Figure/Table	Content	Page
Figure S1	FT-IR spectra of free catechol and complex 1	4
Figure S2	¹ H NMR spectrum of complex 1 recorded in 0.6 mL of DMSO- d_6	4
Figure S3	¹ H NMR spectrum of catechol recorded in 0.6 mL of DMSO- d_6	5
Figure S4	$^{13}C{^{1}H}$ NMR spectrum of complex 1 recorded in DMSO- d_6	5
Figure S5	$^{13}C{^{1}H}$ NMR spectrum of catechol recorded in DMSO- d_6	6
Figure S6	Elemental analysis of complex 1	7
Figure S7	Plot of % yield (isolated) of product vs. catalyst loading for the Friedel-Crafts alkylation reaction between indole and benzaldehyde. Reaction conditions: benzaldehyde (0.24 mmol), indole (0.48 mmol), complex 1 (6-12 mol %). Time: 24 h at room temperature.	8
Figure S8	Plot of % yield (isolated) of product vs. time for the Friedel-Crafts alkylation reaction between indole and benzaldehyde. Reaction conditions: benzaldehyde (0.24 mmol), indole (0.48 mmol), complex 1 (10 mol %) at room temperature.	8
Figure S9	Plot of % yield (isolated) of product vs. catalyst loading for the Friedel-Crafts alkylation reaction between indole and β -nitrostyrene. Reaction condition: β -nitrostyrene (0.40 mmol), indole (0.40 mmol), complex 1 (6-12 mol %). Time: 24 h at rt.	9
Figure S10	Plot of % yield of product vs. time for the Friedel-Crafts alkylation reaction between indole and β -nitrostyrene. Reaction condition: β -nitrostyrene (0.40 mmol), indole (0.40 mmol), complex 1 (10 mol %). Time: 24 h at rt.	9
Table S1	Isolated yields and characterizations of Friedel-Crafts alkylation reaction of various indoles with aldehydes	10
Figure S11	¹ H NMR spectrum of 2a recorded in CDCl ₃	17
Figure S12	$^{13}C{^{1}H}$ NMR spectrum of 2a recorded in CDCl ₃	17
Figure S13	HRMS (ESI) spectrum of 2a	18
Figure S14	¹ H NMR spectrum of 2b recorded in CDCl ₃	18
Figure S15	$^{13}C{^{1}H}$ NMR spectrum of 2b recorded in CDCl ₃	19
Figure S16	HRMS (ESI) spectrum of 2b	19
Figure S17	¹ H NMR spectrum of 2c recorded in CDCl ₃	20
Figure S18	$^{13}C{^{1}H}$ NMR spectrum of 2c recorded in CDCl ₃	20
Figure S19	HRMS (ESI) spectrum of 2c	21
Figure S20	¹ H NMR spectrum of 2d recorded in DMSO- d_6	21
Figure S21	¹³ C{ ¹ H} NMR spectrum of 2d recorded in DMSO- d_6	22
Figure S22	HRMS (ESI) spectrum of 2d	22
Figure S23	¹ H NMR spectrum of 2e recorded in CDCl ₃	23
Figure S24	$^{13}C{^{1}H}$ NMR spectrum of 2e recorded in CDCl ₃	23
Figure S25	HRMS (ESI) spectrum of 2e	24
Figure S26	¹ H NMR spectrum of 2f recorded in CDCl ₃	24
Figure S27	$^{13}C{^{1}H}$ NMR spectrum of 2f recorded in CDCl ₃	25
Figure S28	HRMS (ESI) spectrum of 2f	25
Figure S29	¹ H NMR spectrum of 2g recorded in CDCl ₃	26
Figure S30	$^{13}C{^{1}H}$ NMR spectrum of 2g recorded in CDCl ₃	26
Figure S31	HRMS (ESI) spectrum of 2g	27

Electronic Supplementary Information Table of contents

Figure S32	¹ H NMR spectrum of 2h recorded in CDCl ₃	27
Figure S33	$^{13}C{^{1}H}$ NMR spectrum of 2h recorded in CDCl ₃	28
Figure S34	HRMS (ESI) spectrum of 2h	28
Figure S35	¹ H NMR spectrum of 2i recorded in CDCl ₃	29
Figure S36	$^{13}C{^{1}H}$ NMR spectrum of 2i recorded in CDCl ₃	29
Figure S37	HRMS (ESI) spectrum of 2i	30
Figure S38	¹ H NMR spectrum of 2j recorded in DMSO- d_6	30
Figure S39	¹³ C{ ¹ H} NMR spectrum of 2j recorded in DMSO- d_6	31
Figure S40	HRMS (ESI) spectrum of 2 j	31
Figure S41	¹ H NMR spectrum of $2\mathbf{k}$ recorded in CDCl ₃	32
Figure S42	$^{13}C{^{1}H}$ NMR spectrum of 2k recorded in CDCl ₃	32
Figure S43	HRMS (ESI) spectrum of 2k	33
Figure S44	¹ H NMR spectrum of 2l recorded in CDCl ₃	33
Figure S45	$^{13}C{^{1}H}$ NMR spectrum of 21 recorded in CDCl ₃	34
Figure S46	HRMS (ESI) spectrum of 21	34
Figure S47	¹ H NMR spectrum of 2m recorded in CDCl ₃	35
Figure S48	$^{13}C{^{1}H}$ NMR spectrum of 2m recorded in CDCl ₃	35
Figure S49	HRMS (ESI) spectrum of 2m	36
Figure S50	¹ H NMR spectrum of 2n recorded in DMSO- d_6	36
Figure S51	$^{13}C{^{1}H}$ NMR spectrum of 2n recorded in DMSO- <i>d</i> ₆	37
Figure S52	HRMS (ESI) spectrum of 2n	37
Figure S53	¹ H NMR spectrum of 20 recorded in CDCl ₃	38
Figure S54	$^{13}C{^{1}H}$ NMR spectrum of 20 recorded in CDCl ₃	38
Figure S55	HRMS (ESI) spectrum of 20	39
Figure S56	¹ H NMR spectrum of 2p recorded in DMSO- d_6	39
Figure S57	$^{13}C{^{1}H}$ NMR spectrum of 2p recorded in DMSO- <i>d</i> ₆	40
Figure S58	HRMS (ESI) spectrum of 2p	40
Figure S59	¹ H NMR spectrum of 2q recorded in DMSO- d_6	41
Figure S60	$^{13}C{^{1}H}$ NMR spectrum of 2q recorded in DMSO- <i>d</i> ₆	41
Figure S61	HRMS (ESI) spectrum of 2q	42
Figure S62	¹ H NMR spectrum of $2\mathbf{r}$ recorded in DMSO- d_6	42
Figure S63	$^{13}C{^{1}H}$ NMR spectrum of 2r recorded in DMSO- d_6	43
Figure S64	HRMS (ESI) spectrum of 2r	43
Figure S65	¹ H NMR spectrum of 2s recorded in DMSO- d_6	44
Figure S66	$^{13}C{^{1}H}$ NMR spectrum of 2s recorded in DMSO- d_6	44
Figure S67	HRMS (ESI) spectrum of 2s	45
Table S2	Isolated yields and characterizations of Friedel-Crafts alkylation	46
	reaction of indoles with β -nitrostyrenes	
Figure S68	¹ H NMR spectrum of 3a recorded in CDCl ₃	53
Figure S69	$^{13}C{^{1}H}$ NMR spectrum of 3a recorded in CDCl ₃	53
Figure S70	HRMS (ESI) spectrum of 3a	54
Figure S71	¹ H NMR spectrum of 3b recorded in CDCl ₃	54
Figure S72	$^{13}C{^{1}H}$ NMR spectrum of 3b recorded in CDCl ₃	55
Figure S73	HRMS (ESI) spectrum of 3b	55
Figure S74	¹ H NMR spectrum of 3c recorded in CDCl ₃	56
Figure S75	$^{13}C{^{1}H}$ NMR spectrum of 3c recorded in CDCl ₃	56
Figure S76	HRMS (ESI) spectrum of 3c	57
Figure S77	¹ H NMR spectrum of 3d recorded in CDCl ₃	57

Figure S78	$^{13}C{^{1}H}$ NMR spectrum of 3d recorded in CDCl ₃	58
Figure S79	HRMS (ESI) spectrum of 3d	58
Figure S80	¹ H NMR spectrum of 3e recorded in CDCl ₃	59
Figure S81	$^{13}C{^{1}H}$ NMR spectrum of 3e recorded in CDCl ₃	59
Figure S82	HRMS (ESI) spectrum of 3e	60
Figure S83	¹ H NMR spectrum of 3f recorded in CDCl ₃	60
Figure S84	$^{13}C{^{1}H}$ NMR spectrum of 3f recorded in CDCl ₃	61
Figure S85	HRMS (ESI) spectrum of 3f	61
Figure S86	¹ H NMR spectrum of 3g recorded in CDCl ₃	62
Figure S87	$^{13}C{^{1}H}$ NMR spectrum of 3g recorded in CDCl ₃	62
Figure S88	HRMS (ESI) spectrum of 3 g	63
Figure S89	¹ H NMR spectrum of 3h recorded in CDCl ₃	63
Figure S90	$^{13}C{^{1}H}$ NMR spectrum of 3h recorded in CDCl ₃	64
Figure S91	HRMS (ESI) spectrum of 3h	64
Figure S92	¹ H NMR spectrum of 3i recorded in CDCl ₃	65
Figure S93	$^{13}C{^{1}H}$ NMR spectrum of 3i recorded in CDCl ₃	65
Figure S94	HRMS (ESI) spectrum of 3i	66
Figure S95	¹ H NMR spectrum of 3j recorded in CDCl ₃	66
Figure S96	$^{13}C{^{1}H}$ NMR spectrum of 3j recorded in CDCl ₃	67
Figure S97	HRMS (ESI) spectrum of 3 j	67
Figure S98	¹ H NMR spectrum of 3k recorded in CDCl ₃	68
Figure S99	$^{13}C{^{1}H}$ NMR spectrum of 3k recorded in CDCl ₃	68
Figure S100	HRMS (ESI) spectrum of 3k	69
Figure S101	¹ H NMR spectrum of 3l recorded in CDCl ₃	69
Figure S102	$^{13}C{^{1}H}$ NMR spectrum of 31 recorded in CDCl ₃	70
Figure S103	HRMS (ESI) spectrum of 3 l	70
Figure S104	¹ H NMR spectrum of 3m recorded in CDCl ₃	71
Figure S105	$^{13}C{^{1}H}$ NMR spectrum of 3m recorded in CDCl ₃	71
Figure S106	HRMS (ESI) spectrum of 3m	72
Figure S107	¹ H NMR spectrum of 3n recorded in CDCl ₃	72
Figure S108	$^{13}C{^{1}H}$ NMR spectrum of 3n recorded in CDCl ₃	73
Figure S109	HRMS (ESI) spectrum of 3n	73
Figure S110	¹ H NMR spectrum of 30 recorded in CDCl ₃	74
Figure S111	$^{13}C{^{1}H}$ NMR spectrum of 30 recorded in CDCl ₃	74
Figure S112	HRMS (ESI) spectrum of 30	75

Figure S1: FT-IR spectra of free catechol and complex 1.

Figure S2: ¹H NMR spectrum of complex 1 recorded in 0.6 mL of DMSO-*d*₆.

Figure S3: ¹H NMR spectrum of catechol recorded in 0.6 mL of DMSO-*d*₆.

Figure S4: ${}^{13}C{}^{1}H$ NMR spectrum of complex 1 recorded in DMSO- d_6 .

Figure S5: ${}^{13}C{}^{1}H$ NMR spectrum of catechol recorded in DMSO- d_{6} .

Figure S6: Elemental analysis of complex 1.

Figure S7: Plot of % yield (isolated) of product vs. catalyst loading for the Friedel-Crafts alkylation reaction between indole and benzaldehyde. Reaction conditions: benzaldehyde (0.24 mmol), indole (0.48 mmol), complex **1** (6-12 mol %). Time: 24 h at room temperature.

Figure S8: Plot of % yield (isolated) of product vs. time for the Friedel-Crafts alkylation reaction between indole and benzaldehyde. Reaction conditions: benzaldehyde (0.24 mmol), indole (0.48 mmol), complex **1** (10 mol %) at room temperature.

Figure S9: Plot of % yield (isolated) of product vs. catalyst loading for the Friedel-Crafts alkylation reaction between indole and β -nitrostyrene. Reaction condition: β -nitrostyrene (0.40 mmol), indole (0.40 mmol), complex **1** (6-12 mol %). Time: 24 h at rt.

Figure S10: Plot of % yield of product vs. time for the Friedel-Crafts alkylation reaction between indole and β -nitrostyrene. Reaction condition: β -nitrostyrene (0.40 mmol), indole (0.40 mmol), complex **1** (10 mol %). Time: 24 h at rt.

Table S1: Isolated yields and characterizations of Friedel-Crafts alkylation reaction of various aldehydes and indoles.

R ₁		$\frac{Cataly}{H_2C}$	$ \begin{array}{c} \text{rst (10 mol\%)} \\ \text{D, rt, 24h} \end{array} \qquad $	R ₁	R ₂
Entry	Aldehydes	Indoles	Product	Code	Yield (%)
1	CHO	N H	HN	2a	95
2	CCC	N H		2b	80
3	CHO Br	N E	Br HN NH	2c	71
4		N H	NO ₂ HN NH	2d	88
5	CHO	N H	S HN NH	2e	91
6	CHO O	N H	O HN NH	2f	71

7	CHO	N H	HN NH	2g	64
8	CHO		HN NH	2h	81
9	CHO	N N N N N N N N N N N N N N N N N N N	HN	2i	89
10	CHO OH	N H	OH HN NH	2j	73
11	СНО	NH	O HN NH	2k	90
12	CHO		HN NH	21	92
13	CHO CHO	N H	CHO HN NH	2m	61

14	CHO CHO	N H	HN NH	2n	29
15	CHO	Br	Br Br HN NH	20	87
16	CHO	N H	HNNH	2p	90
17	CHO			2q	91
18	CHO	O N H	O HN HN	2r	81
19	CHO	HO	HO OH HN NH	2s	70

Characterization of isolated bis(indolyl)alkanes:

HN NH	2a¹: Red brown solid. $R_f = 0.37$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.79 (s, 2H, -NH), 7.31 (d, $J = 7.9$ Hz, 2H, ArH), 7.26 (d, $J = 5.4$ Hz, 3H, ArH), 7.22 – 7.12 (m, 4H, ArH), 7.09 (t, $J = 7.7$ Hz, 2H, ArH), 6.92 (t, $J = 7.3$ Hz, 2H, ArH), 6.55 – 6.52 (m, 2H, ArH), 5.80 (s, 1H, -C ₃ CH). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 144.0, 136.7, 128.7, 128.2, 127.1, 126.2, 123.7, 121.9, 120.0, 119.7, 119.2, 111.1, 40.2. HRMS (ESI) m/z calcd for [M+Na] ⁺ C ₂₃ H ₁₈ N ₂ Na 345.1368, found 345.1350.
	2b ¹ : Red brown solid. $R_f = 0.37$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.79 (s, 2H, -NH), 7.27 (d, $J = 7.0$ Hz, 3H, ArH), 7.20 – 7.12 (m, 4H, ArH), 7.13 – 6.95 (m, 3H, ArH), 6.95 – 6.87 (m, 2H, ArH), 6.52 (s, 2H, ArH), 5.76 (s, 1H, -C ₃ CH). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 142.5, 136.7, 131.8, 130.1, 128.4, 126.9, 123.6, 122.1, 119.8, 119.4, 119.2, 111.2, 39.6. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+Na] ⁺ C ₂₃ H ₁₇ ClN ₂ Na 379.0978, found 379.0989.
Br HN HN	2c²: Red crystalline solid. $R_f = 0.3$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.86 (s, 2H, -NH), 7.34 – 7.29 (m, 4H, ArH), 7.18 (s, 1H, ArH), 7.16 – 7.08 (m, 4H, ArH), 6.96 – 6.92 (m, 2H, ArH), 6.81 – 6.72 (m, 1H, ArH), 6.56 (dd, $J = 2.4, 0.9$ Hz, 2H, ArH), 5.77 (s, 1H, -C ₃ CH). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 143.1, 136.7, 131.3, 130.5, 126.9, 123.6, 122.1, 119.9, 119.8, 119.4, 119.1, 111.1, 39.7. HRMS (ESI) <i>m</i> /z calcd for [M+Na] ⁺ C ₂₃ H ₁₈ BrN ₂ Na 423.0473, found
HN NH	2d³: Yellow solid. $R_f = 0.5$ (20% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ 10.92 (d, <i>J</i> = 2.5 Hz, 2H, -NH), 8.15 – 8.11 (m, 2H, ArH), 7.61 – 7.57 (m, 2H, ArH), 7.35 (d, <i>J</i> = 8.1 Hz, 2H, ArH), 7.26 (d, <i>J</i> = 7.9 Hz, 2H, ArH), 7.03 (m, 2H, ArH), 6.88 – 6.84 (m, 4H, ArH), 6.00 (s, 1H, -C ₃ CH). ¹³ C{ ¹ H} NMR (100 MHz, DMSO- <i>d</i> ₆) δ 153.6, 146.2, 137.0, 129.9, 126.8, 124.3, 123.9, 121.6, 119.4, 118.9, 117.1, 112.1, 40.6. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+Na] ⁺ C ₂₃ H ₁₇ N ₃ O ₂ Na 390.1218, found 390.1207.
S HN HN	2e¹: Red brown solid. $R_f = 0.32$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.81 (s, 2H, -NH), 7.38 (d, $J = 7.9$ Hz, 2H, ArH), 7.26 (s, 1H, ArH), 7.12 – 7.03 (m, 4H, ArH), 6.95 (t, $J = 7.5$ Hz, 2H, ArH), 6.84 – 6.81 (m, 2H, ArH), 6.71 (d, $J = 2.3$ Hz, 2H, ArH), 6.07 (s, 1H, -C ₃ CH). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 148.7, 136.6, 126.8, 126.5, 125.2, 123.6, 123.2, 122.0, 119.8, 119.7, 119.4, 111.2, 35.3. HRMS (ESI) <i>m/z</i> calcd for [M-H] ⁺ C ₂₁ H ₁₅ N ₂ S 327.0956, found 327.0861.

HN NH	2f¹: Salmon pink solid. $R_f = 0.38$ (20% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.87 (s, 2H, -NH), 7.40 (d, $J = 7.9$ Hz, 2H, ArH), 7.35 (d, $J = 8.1$ Hz, 2H, ArH), 7.26 (d, $J = 2.5$ Hz, 2H, ArH), 7.17 (t, $J = 7.5$ Hz, 2H, ArH), 7.01 (t, $J = 7.4$ Hz, 2H, ArH), 6.83 (d, $J = 8.5$ Hz, 2H, ArH), 6.63 (s, 2H, ArH), 5.85 (s, 1H, -C ₃ CH), 3.79 (s, 3H, -OCH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 157.9, 136.7, 136.2, 129.6, 127.1, 123.5, 121.9, 120.1, 120.0, 119.2, 113.6, 111.0, 55.2, 39.3. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+K] ⁺ C ₂₄ H ₂₀ N ₂ OK 391.1213, found 391.1203.
HNNH	2g ⁴ : Red solid. $R_f = 0.5$ (20% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.77 – 7.58 (m, 2H, -NH), 7.51 (d, $J = 7.9$ Hz, 1H, ArH), 7.47 – 7.39 (m, 1H, ArH), 7.29 (m, 1H, ArH), 7.21 – 7.14 (m, 2H, ArH), 7.03 (m, 2H, ArH), 6.98 – 6.93 (m, 1H, ArH), 6.83 (d, $J = 2.4$ Hz, 1H, ArH), 6.75 – 6.66 (m, 1H, ArH), 4.40 – 4.26 (m, 1H, -C ₃ CH), 2.15 – 2.03 (m, 2H, -CH ₂), 1.24 – 1.16 (m, 6H, -CH ₂), 0.77 – 0.74 (m, 3H, -CH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 136.6, 127.2, 121.7, 121.4, 120.6, 119.7, 119.0, 111.0, 35.8, 34.0, 32.0, 28.0, 22.7, 14.2. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+Na] ⁺ C ₂₂ H ₂₄ N ₂ Na 339.1837, found 339.1799.
HN	2h ¹ : Red solid. $R_f = 0.36$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.63 (s, 2H, -NH), 7.30 (d, $J = 8.1$ Hz, 2H, ArH), 7.17 – 7.11 (m, 6H, ArH), 7.05 (d, $J = 7.1$ Hz, 2H, ArH), 6.89 (t, $J = 7.5$ Hz, 2H, ArH), 6.47 – 6.45 (m, 2H, ArH), 5.74 (s, 1H, -C ₃ CH), 1.20 (s, 9H, -CH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 148.8, 140.9, 136.7, 128.3, 127.2, 125.1, 123.7, 121.9, 120.0, 119.9, 119.2, 111.1, 39.6, 34.4, 31.5. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M-H] ⁺ C ₂₇ H ₂₅ N ₂ 377.2018, found 377.2038.
HN	2i¹: Red solid. $R_f = 0.34$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.70 (s, 2H, -NH), 7.30 (d, $J = 7.9$ Hz, 2H, ArH), 7.21 (s, 1H, ArH), 7.13 (d, $J = 8.3$ Hz, 2H, ArH), 7.07 (t, $J = 7.3$ Hz, 2H, ArH), 6.99 (d, $J = 7.9$ Hz, 2H, ArH), 6.91 (t, $J = 7.4$ Hz, 2H, ArH), 6.81 – 6.67 (m, 1H, ArH), 6.53 – 6.49 (m, 2H, ArH), 5.75 (s, 1H, -C ₃ CH), 2.23 (s, 3H, -CH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 141.0, 136.7, 135.5, 129.0, 128.6, 127.1, 123.6, 121.9, 120.0, 119.9, 119.2, 111.1, 39.8, 21.1. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M-H] ⁺ C ₂₄ H ₁₉ N ₂ 335.1548, found 335.1550. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+Na] ⁺ C ₂₄ H ₂₀ N ₂ Na 359.1524, found 359.1526.
OH HN NH	2j³: Red sticky solid. $R_f = 0.28 (15\% \text{ Ethyl acetate/Petroleum}$ ether). ¹ H NMR (400 MHz, DMSO) δ 10.75 (d, $J = 2.5$ Hz, 2H, -NH), 9.12 (s, 1H, -OH), 7.31 (dd, $J = 8.1$, 1.1 Hz, 2H, ArH), 7.24 (d, $J = 8.0$ Hz, 2H, ArH), 7.13 – 7.09 (m, 2H, ArH), 7.00 (m, 2H, ArH), 6.83 (m, 2H, ArH), 6.77 – 6.74 (m, 2H, ArH), 6.65 – 6.61 (m, 2H, ArH), 5.68 (s, 1H, -C ₃ CH). ¹³ C{ ¹ H} NMR (100 MHz, DMSO- <i>d</i> ₆) δ 155.7, 137.0, 135.6,

	129.6, 127.1, 123.8, 121.2, 119.6, 119.1, 118.5, 111.8, 49.1. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+K] ⁺ C ₂₃ H ₁₈ N ₂ OK 377.1056, found 377.1051.
HN NH	2k³: Brown sticky mass. $R_f = 0.2$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.89 (s, 2H, -NH), 7.47 (d, $J = 7.9$ Hz, 2H, ArH), 7.33 (s, 1H, ArH), 7.31 (s, 1H, ArH), 7.16 (t, $J = 7.5$ Hz, 2H, ArH), 7.03 (t, $J = 7.5$ Hz, 2H, ArH), 6.83 (d, $J = 2.1$ Hz, 2H, ArH), 6.29 (s, 1H, ArH), 6.05 (d, $J = 3.1$ Hz, 1H, ArH), 5.93 (s, 1H, ArH), 5.28 (s, 1H, -C ₃ CH). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 157.0, 141.2, 136.5, 126.7, 123.0, 121.9, 119.7, 119.3, 117.1, 111.1, 111.1, 106.6, 34.1. HRMS (ESI) m/z calcd for [M-H] ⁺ C ₂₁ H ₁₅ N ₂ O 311.1184, found 311.1219.
HN NH	21⁵: Violet solid. $R_f = 0.3$ (50% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 8.64 (s, 1H, -NH), 8.48 (s, 1H, NH, ArH), 8.13 (s, 2H, ArH), 7.65 (dt, <i>J</i> = 7.9, 1.9 Hz, 1H, ArH), 7.36 (dd, <i>J</i> = 8.0, 5.4 Hz, 4H, ArH), 7.19 (m, 3H, ArH), 7.02 (t, <i>J</i> = 7.5 Hz, 2H, ArH), 6.64 (d, <i>J</i> = 2.4 Hz, 2H, ArH), 5.92 (s, 1H, -C ₃ CH). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 149.6, 146.8, 136.8, 136.7, 126.7, 123.7, 122.2, 119.6, 119.5, 118.3, 115.7, 111.2, 39.1. HRMS (ESI) <i>m/z</i> calcd for [M+H] ⁺ C ₂₂ H ₁₈ N ₃ 324.1501, found 324.1482.
CHO HN NH	2m⁶: Red sticky mass. $R_f = 0.46$ (30% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 9.87 (s, 1H, -CHO), 7.89 (d, $J = 18.5$ Hz, 2H, -NH), 7.69 (d, $J = 8.2$ Hz, 2H, ArH), 7.41 (d, $J = 8.1$ Hz, 2H, ArH), 7.26 (d, $J = 8.8$ Hz, 4H, ArH), 7.11 – 7.06 (m, 2H, ArH), 6.95 – 6.90 (m, 2H, ArH), 6.55 (d, $J = 1.7$ Hz, 2H, ArH), 5.86 (s, 1H, -C ₃ CH). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 192.3, 151.5, 136.7, 134.8, 129.9, 129.4, 126.8, 123.7, 122.2, 119.7, 119.5, 118.5, 111.2, 40.4. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M-H] ⁺ C ₂₄ H ₁₇ N ₂ O 349.1341, found 349.1345.
HN NH	2n ⁷ : Pink solid. $R_f = 0.29$ (30% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ 10.76 (d, $J = 2.4$ Hz, 4H, -NH), 7.32 (dt, $J = 8.2$, 0.9 Hz, 4H, ArH), 7.24 (d, $J = 9.0$ Hz, 8H, ArH), 7.01 (m, 4H, ArH), 6.85 – 6.79 (m, 8H, ArH), 5.78 (d, $J = 1.0$ Hz, 2H, -C ₃ CH). ¹³ C{ ¹ H} NMR (100 MHz, DMSO- <i>d</i> ₆) δ 142.8, 137.0, 128.5, 127.2, 123.9, 121.3, 119.6, 118.8, 118.6, 111.9, 39.9. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+Na] ⁺ C ₄₀ H ₃₀ N ₄ Na 589.2368, found 589.2369.
Br Br HN NH	20³: Red solid. $R_f = 0.34$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 8.07 – 8.02 (m, 2H, - NH), 7.62 – 7.46 (m, 2H, ArH), 7.45 – 7.25 (m, 4H, ArH), 7.23 (d, $J = 1.5$ Hz, 1H, ArH), 7.21 – 7.10 (m, 5H, ArH), 6.58 (dd, $J = 2.4$, 1.1 Hz, 1H, ArH), 5.68 (s, 1H, -C ₃ CH). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 171.2, 135.3, 133.8, 130.2, 129.2, 128.5, 126.5, 125.0, 124.8, 122.3, 119.1, 112.6, 39.9. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+H] ⁺ C ₂₃ H ₁₇ Br ₂ N ₂ 478.9759, found 478.9781.

HN	2p²: Pink solid. $R_f = 0.38$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ 10.77 (s, 2H, -NH), 7.31 – 7.21 (m, 7H, ArH), 6.95 – 6.90 (m, 2H, ArH), 6.85 (d, <i>J</i> = 7.8 Hz, 2H, ArH), 6.71 (t, <i>J</i> = 7.0 Hz, 2H, ArH), 5.97 (s, 1H, -C ₃ CH), 2.10 (s, 6H, -CH ₃). ¹³ C{ ¹ H} NMR (100 MHz, DMSO- <i>d</i> ₆) δ 144.7, 135.6, 132.5, 129.2, 128.8, 128.4, 126.2, 120.0, 119.0, 118.4, 112.7, 110.8, 39.1, 12.4. HRMS (ESI) <i>m/z</i> calcd for [M-H] ⁺ C ₂₅ H ₂₁ N ₂ 349.1705, found 349.1699.
N N	2q³: Pink solid. $R_f = 0.32$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ 7.35 (dd, $J = 7.9$, 3.5 Hz, 4H, ArH), 7.31 – 7.22 (m, 4H, ArH), 7.15 (d, $J = 14.5$ Hz, 1H, ArH), 7.09 (t, $J = 7.6$ Hz, 2H, ArH), 6.89 (t, $J = 7.5$ Hz, 2H, ArH), 6.80 (s, 2H, ArH), 5.81 (s, 1H, -C ₃ CH), 3.67 (s, 6H, -NCH ₃). ¹³ C{ ¹ H} NMR (100 MHz, DMSO- <i>d</i> ₆) δ 145.3, 137.4, 128.7, 128.6, 128.3, 127.4, 126.3, 121.5, 119.7, 118.8, 117.8, 110.1, 39.8, 32.7. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M-H] ⁺ C ₂₅ H ₂₁ N ₂ 349.1705, found 349.1726.
O HN NH	2r¹: Pink solid. $R_f = 0.3$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, DMSO) δ 10.69 (d, $J = 2.6$ Hz, 2H, - NH), 7.44 – 7.38 (m, 2H, ArH), 7.30 (dd, $J = 14.5$, 8.0 Hz, 4H, ArH), 7.24 – 7.18 (m, 1H, ArH), 6.87 (d, $J = 2.4$ Hz, 2H, ArH), 6.79 – 6.72 (m, 4H, ArH), 5.79 (s, 1H, -C ₃ CH), 3.63 (s, 6H, -OCH ₃). ¹³ C{ ¹ H} NMR (100 MHz, DMSO- d_6) δ 153.1, 145.5, 132.3, 128.8, 128.5, 127.5, 126.2, 124.8, 118.2, 112.5, 110.0, 101.9, 55.7, 40.1. HRMS (ESI) <i>m/z</i> calcd for [M+Na] ⁺ C ₂₅ H ₂₂ N ₂ O ₂ Na 405.1579, found 405.1598.
HO OH HN NH	2s²: Pink sticky mass. $R_f = 0.48$ (20% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ 9.62 (d, $J = 2.7$ Hz, 2H, -OH), 7.65 (s, 2H, -NH), 6.49 – 6.39 (m, 4H, ArH), 6.31 (dd, $J = 16.0, 7.9$ Hz, 3H, ArH), 5.82 – 5.70 (m, 6H, ArH), 4.73 (s, 1H, -C ₃ C <i>H</i>). ¹³ C{ ¹ H} NMR (100 MHz, DMSO- <i>d</i> ₆) δ 150.4, 145.4, 131.6, 128.8, 128.4, 127.8, 126.2, 124.5, 117.6, 112.2, 111.7, 103.7, 40.4. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M-H] ⁺ C ₂₃ H ₁₇ N ₂ O ₂ 353.1290, found 353.1289.

Figure S11: ¹H NMR spectrum of 2a recorded in CDCl₃.

Figure S12: ¹³C{¹H} NMR spectrum of 2a recorded in CDCl₃.

Figure S13: HRMS (ESI) spectrum of 2a.

Figure S14: ¹H NMR spectrum of 2b recorded in CDCl₃.

Figure S15: ¹³C{¹H} NMR spectrum of 2b recorded in CDCl₃.

Figure S16: HRMS (ESI) spectrum of 2b.

Figure S17: ¹H NMR spectrum of 2c recorded in CDCl₃.

Figure S18: ¹³C{¹H} NMR spectrum of 2c recorded in CDCl₃.

Figure S19: HRMS (ESI) spectrum of 2c.

Figure S20: ¹H NMR spectrum of 2d recorded in DMSO-*d*₆.

Figure S21: ${}^{13}C{}^{1}H$ NMR spectrum of 2d recorded in DMSO- d_6 .

Figure S22: HRMS (ESI) spectrum of 2d.

Figure S23: ¹H NMR spectrum of 2e recorded in CDCl₃.

Figure S24: ¹³C{¹H} NMR spectrum of 2e recorded in CDCl₃.

Figure S26: ¹H NMR spectrum of 2f recorded in CDCl₃.

Figure S27: ¹³C{¹H} NMR spectrum of **2f** recorded in CDCl₃.

Figure S28: HRMS (ESI) spectrum of 2f.

Figure S29: ¹H NMR spectrum of 2g recorded in CDCl₃.

Figure S30: ¹³C{¹H} NMR spectrum of **2g** recorded in CDCl₃.

Figure S31: HRMS (ESI) spectrum of 2g.

Figure S32: ¹H NMR spectrum of 2h recorded in CDCl₃.

Figure S33: ¹³C{¹H} NMR spectrum of 2h recorded in CDCl₃.

Figure S34: HRMS (ESI) spectrum of 2h.

Figure S35: ¹H NMR spectrum of 2i recorded in CDCl₃.

Figure S36: ¹³C{¹H} NMR spectrum of 2i recorded in CDCl₃.

Figure S37: HRMS (ESI) spectrum of 2i.

Figure S38: ¹H NMR spectrum of 2j recorded in DMSO-*d*₆.

Figure S39: ¹³C{¹H} NMR spectrum of 2j recorded in DMSO-*d*₆.

Figure S40: HRMS (ESI) spectrum of 2j.

Figure S41: ¹H NMR spectrum of 2k recorded in CDCl₃.

Figure S42: ¹³C{¹H} NMR spectrum of 2k recorded in CDCl₃.

Figure S44: ¹H NMR spectrum of 2l recorded in CDCl₃.

Figure S45: ¹³C{¹H} NMR spectrum of 2l recorded in CDCl₃.

Figure S46: HRMS (ESI) spectrum of 2l.

Figure S47: ¹H NMR spectrum of 2m recorded in CDCl₃.

Figure S48: ¹³C{¹H} NMR spectrum of 2m recorded in CDCl₃.

Figure S49: HRMS (ESI) spectrum of 2m.

Figure S50: ¹H NMR spectrum of 2n recorded in DMSO-*d*₆.

Figure S51: ${}^{13}C{}^{1}H$ NMR spectrum of **2n** recorded in DMSO-*d*₆.

Figure S52: HRMS (ESI) spectrum of 2n.

Figure S53: ¹H NMR spectrum of 20 recorded in CDCl₃.

Figure S54: ¹³C{¹H} NMR spectrum of **20** recorded in CDCl₃.

Figure S55: HRMS (ESI) spectrum of 20.

Figure S56: ¹H NMR spectrum of **2p** recorded in DMSO-*d*₆.

Figure S57: ¹³C{¹H} NMR spectrum of **2p** recorded in DMSO-*d*₆.

Figure S58: HRMS (ESI) spectrum of 2p.

Figure S59: ¹H NMR spectrum of 2q recorded in DMSO-*d*₆.

Figure S60: ${}^{13}C{}^{1}H$ NMR spectrum of **2q** recorded in DMSO-*d*₆.

Figure S61: HRMS (ESI) spectrum of 2q.

Figure S62: ¹H NMR spectrum of 2r recorded in DMSO-*d*₆.

Figure S63: ${}^{13}C{}^{1}H$ NMR spectrum of 2r recorded in DMSO- d_6 .

Figure S64: HRMS (ESI) spectrum of 2r.

Figure S65: ¹H NMR spectrum of 2s recorded in DMSO-*d*₆.

Figure S66: ¹H NMR spectrum of 2s recorded in DMSO-*d*₆.

Figure S67: HRMS (ESI) spectrum of 2s.

Table S2: Isolated yields and characterizations of Friedel-Crafts alkylation reaction of indoles with β -nitrostyrenes.

Characterization of isolated nitroalkylated indoles:

3a⁸: Red solid. $R_f = 0.37$ (15% Ethyl acetate/Petroleum
ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.90 (s, 1H, -NH), 7.32
(d, <i>J</i> = 8.0 Hz, 1H, ArH), 7.20 – 7.10 (m, 6H, ArH), 7.07 (t,
<i>J</i> = 7.6 Hz, 1H, ArH), 6.95 (t, <i>J</i> = 7.5 Hz, 1H, ArH), 6.80 (s,
1H, ArH), 5.05 (t, <i>J</i> = 8.0 Hz, 1H, -CH ₂), 4.90 (dd, <i>J</i> = 12.5,
7.6 Hz, 1H, -CH ₂), 4.78 (dd, <i>J</i> = 12.5, 8.4 Hz, 1H, -CH ₂ CH).
¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 139.3, 136.5, 128.9,
127.8, 127.6, 126.1, 122.7, 121.7, 119.9, 118.9, 114.2,
111.5, 79.6, 41.6. HRMS (ESI) <i>m/z</i> calcd for [M+H] ⁺
C ₁₆ H ₁₅ N ₂ O ₂ 267.1134, found 267.1211. HRMS (ESI) <i>m/z</i>
calcd for [M+Na] ⁺ C ₁₆ H ₁₄ N ₂ O ₂ Na 289.0953, found
289.0997.

Br NO ₂ H	3b ⁸ : Red sticky mass. $R_f = 0.38$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 8.21 (s, 1H, -NH), 7.49 (dd, $J = 25.4$, 1.7 Hz, 1H, ArH), 7.30 – 7.21 (m, 6H, ArH), 7.16 (t, $J = 8.9$ Hz, 1H, ArH), 6.99 (d, $J = 2.1$ Hz, 1H, ArH), 5.08 (t, $J = 8.0$ Hz, 1H, -CH ₂), 4.97 (dd, $J = 12.5$, 8.0 Hz, 1H, -CH ₂), 4.88 (dd, $J = 12.5$, 8.0 Hz, 1H, -CH ₂), 4.88 (dd, $J = 12.5$, 8.0 Hz, 1H, -CH ₂), 1 ³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 138.8, 135.1, 129.1, 127.9, 127.8, 127.7, 125.6, 122.9, 121.4, 113.9, 113.2, 113.0, 79.5, 41.3. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+H] ⁺ C ₁₆ H ₁₄ N ₂ O ₂ Br 345.0238, found 345.0250.
NO ₂ N H	3c⁸: Brown sticky mass. $R_f = 0.39$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.83 (s, 1H, -NH), 7.35 (d, $J = 7.7$ Hz, 1H, ArH), 7.28 (d, $J = 6.7$ Hz, 2H, ArH), 7.24 (d, $J = 7.9$ Hz, 2H, ArH), 7.19 (d, $J = 8.9$ Hz, 2H, ArH), 7.08 (t, $J = 7.5$ Hz, 1H, ArH), 7.00 (t, $J = 7.5$ Hz, 1H, ArH), 5.22 – 5.02 (m, 3H, -CH ₂ , -CH ₂ CH), 2.29 (s, 3H, -CH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 139.6, 135.5, 133.0, 128.8, 127.4, 127.1, 126.9, 121.3, 119.8, 118.6, 110.8, 108.8, 78.7, 40.5, 12.0. HRMS (ESI) <i>m/z</i> calcd for [M+Na] ⁺ C ₁₇ H ₁₆ N ₂ O ₂ Na 303.1109, found 303.1098.
O NO ₂	3d⁸: Brown sticky mass. $R_f = 0.37$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 8.04 (s, 1H, -NH), 7.29 – 7.14 (m, 6H, ArH), 6.90 (d, $J = 2.5$ Hz, 1H, ArH), 6.81 (m, 2H, ArH), 5.09 (t, $J = 8.0$ Hz, 1H, -CH ₂), 4.98 (dd, $J = 12.4$, 7.5 Hz, 1H, -CH ₂), 4.88 (dd, $J = 12.4$, 8.4 Hz, 1H, -CH ₂ CH), 3.74 (s, 3H, -OCH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 154.2, 139.2, 131.7, 128.9, 127.8, 127.6, 126.6, 122.4, 114.0, 112.7, 112.2, 100.9, 79.5, 55.9, 41.6. HRMS (ESI) <i>m/z</i> calcd for [M+Na] ⁺ C ₁₇ H ₁₆ N ₂ O ₃ Na 319.1059, found 319.1052.
NO ₂	3e⁸: Red brown solid. $R_f = 0.38$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.44 (d, $J = 8.0$ Hz, 1H, ArH), 7.31 (q, $J = 7.1$ Hz, 5H, ArH), 7.25 – 7.19 (m, 2H, ArH), 7.10 – 7.01 (m, 1H, ArH), 6.84 (s, 1H, ArH), 5.16 (t, $J = 8.0$ Hz, 1H, -CH ₂), 5.02 (dd, $J = 12.5$, 7.5 Hz, 1H, -CH ₂), 4.91 (dd, $J = 12.5$, 8.5 Hz, 1H, -CH ₂ CH), 3.70 (s, 3H, -NCH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 139.4, 137.3, 128.9, 127.8, 127.5, 126.6, 126.4, 122.3, 119.5, 119.0, 112.8, 109.6, 79.5, 41.6, 32.9. HRMS (ESI) <i>m/z</i> calcd for [M+H] ⁺ C ₁₇ H ₁₇ N ₂ O ₂ 281.1290, found 281.1252.

NO ₂	3f ⁹ : Red sticky mass. $R_f = 0.32$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 8.03 (s, 1H, -NH), 7.43 (d, $J = 8.0$ Hz, 1H, ArH), 7.31 (d, $J = 8.2$ Hz, 1H, ArH), 7.20 – 7.15 (m, 3H, ArH), 7.12 – 7.04 (m, 3H, ArH), 6.95 (d, $J = 1.9$ Hz, 1H, ArH), 5.13 (t, $J = 8.0$ Hz, 1H, -CH ₂), 5.01 (dd, $J = 12.4$, 7.6 Hz, 1H, -CH ₂), 4.89 (dd, $J = 12.4$, 8.4 Hz, 1H, -CH ₂ CH), 2.29 (s, 3H, -CH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 137.2, 136.4, 136.1, 129.6, 127.6, 126.1, 122.6, 121.5, 119.9, 118.9, 114.5, 111.3, 79.6, 41.2, 21.0. HRMS (ESI) <i>m</i> /z calcd for [M+H] ⁺ C ₁₇ H ₁₇ N ₂ O ₂ 281.129, found 281.1265.
Br NO ₂ H	3g ¹⁰ : Red sticky mass. $R_f = 0.35$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 8.27 (s, 1H, -NH), 7.56 (d, $J = 1.9$ Hz, 1H, ArH), 7.24 (d, $J = 1.9$ Hz, 1H, ArH), 7.21 – 7.10 (m, 5H, ArH), 7.01 – 6.95 (m, 1H, ArH), 5.08 (t, $J = 8.0$ Hz, 1H, -CH ₂), 4.99 (dd, $J = 12.4$, 8.0 Hz, 1H, -CH ₂), 4.88 (dd, $J = 12.3$, 8.0 Hz, 1H, -CH ₂ CH), 2.32 (s, 3H, -CH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃): ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃): ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 137.5, 135.7, 135.1, 129.8, 127.9, 127.6, 125.5, 122.8, 121.4, 114.1, 113.2, 113.0, 79.6, 41.0, 21.1. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+H] ⁺ C ₁₇ H ₁₆ BrN ₂ O ₂ 358.0395; observed 359.037.
NO ₂	3h ¹¹ : Red solid. $R_f = 0.37$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.85 (s, 1H, -NH), 7.36 (d, $J = 7.9$ Hz, 1H, ArH), 7.21 – 7.16 (m, 3H, ArH), 7.11 – 7.06 (m, 3H, ArH), 7.03 – 6.98 (m, 1H, ArH), 5.18 (dd, $J =$ 10.0, 5.9 Hz, 1H, -CH ₂), 5.15 – 5.10 (m, 1H, -CH ₂), 5.07 (dd, J = 10.0, 8.0 Hz, 1H, -CH ₂ CH), 2.31 (s, 3H, -CH ₃), 2.28 (s, 3H, -CH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 136.8, 136.5, 135.4, 132.9, 129.5, 127.2, 126.9, 121.3, 119.7, 118.7, 110.8, 108.9, 78.7, 40.1, 21.0, 12.0. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+H] ⁺ C ₁₈ H ₁₉ N ₂ O ₂ 295.1447, found 295.1460.
O NO ₂ H	3i: Red sticky mass. $R_f = 0.35$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 8.05 (s, 1H, -NH), 7.25 – 7.17 (m, 3H, ArH), 7.16 – 7.07 (m, 2H, ArH), 7.00 – 6.90 (m, 1H, ArH), 6.87 (d, $J = 8.4$ Hz, 2H, ArH), 5.11 (t, $J = 8.0$ Hz, 1H, -CH ₂), 5.01 (dd, $J = 12.3$, 7.5 Hz, 1H, -CH ₂), 4.90 (dd, $J = 12.3$, 8.5 Hz, 1H, -CH ₂ CH), 3.80 (s, 3H, -OCH ₃), 2.32 (s, 3H, -CH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 154.1, 137.2, 136.1, 131.6, 129.6, 127.7, 126.6, 122.3, 114.1, 112.6, 112.2, 100.8, 79.6, 55.9, 41.2, 21.1. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+H] ⁺ C ₁₈ H ₁₉ N ₂ O ₃ 311.1396, found 311.1422.

NO ₂	3j ¹² : Brown solid. $R_f = 0.37$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.45 (d, $J = 8.0$ Hz, 1H, ArH), 7.27 (d, $J = 8.2$ Hz, 1H, ArH), 7.23 – 7.18 (m, 3H, ArH), 7.11 (d, $J = 7.9$ Hz, 2H, ArH), 7.06 (t, $J = 8.0$ Hz, 1H, ArH), 6.83 (s, 1H, ArH), 5.13 (t, $J = 8.0$ Hz, 1H, -CH ₂), 5.00 (dd, $J = 12.4$, 7.5 Hz, 1H, -CH ₂), 4.88 (dd, $J = 12.4$, 8.6 Hz, 1H, -CH ₂ CH), 3.69 (s, 3H, -NCH ₃), 2.29 (s, 3H, -CH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 137.3, 137.2, 136.4, 129.6, 127.6, 126.6, 126.4, 122.2, 119.5, 119.0, 113.0, 109.6, 79.7, 41.2, 32.9, 21.1. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+H] ⁺ C ₁₈ H ₁₉ N ₂ O ₂ 295.1447, found 295.1425.
NO ₂	3k¹³: Red solid. $R_f = 0.38$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 8.11 (s, 1H, -NH), 7.44 (d, $J = 7.9$ Hz, 1H, ArH), 7.37 (d, $J = 8.2$ Hz, 1H, ArH), 7.26 – 7.17 (m, 3H, ArH), 7.10 – 7.02 (m, 2H, ArH), 6.87 – 6.83 (m, 2H, ArH), 5.14 (t, $J = 7.9$ Hz, 1H, -CH ₂), 5.05 (dd, $J = 12.3$, 7.5 Hz, 1H, -CH ₂), 4.90 (dd, $J = 12.2$, 8.4 Hz, 1H, -CH ₂ CH), 3.77 (s, 3H, -OCH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 158.9, 136.5, 131.7, 128.8, 126.1, 122.7, 121.4, 120.0, 119.0, 114.8, 114.3, 111.4, 79.8, 55.3, 40.9. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+H] ⁺ C ₁₇ H ₁₇ N ₂ O ₃ 297.1239, found 297.1221.
Br NO ₂	31¹⁴: Orange solid. $R_f = 0.34$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 8.15 (s, 1H, -NH), 7.57 – 7.46 (m, 1H, ArH), 7.26 – 7.17 (m, 4H, ArH), 7.05 (d, $J = 1.7$ Hz, 1H, ArH), 6.93 – 6.76 (m, 2H, ArH), 5.07 (t, $J = 7.9$ Hz, 1H, -CH ₂), 4.99 (dd, $J = 12.2$, 7.9 Hz, 1H, -CH ₂), 4.87 (dd, $J = 12.2$, 7.9 Hz, 1H, -CH ₂ CH), 3.78 (s, 3H, -OCH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 159.0, 135.1, 130.7, 128.7, 127.9, 125.7, 122.6, 121.6, 114.5, 114.4, 113.3, 112.8, 79.6, 55.3, 40.6. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+Na] ⁺ C ₁₇ H ₁₅ BrN ₂ O ₃ Na 397.0164, found 397.0198.
NO ₂	3m¹⁵: Red sticky mass. $R_f = 0.36$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.88 (s, 1H, -NH), 7.36 (d, $J = 7.9$ Hz, 1H, ArH), 7.27 – 7.22 (m, 3H, ArH), 7.13 – 7.07 (m, 1H, ArH), 7.02 (m, 1H, ArH), 6.86 – 6.78 (m, 2H, ArH), 5.21 – 5.04 (m, 3H, -CH ₂ , -CH ₂ CH), 3.76 (s, 3H, -OCH ₃), 2.37 (s, 3H, -CH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 158.5, 135.4, 132.7, 131.5, 128.4, 126.9, 121.3, 119.7, 118.7, 114.1, 110.7, 109.1, 78.9, 55.3, 39.8, 12.1. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+H] ⁺ C ₁₈ H ₁₉ N ₂ O ₃ 311.1396, found 311.1392.

	3n ¹³ : Light pink solid. $R_f = 0.37$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.99 (s, 1H, -NH), 7.28 – 7.18 (m, 3H, ArH), 6.99 – 6.95 (m, 1H, ArH), 6.89 – 6.79 (m, 4H, ArH), 5.11 – 4.98 (m, 2H, -CH ₂), 4.88 (dd, $J = 12.1$, 8.3 Hz, 1H, -CH ₂ CH), 3.77 (d, $J = 2.4$ Hz, 6H, -OCH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 158.9, 154.2, 131.6, 131.1, 128.8, 126.6, 122.2, 114.4, 114.3, 112.7, 112.1, 100.9, 79.7, 55.9, 55.3, 40.9. HRMS (ESI) <i>m/z</i> calcd for [M+H] ⁺ C ₁₈ H ₁₉ N ₂ O ₄ 327.1345, found 327.1366.
NO ₂	30¹⁶: Brown solid. $R_f = 0.36$ (15% Ethyl acetate/Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃) δ 7.42 (m, 1H, ArH), 7.31 – 7.15 (m, 4H, ArH), 7.05 (m, 1H, ArH), 6.85 – 6.80 (m, 3H, ArH), 5.10 (t, $J = 8.0$ Hz, 1H, -CH ₂), 4.99 (dd, $J = 12.3$, 7.4 Hz, 1H, -CH ₂), 4.85 (dd, $J = 12.3$, 8.6 Hz, 1H, -CH ₂ CH), 3.73 (s, 3H, -OCH ₃), 3.69 (s, 3H, -CH ₃). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) δ 158.9, 137.4, 131.4, 128.9, 126.6, 126.3, 122.2, 119.5, 119.1, 114.3, 113.2, 109.6, 79.8, 55.3, 40.9, 32.8. HRMS (ESI) <i>m</i> / <i>z</i> calcd for [M+H] ⁺ C ₁₈ H ₁₉ N ₂ O ₃ 311.1396, found 311.1392.

Figure S68: ¹H NMR spectrum of 3a recorded in CDCl₃.

Figure S69: ¹³C{¹H} NMR spectrum of 3a recorded in CDCl₃.

Figure S70: HRMS (ESI) spectrum of 3a.

Figure S71: ¹H NMR spectrum of 3b recorded in CDCl₃.

Figure S72: ¹³C{¹H} NMR spectrum of **3b** recorded in CDCl₃.

Figure S73: HRMS (ESI) spectrum of 3b.

Figure S74: ¹H NMR spectrum of 3c recorded in CDCl₃.

Figure S75: ¹³C{¹H} NMR spectrum of 3c recorded in CDCl₃.

Figure S76: HRMS (ESI) spectrum of 3c.

Figure S77: ¹H NMR spectrum of 3d recorded in CDCl₃.

Figure S78: ¹³C{¹H} NMR spectrum of 3d recorded in CDCl₃.

Figure S79: HRMS (ESI) spectrum of 3d.

Figure S80: ¹H NMR spectrum of 3e recorded in CDCl₃.

Figure S81: ¹³C{¹H} NMR spectrum of **3e** recorded in CDCl₃.

Figure S82: HRMS (ESI) spectrum of 3e.

Figure S83: ¹H NMR spectrum of 3f recorded in CDCl₃.

Figure S84: ¹³C{¹H} NMR spectrum of 3f recorded in CDCl₃.

Figure S85: HRMS (ESI) spectrum of 3f.

Figure S86: ¹H NMR spectrum of 3g recorded in CDCl₃.

Figure S87: ¹³C{¹H} NMR spectrum of **3g** recorded in CDCl₃.

Figure S88: HRMS (ESI) spectrum of 3g.

Figure S89: ¹H NMR spectrum of 3h recorded in CDCl₃.

Figure S90: ¹³C{¹H} NMR spectrum of **3h** recorded in CDCl₃.

Figure S91: HRMS (ESI) spectrum of 3h.

Figure S92: ¹H NMR spectrum of 3i recorded in CDCl₃.

Figure S93: ¹³C{¹H} NMR spectrum of **3i** recorded in CDCl₃.

Figure S94: HRMS (ESI) spectrum of 3i.

Figure S95: ¹H NMR spectrum of 3j recorded in CDCl₃.

Figure S96: ¹³C{¹H} NMR spectrum of **3j** recorded in CDCl₃.

Figure S97: HRMS (ESI) spectrum of 3j.

Figure S98: ¹H NMR spectrum of 3k recorded in CDCl₃.

Figure S99: ${}^{13}C{}^{1}H$ NMR spectrum of **3k** recorded in CDCl₃.

Figure S100: HRMS (ESI) spectrum of 3k.

Figure S101: ¹H NMR spectrum of 3l recorded in CDCl₃.

Figure S102: ¹³C{¹H} NMR spectrum of 3l recorded in CDCl₃.

Figure S103: HRMS (ESI) spectrum of 3l.

Figure S104: ¹H NMR spectrum of 3m recorded in CDCl₃.

Figure S105: ¹³C{¹H} NMR spectrum of **3m** recorded in CDCl₃.

Figure S106: HRMS (ESI) spectrum of 3m.

Figure S107: ¹H NMR spectrum of 3n recorded in CDCl₃.

Figure S108: ¹³C{¹H} NMR spectrum of **3n** recorded in CDCl₃.

Figure S109: HRMS (ESI) spectrum of 3n.

Figure S110: ¹H NMR spectrum of 30 recorded in CDCl₃.

Figure S111: ¹³C{¹H} NMR spectrum of **30** recorded in CDCl₃.

Figure S112: HRMS (ESI) spectrum of 30.

References

- 1. A. Mondal, R. Sharma, B. Dutta, D. Pal and D. Srimani, J. Org. Chem., 2022, 87, 3989-4000.
- B. L. Tornquist, G. de Paula Bueno, J. C. Manzano Willig, I. M. de Oliveira, H. A. Stefani, J. Rafique, S. Saba, B. Almeida Iglesias, G. V. Botteselle and F. Manarin, *ChemistrySelect*, 2018, 3, 6358-6363.
- 3. A. Bahuguna, S. Kumar, V. Sharma, K. L. Reddy, K. Bhattacharyya, P. C. Ravikumar and V. Krishnan, *ACS Sustain. Chem. Eng.*, 2017, **5**, 8551-8567.
- 4. N.-K. Nguyen, M.-T. Ha, H. Y. Bui, Q. T. Trinh, B. N. Tran, V. T. Nguyen, T. Q. Hung, T. T. Dang and X. H. Vu, *Catal. Commun.*, 2021, **149**, 106240.
- 5. S. Handy and N. M. Westbrook, *Tetrahedron Lett.*, 2014, 55, 4969-4971.
- 6. J. A. Ibarra-Hernández, R. Gómez-Balderas, D. Nivón-Ramírez, J. G. García-Estrada, D. A. Mendoza-Jiménez, A. Martínez-Zaldívar, T. A. Cruz-Sánchez, N. Tovar-Betancourt, R. A. Luna-Mora and J. G. Penieres-Carrillo, *J. Mol. Struct.*, *2022*, **1249**, 131499.
- 7. R. Ghorbani-Vaghei, H. Veisi, H. Keypour and A. A. Dehghani-Firouzabadi, *Mol. Divers.*, 2010, 14, 87-96.
- 8. A. Das, N. Anbu, M. Sk, A. Dhakshinamoorthy and S. Biswas, *Inorg. Chem.*, 2019, 58, 5163-5172.
- 9. J. Wu, X. Li, F. Wu and B. Wan, Org. Lett., 2011, 13, 4834-4837.
- 10. P. K. Singh, A. Bisai and V. K. Singh, *Tetrahedron Lett.*, 2007, 48, 1127-1129.
- 11. M. De Rosa and A. Soriente, *Tetrahedron*, 2010, **66**, 2981-2986.
- 12. W.-g. Huang, H.-s. Wang, G.-b. Huang, Y.-m. Wu and Y.-m. Pan, *Eur. J. Org. Chem.*, 2012, **2012**, 5839-5843.
- 13. A. Bahuguna, A. Kumar, S. Kumar, T. Chhabra and V. Krishnan, *ChemCatChem*, 2018, **10**, 3121-3132.
- 14. M. S. Islam, A. S. Alammari, A. Barakat, S. Alshahrani, M. Haukka and A. M. Al-Majid, *Molecules*, 2021, 26.
- 15. X.-L. Liu, D. Xue and Z.-T. Zhang, J. Heterocycl. Chem., 2011, 48, 489-494.
- 16. I. Méndez, R. Rodríguez, V. Polo, V. Passarelli, F. J. Lahoz, P. García-Orduña and D. Carmona, *Chem. Eur. J., 2016*, **22**, 11064-11083.