2)		
		N(2)-C(11)-C(12)	116.1(2)		
		N(4)-C(11)-C(12)	108.3(2)		
		O(1)-C(12)-N(5)	126.1(2)		
		O(1)-C(12)-C(11)	112.6(2)		
		N(5)-C(12)-C(11)	120.7(2)		

Table S2. Selected bond distances (Å) and angles (0) for complexes 17 and 22

General procedures for cyclic carbonates synthesis

General procedure for synthesis of cyclic carbonates at one bar pressure

An epoxide **28a–I** (1.7 mmol), complex **16** (19.2 mg, 34.0 µmol) and Bu₄NBr (10.7 mg, 33.0 µmol) were placed in a sample vial fitted with a magnetic stirrer bar and placed in a large conical flask. Cardice pellets were added to the conical flask which was fitted with a rubber stopper pierced by a deflated balloon. The reaction mixture was stirred for 24 h at 25 °C for epoxides **28a–j** or 50 °C for epoxides **28k,I**. The conversion of epoxide into cyclic carbonate was then determined by analysis of a sample by ¹H-NMR spectroscopy. The remaining sample was filtered through a plug of silica, eluting with CH_2Cl_2 to remove the catalyst. The eluent was evaporated *in vacuo* to give either the pure cyclic carbonate or a mixture of cyclic carbonate and unreacted epoxide. In the latter case, the mixture was purified by flash chromatography using a solvent system of first hexane, then hexane-EtOAc (9:1), then hexane-EtOAc (3:1), then EtOAc to give the pure cyclic carbonate. Cyclic carbonates **29a–I** are all known compounds and the spectroscopic data for samples prepared using complex **16** were consistent with those reported in the literature.¹

General procedure for synthesis of cyclic carbonates at 10 bar pressure

An epoxide **30a**–**d** (1.7 mmol), complex **16** (48.1 mg, 85.0 μ mol) and Bu₄NBr (27.4 mg, 85.0 μ mol) were placed in a stainless-steel pressure reactor with a magnetic stirrer bar. The reactor was pressurised to 10 bar of carbon dioxide and the reaction mixture was stirred at 25–90 °C for 24 h. Then the conversion of epoxide **30a**–**d** into cyclic carbonate **31a**–**d** was determined by analysis of a sample by ¹H-NMR spectroscopy. The remaining sample was filtered through a plug of silica, eluting with CH₂Cl₂ to remove the catalyst. The eluent was evaporated *in vacuo* to give a mixture of cyclic carbonate and unreacted epoxide. The mixture was purified by flash chromatography using a solvent system of first hexane, then hexane-EtOAc (9:1), then hexane-EtOAc (3:1), then EtOAc to give the pure cyclic carbonate. Cyclic carbonates **31a**–**d** are all known compounds and the spectroscopic data for samples prepared using complex **16** were consistent with those reported in the literature.¹

Figure S4. NMR Spectra for 1,2-hexylene carbonate 29a in CDCl₃

Figure S6. NMR Spectra for 1,2-decylene carbonate 29c in CDCl₃

Figure S7. NMR Spectra for 1,2-dodecylene carbonate 29d in CDCl₃

S19

Figure S16. NMR Spectra for *cis*-cyclohexene carbonate 31a in CDCl₃

Figure S17. NMR Spectra for *cis*-cyclopentene carbonate 31b in CDCl₃

References

(1) (a) Castro-Osma, J. A.; Alonso-Moreno, C.; Lara-Sánchez, A.; Martínez, J.; North, M.; Otero, A., *Catal. Sci. Technol.*, **2014**, *4*, 1674; (b) Martínez, J.; Castro-Osma, J. A.; Earlam, A.; Alonso-Moreno, C.; Otero, A.; Lara-Sánchez, A.; North, M.; Rodríguez-Diéguez, A., *Chem. Eur. J.*, **2015**, *21*, 9850; (c) Martínez, J.; Castro-Osma, J. A.; Alonso-Moreno, C.; Rodríguez-Diéguez, A.; North, M.; Otero, A.; Lara-Sánchez, A., *ChemSusChem*, **2017**, *10*, 1175; (d) Meléndez, D. O.; Lara-Sánchez, A.; Martínez, J.; Wu, X.; Otero, A.; Castro-Osma, J. A.; North, M.; Rojas, R. S., *ChemCatChem*, **2018**, *10*, 2271; (e) de La Cruz-Martínez, F.; Martínez, J.; Gaona, M. A.; Fernández-Baeza, J.; Sánchez-Barba, L. F.; Rodríguez, A. M.; Castro-Osma, J. A.; Otero, A.; Lara-Sánchez, A., *ACS Sustain. Chem. Eng.*, **2018**, *6*, 5322.