Electronic Supporting Information

Coordination Chemistry of Hepta-tert-butylnonaphosphane

Volker Eilrich, Toni Grell, Peter Lönnecke and Evamarie Hey-Hawkins

Content

1.	DFT	Calculations1	
2.	TG-D	DTA Analysis4	ŀ
	2.1.	$[Fe(CO)_4(\{cyclo-(P_4{}^tBu_3)\}_2P{}^tBu-\kappa P{}^9)] (1) \dots 4$	ŀ
	2.2.	$[Co(CO)_2(NO)(\{cyclo-(P_4{}^tBu_3)\}_2P{}^tBu-\kappa P^9)] (2)4$	ŀ
	2.3.	$[(CuBr)_2(\{cyclo-(P_4{}^tBu_3)\}_2P{}^tBu-\kappa^2P{}^2,P{}^7,\kappa^2P{}^3,P{}^6)\}] (3)$)
	2.4.	[RhCl(CO)({ <i>cyclo</i> -(P ₄ ^t Bu ₃)} ₂ P ^t Bu-κ ² P ⁶ ,P ⁹)] (4)5	,
3.	Sing	le Crystal X-Ray Diffraction6	;
4.	NMF	۲ Spectra7	,
	4.1.	[Fe(CO) ₄ ({ <i>cyclo</i> -(P ₄ ^{<i>t</i>} Bu ₃)} ₂ P ^{<i>t</i>} Bu-κP ⁹)] (1)7	,
	4.2.	$[Co(CO)_2(NO)(\{cyclo-(P_4{}^tBu_3)\}_2P{}^tBu-\kappa P{}^9)] (2)9$)
	4.3.	$[(CuBr)_2(\{cyclo-(P_4{}^tBu_3)\}_2P{}^tBu-\kappa^2P{}^2,P{}^7,\kappa^2P{}^3,P{}^6)\}] (3)$	
	4.4.	[RhCl(CO)({ <i>cyclo</i> -(P ₄ ^t Bu ₃)} ₂ P ^t Bu-κ ² P ⁶ ,P ⁹)] (4)14	ŀ

1. DFT Calculations

Scheme S1 Calculated energies for the formation of the hypothetical bidentate iron and cobalt complexes formed from complexes 1 and 2. The energy of the most stable configuration of the respective hypothetical complexes with bidentate bonding mode was used (see below, Scheme S4).

Scheme S2 Structural formulas and relative energies of all possible configurational isomers of the bidentate rhodium complex 4. Configurations according to the different bidentate bonding modes are labelled B1–B8. Minimum energies are labelled in red.

Scheme S3 Two molecules of the mononuclear copper(I) complex react to give one molecule of 3 and one molecule of the ligand L. To find the most stable configuration of the mononuclear bidentate complex, the different configurations analogous to Scheme S2 were calculated. The most stable configuration corresponds to B7, which was used to calculate this reaction energy.

Scheme S4 Structural formulas and relative energies of all possible constitutional isomers of the monodentante iron and cobalt complexes 1 and 2 (top) as well as the configurational isomers of their hypothetical bidentate complexes (bottom). Minimum energies are labelled in red. Constitutions according to monodentate bonding modes are labelled M1–M4. Configurations of the bidentate bonding modes are labelled B1–B8, in analogy to the ones calculated for the rhodium complex 4. It should be noted, that due to the different coordination environment in case of iron and cobalt, the configurations B1 and B2 as well as B3 and B4 are identical (different input structures yielded the same result).

Scheme S5 Calculated energies for the formation of complex 3 and 4 and their analogues with {*cyclo*-(P₄^tBu₃)}₂. For the latter two, the energies were already determined before¹ but were recalculated with the optimised benchmarked combination (Table S1) to allow an accurate comparison. The most stable configuration B1 was used for complex 3.

of complex 4 .	ex 4 .		
Method	CO stretching vibration (cm ⁻¹)		
Experiment	1996.5		
BP86/def2-SVP	1967.6		
B3LYP/def2-TZVP	2028.7		
M06L/def2-TZVP	1977.4		
TPPS/def2-TZVP	1955.5		
TPPSh/def2-TZVP	2004.0		
PBE0/def2-TZVP	2065.8		

Table S1 Results from the benchmarking to find the best functional and basis set combination based on the CO stretching vibration

¹ T. Grell and E. Hey-Hawkins, *Inorg. Chem.*, 2020, **59**, 7487.

2. TG-DTA Analysis

2.1. [Fe(CO)₄({*cyclo*-(P₄^tBu₃)}₂P^tBu- κP^9)] (1)

Fig. S1 TG-DTA of 1.

2.2. $[Co(CO)_2(NO)(\{cyclo-(P_4^tBu_3)\}_2P^tBu-\kappa P^9)]$ (2)

Fig. S2 TG-DTA of 2.

2.3. $[(CuBr)_2((cyclo-(P_4^tBu_3))_2P^tBu-\kappa^2P^2,P^7,\kappa^2P^3,P^6))]$ (3)

Fig. S3 TG-DTA of 3.

2.4. [RhCl(CO)({ $cyclo-(P_4^tBu_3)$ }_2P^tBu- $\kappa^2 P^6, P^9$)] (4)

Fig. S4 TG-DTA of 4.

3. Single Crystal X-Ray Diffraction

 Table S2
 Summary of Crystallographic Data Obtained from Single-Crystal X-Ray Diffraction.

Compound	1	2	3 · C ₄ H ₈ O	4	5
Empirical formula	C ₃₂ H ₆₃ FeO ₄ P ₉	C ₃₀ H ₆₃ CoNO ₃ P ₉	C ₃₂ H ₇₁ Br ₂ Cu ₂ OP ₉	C ₂₉ H ₆₃ ClOP ₉ Rh	C ₂₈ H ₆₃ Cl ₂ P ₉ Pd
Formula weight	846.40	823.47	1037.51	844.48	855.81
Temperature [K]	130(2)	130(2)	130(2)	130(2)	130(2)
Wavelength [pm]	71.073	71.073	71.073	71.073	71.073
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	12/a	РĪ	P21/c	P21/c	P21/c
Unit cell					
<i>a</i> [pm]	1846.95(3)	1123.70(3)	1154.77(1)	2376.32(3)	2398.98(8)
<i>b</i> [pm]	1030.08(1)	1992.94(5)	1955.29(3)	922.05(1)	904.93(3)
<i>c</i> [pm]	2385.12(4)	2199.07(5)	2087.09(3)	1952.00(3)	1954.63(8)
α [deg]	90	110.379(2)	90	90	90
β [deg]	103.481(2)	96.610(2)	99.633(1)	99.045(1)	99.562(3)
γ [deg]	90	105.435(2)	90	90	90
Volume [nm ³]	4.4127(1)	4.3307(2)	4.6460(1)	4.2279(1)	4.1844(3)
Ζ	4	4	4	4	4
ρ (calc) [Mg/m ³]	1.274	1.263	1.483	1.327	1.358
μ mm ⁻¹	0.700	0.758	2.970	0.829	0.934
F(000)	1792	1744	2136	1768	1784
Crystal size [mm ³]	0.40 x 0.30 x 0.20	0.20 x 0.20 x 0.07	0.40 x 0.40 x 0.30	0.30 x 0.20 x 0.03	0.15 x 0.08 x 0.02
Θ min / Θ max [deg]	1.756 / 34.683	1.814 / 29.047	1.789 / 34.754	2.113 / 32.374	1.722 / 28.527
Index ranges	–29 ≤ h ≤ 27	–14 ≤ <i>h</i> ≤ 14	–18 ≤ <i>h</i> ≤ 17	$-35 \le h \le 35$	–28 ≤ <i>h</i> ≤ 31
-	$-16 \le k \le 16$	$-26 \le k \le 27$	<i>–</i> 31 ≤ <i>k</i> ≤ 31	–13 ≤ <i>k</i> ≤ 13	$-11 \le k \le 12$
	$-37 \le l \le 37$	$-29 \le l \le 28$	$-33 \le l \le 32$	$-28 \le l \le 28$	$-25 \le l \le 25$
Reflections collected	42537	57339	112352	103742	31603
Independent reflections [R(int)]	9070 [0.0312]	20272 [0.0562]	19149 [0. 0440]	14390 [0.0629]	9657 [0.0987]
Completeness [%] (Θ) [deg]	100 (33.140)	100 (26.375)	100 (33.140)	100 (30.510)	100 (26.375)
T _{Max} / T _{Min}	1.00000 / 0.84931	1.00000 / 0.92285	1.00000 / 0.67185	1.00000 / 0.92353	1.00000 / 0.68164
Restraints / parameters	10 / 256	0 / 835	51 / 469	0 / 391	0 / 382
Goodness-of-fit on F ²	1.231	1.019	1.057	1.050	0.995
R_1 , w R_2 [I > $2\sigma(I)$]	0.0666, 0.1484	0.0534, 0.1213	0.0365, 0.0791	0.0411, 0.0777	0.0511, 0.0867
R indices (all data)	0.0769, 0.1523	0.0994, 0.1442	0.0676, 0.0942	0.0577, 0.0831	0.1064, 0.1070
Residual electron density [e·Å ⁻³]	0.619 / -0.536	1.115 / -0.862	0.985 / -0.740	1.141 / -0.520	0.812 / -1.188
CCDC number	2144600	2144601	2144602	2144603	2144604

4. NMR Spectra

4.1. [Fe(CO)₄({*cyclo*-(P₄^tBu₃)}₂P^tBu-κP⁹)] (1)

Fig. S5 ¹H NMR spectrum of **1** in THF- d^8 (400 MHz).

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 ppm

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Fig. S7 ¹³C{¹H,³¹P} NMR spectrum of **1** in THF-*d*⁸ (101 MHz) at 28 °C.

Fig. S8 Experimental (top) and simulated (bottom) ³¹P{¹H} NMR spectrum of 1 in THF-*d*⁸ (162 MHz).

4.2. $[Co(CO)_2(NO)(\{cyclo-(P_4^tBu_3)\}_2P^tBu-\kappa P^9)]$ (2)

Fig. S9 ¹H NMR spectrum of **2** in THF- d^8 (400 MHz).

Fig. S10 ¹H{³¹P} NMR spectrum of **2** in THF-*d*⁸ (400 MHz).

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 ppm

Fig. S11 ¹³C{¹H} NMR spectrum of **2** in THF-*d*⁸ (101 MHz).

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Fig. S12 ¹³C{¹H,³¹P} NMR spectrum of **2** in THF-*d*⁸ (101 MHz) at 28 °C.

Fig. S13 Experimental (top) and simulated (bottom) ³¹P{¹H} NMR spectrum of 2 in THF-d⁸ (162 MHz).

4.3. $[(CuBr)_2(\{cyclo-(P_4^tBu_3)\}_2P^tBu-\kappa^2P^2,P^7,\kappa^2P^3,P^6)\}]$ (3)

Fig. S15 Excerpt of the ¹H{³¹P} VT NMR spectra of **3** in toluene- d^8 , conducted with methanol (capillary) as internal standard for the temperature calibration. Δv_{AB} of the resonances at 1.45 ppm is found to be 20.5 Hz at -66.8 °C.

135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 ppm

Fig. S16 ${}^{13}C{}^{1}H$ NMR spectrum of **3** in benzene- d^{6} (101 MHz).

Fig. S17 ¹³C{¹H, ³¹P} NMR spectrum of **3** in benzene-*d*⁶ (101 MHz) at 28 °C.

Fig. S18 ${}^{31}P{}^{1}H$ NMR spectrum of **3** in benzene- d^{6} (162 MHz).

Fig. S19 Experimental (top) and simulated (bottom) ³¹P{¹H} NMR spectrum of **3** in benzene-*d*⁶ (162 MHz).

4.4. [RhCl(CO)({ $cyclo-(P_4^tBu_3)$ }_2P^tBu- $\kappa^2 P^6, P^9$)] (4)

Fig. S21 $^{1}H{^{31}P}$ NMR spectrum of **4** in benzene- d^{6} (400 MHz).

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 ppm

Fig. S22 ${}^{13}C{}^{1}H$ NMR spectrum of **4** in benzene- d^{6} (101 MHz).

Fig. S23 ¹³C{¹H,³¹P} NMR spectrum of **4** in benzene-*d*⁶ (101 MHz).

Fig. S24 ${}^{31}P{}^{1}H$ NMR spectrum of **4** in benzene- d^{6} (162 MHz).