Electronic Supporting Information (ESI) for

A new metal complex-templated silver iodobismuthate

exhibiting photocurrent response and photocatalytic

property

Bo Zhang,^{*ab} Jun Li,^{*ab} Yan Yang,^{ab} Wen-Hao Wang,^a Hong-Yao Shen,^a and Ya-Nan Shao^a

^a School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002

E-mail: bzhang@lcu.edu.cn; junli@lcu.edu.cn

1. More structural details

Table S1 Selected bond lengths (Å) and bond angles (°) for compound 1.					
Bi(1)-I(1)#1	3.0636(5)	I(2)-I(4)#6	0.522(18)		
Bi(1)-I(1)#2	3.0636(5)	I(2)-I(3)	2.85(2)		
Bi(1)–I(1)#3	3.0637(5)	I(3)–I(3)#6	0.39(3)		
Bi(1)-I(1)#4	3.0638(5)	I(3)-I(4)#6	2.53(3)		
Bi(1)–I(1)#5	3.0637(5)	I(3)–I(4)	2.82(3)		
Bi(1)–I(1)	3.0637(5)	Zn(1)-N(1)#7	2.128(5)		
Ag(1)–I(2B)	2.653(12)	Zn(1)-N(1)	2.128(5)		
Ag(1)–I(1)	2.814(2)	Zn(1)-N(1)#8	2.128(5)		
Ag(1)–I(2)	2.958(11)	Zn(1)-N(2)#8	2.150(5)		
Ag(1)–I(1)#3	3.069(2)	Zn(1)-N(2)	2.150(5)		
Ag(1)-I(1)#2	3.133(2)	Zn(1)-N(2)#7	2.150(5)		
I(1)#1-Bi(1)-I(1)#2	180.0	Ag(1)#2-I(1)-Ag(1)#3	135.16(7)		
I(1)#1-Bi(1)-I(1)#3	89.630(14)	I(1)#2-Bi(1)-I(1)#5	89.631(14)		
I(1)#2-Bi(1)-I(1)#3	90.370(14)	I(1)#3-Bi(1)-I(1)#5	180.0		
I(1)#1-Bi(1)-I(1)#4	89.631(14)	I(1)#4-Bi(1)-I(1)#5	89.633(14)		
I(1)#2-Bi(1)-I(1)#4	90.367(14)	I(1)#1-Bi(1)-I(1)	90.368(14)		
I(1)#3-Bi(1)-I(1)#4	90.365(14)	I(1)#2-Bi(1)-I(1)	89.634(14)		
I(1)#1-Bi(1)-I(1)#5	90.370(14)	I(1)#3-Bi(1)-I(1)	89.634(14)		
I(1)#4-Bi(1)-I(1)	180.0	N(1)#7-Zn(1)-N(1)	95.6(2)		
I(1)#5-Bi(1)-I(1)	90.368(14)	N(1)#7-Zn(1)-N(1)#8	95.6(2)		
I(2B)-Ag(1)-I(1)	124.4(3)	N(1)-Zn(1)-N(1)#8	95.6(2)		
I(1)-Ag(1)-I(2)	120.4(2)	N(1)#7-Zn(1)-N(2)#8	167.65(19)		
I(2B)-Ag(1)-I(1)#3	123.0(3)	N(1)-Zn(1)-N(2)#8	94.82(19)		
I(1)-Ag(1)-I(1)#3	94.37(6)	N(1)#8-Zn(1)-N(2)#8	76.8(2)		
I(2)-Ag(1)-I(1)#3	124.8(3)	N(1)#7-Zn(1)-N(2)	94.8(2)		

I(1)-Ag(1)-I(1)#2	92.99(6)	N(1)-Zn(1)-N(2)	76.8(2)
I(2)-Ag(1)-I(1)#2	126.1(3)	N(1)#8-Zn(1)-N(2)	167.65(19)
I(1)#3-Ag(1)-I(1)#2	88.98(5)	N(2)#8-Zn(1)-N(2)	94.02(19)
Ag(1)–I(1)–Bi(1)	71.53(4)	N(1)#7-Zn(1)-N(2)#7	76.8(2)
Ag(1)-I(1)-Ag(1)#2	80.51(4)	N(1)-Zn(1)-N(2)#7	167.65(19)
Bi(1)-I(1)-Ag(1)#2	68.26(4)	N(1)#8-Zn(1)N(2)#7	94.83(19)
Ag(1)-I(1)-Ag(1)#3	79.40(4)	N(2)#8-Zn(1)-N(2)#7	94.02(19)
Bi(1)-I(1)-Ag(1)#3	67.45(4)	N(2)-Zn(1)-N(2)#7	94.02(19)

Symmetry transformations used to generate equivalent atoms: #1 -x+y+1, -x+1, z; #2 x-y+1/3, x-1/3, -z+5/3; #3 y+1/3, -x+y+2/3, -z+5/3; #4 -x+4/3, -y+2/3, -z+5/3; #5 -y+1, x-y, z; #6 -x+4/3, -y+5/3, -z+5/3; #7 -x+y+1, -x+2, z; #8 -y+2, x-y+1, z.

Table S2 Hydrogen bonds (Å) and angles (°) for compound 1.

С–Н…І	d(C-H)	$d(H \cdots I)$	$d(C \cdots I)$	<(CHI)
C(4)-H(4)…I(1)#3	0.93	3.14	3.857(7)	135.9
$C(7) - H(7) \cdots I(1)$	0.93	3.33	3.983(7)	129.6
C(2)-H(2)…I(2B)#9	0.93	3.15	3.782(15)	126.6
C(9)-H(9)…I(2B)#10	0.93	3.31	3.976(14)	130.4

Symmetry transformations used to generate equivalent atoms: #3 y+1/3, -x+y+2/3, -z+5/3; #9 -x+5/3, -y+4/3, -z+4/3; #10 -x+y+2/3, -x+4/3, z+1/3.

Fig. S1 View of the discrete $[Ag_2BiI_6(I)]_n^{2n-}$ anions along the *c* axis; dashed lines show the C-H···I interactions.

Fig. S2 (a) The discrete $[Ag_2BiI_6(I)]_n^{2n-}$ moiety. (b) The 1D $[Ag_2BiI_6(I_3)]_n^{2n-}$ chain. Thermal ellipsoids are at 50% probability.

Fig. S3 (a) The C \cdots C interaction. (b) The N \cdots H interaction.

2. Physical measurements

2a). EDX

Fig. S4 EDX spectrum of compound 1.

2b). TGA

Fig. S5 The TGA curve of compound 1.

2c). UV-vis

Fig. S6 The UV-Vis diffuse reflectance spectrum of compound 1.

2d). Photocatalysis

Fig. S7 The blank experiment of compound 1.

3. DFT calculations

Fig. S8 The band structure of compound 1. The VB maximum is set at 0 eV (dashed line).