Supplementary Information

NASICON-type Na_{3.6}Lu_{1.8-x}(PO₄)₃:*x*Eu³⁺ phosphors:

structure and luminescence

Nataliya Krutyak, Dmitry Spassky, Dina V. Deyneko, Andrey Antropov, Vladimir A. Morozov, Bogdan I. Lazoryak, Vitali Nagirnyi

Table S1. Element analysis results of $Na_{3.6}Lu_{1.8-x}(PO_4)_3:xEu^{3+}$ (x = 0, 0.3).

NLPO:xEu	P, at.%	Lu, at.%	Eu, at.%	P:Lu:Eu ratio
x = 0	63.81±0.45	36.19±0.45	-	3:1.70(3):0
x = 0.30	62.99±0.57	31.07±0.35	5.94±0.23	3:1.48(4):0.28(2)

Figure S1. SEM images of Na_{3.6}Lu_{1.8-x}(PO₄)₃: xEu^{3+} (x = 0 (a), 0.3 (b)).

x	<i>a</i> , Å	c, Å	<i>V</i> , Å ³
0.05	9.1050(2)	22.2467(6)	1597.17(6)
0.1	9.1080(3)	22.2086(1)	1595.51(7)
0.3	9.1176(2)	22.1982(7)	1598.12(7)
0.4	9.1208(2)	22.1803(6)	1597.94(6)
0.45	9.1216(1)	22.1409(4)	1595.39(5)
0.5	9.1259(2)	22.1473(8)	1597.37(8)
0.6	9.1263(2)	22.1375(8)	1596.80(8)
0.7	9.1335(1)	22.1481(9)	1600.08(5)

Table S2. The unit cell parameters for $Na_{3.6}Lu_{1.8-x}(PO_4)_3:xEu^{3+}$.

Table S3. Atomic coordinates, isotropic displacement atomic parameters (U_{iso}), site occupation of Na_{3.6}Lu_{1.8}(PO₄)₃ and anisotropic temperature factors (U_{ij} in Å²) of the Lu site.

Position	x	у	Z	U _{iso} *100, Å ²	Occupancy	
Lu	0	0	0.15551(8)	1.22(5)	0.950(9)Lu	
Na4	0	0	0.15551(8)	0.00(1)	0.050(9)Na	
Na1	0.138(3)	0.077(5)	0.0232(10)	0.26(12)	0.268(11)Na ⁺	
Na2	0.6655(16)	0	0.25	0.32(9)	0.453(8)Na ⁺	
Na3	0	0	0.25	0.9(2)	0.53(3)Na ⁺	
P1	0.2959(7)	0	0.25	0.9(2)	1P	
01	0.214(1)	-0.0207(9)	0.1825(5)	0.7(2)	10	
O2	0.1996(10)	0.1762(11)	0.0966(5)	0.7(2)	10	
	U ¹¹	U ²²	U ³³	U ¹²	U ¹³ U ²³	
Lu	0.0023(5)	0.0023(5)	0.032(1)	0.0011(3)	0 0	

Table S4. Selected bond lengths (Å) and angles (°) for $Na_{3.6}Lu_{1.8}(PO_4)_3$.

Polyhedron	Distance	d, Å	Polyhedron	Distance	d, Å
Na1O ₆	Na1-O1	2.46(6)	Na2O ₈	Na2-O1×2	2.428(4)
	Na1-O1	3.06(5)		Na2-O1×2	2.946(9)
	Na1-O2	1.82(3)		Na2-O2×2	2.472(11)
	Na1-O2	2.74(4)		Na2-O2×2	2.828(18)
	Na1-O2	2.91(3)		<na2-o></na2-o>	2.669
	Na1-O2	3.12(3)	PO ₄	P-O1×2	1.651(2)
				P-O1×2	1.529(8)
	<na1-o></na1-o>	2.69		<p-o></p-o>	1.590

(Lu/Na4)O ₆ - octahedron							
Lu/Na4 O1 O1 O1 O2 O2 O2 <(Lu/Na4)- O>	O1 2.1372(5) 2.1516	O1 112.40(4) 2.1372(5)	O1 112.40(4) 112.40(4) 2.1372(5)	O2 76.8(3) 78.9(3) 158.9(3) 2.166(9)	O2 78.9(3) 158.9(3) 76.8(3) 87.0(4) 2.166(9)	O2 158.9(3) 76.8(3) 78.9(3) 87.0(4) 87.0(4) 2.166(9)	
Na3O ₆ - polyhedron							
Na3 O1 O1 O1 O1 O1 O1	O1 2.545(3)	O1 88.5(3) 2.545(3)	O1 88.5(3) 88.5(3) 2.545(3)	O1 73.14(4) 139.5(4) 125.6(4) 2.545(3)	O1 125.6(4) 73.14(4) 139.5(4) 88.5(3) 2.545(3)	O1 139.5(4) 125.6(4) 73.14(4) 88.5(3) 88.5(3) 2.545(3)	

Figure S2. Fitting of the peak 2.141 eV (579 nm, ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transitions) of Na_{3.6}Lu_{1.3}(PO₄)₃:0.5Eu³⁺ with single (a) and two (b) Gaussian functions.