Supplementary data for Dalton Transations

Generation of singlet oxygen over CeO₂/K, Na-codoped g-C₃N₄ for tetracycline hydrochloride degradation in a wide pH range

Jianfei Zheng^a, Zhen Xu^a, Sitian Xin^a, Bicheng Zhu^b and Longhui Nie^{*a,b},

^a Hubei Provincial Key Laboratory of Green Materials for Light Industry. New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; ^bState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

*Corresponding author: Tel. +86 59750482, E-mails: nielonghui@mail.hbut.edu.cn (L. Nie)

1. Results

Fig. S1 Adsorption curves of TCH over the CN, $g-C_3N_4$, CeO₂ and CeO₂/CN catalysts in absence of H_2O_2

Figure S2 XPS survey spectra for the $g-C_3N_4$, CN, CeO₂ and CeO₂/CN.

Fig. S3 the UV-vis spectra of TCH dependent on reaction time over H_2O_2 (a), $g-C_3N_4 + H_2O_2$ (b), $CN + H_2O_2$ (c), $CeO_2 + H_2O_2$ (d), $CeO_2/CN + H_2O_2$ (e), CeO_2/CN (f), $Fe_2O_3 + H_2O_2$ (g), $CeO_2-C + H_2O_2$ (h), and $CeO_2-C/g-C_3N_4 + H_2O_2$ (i), respectively.

Fig. S4 The degradation curves of TCH in the recycling/regeneration experiments over CeO_2/CN in presence of H_2O_2 .

Fig. S5 XRD patterns for the fresh and used CeO₂/CN samples.

Fig. S6 XPS spectra for the fresh and used CeO_2/CN samples: survey spectra (a), high resolution spectra of Na 1s (b) and K 2p (c).

Fig. S7 FTIR spectra for the fresh and used CeO₂/CN samples.

Fig. S8 Nitrogen adsorption-desorption isotherms of the fresh and used CeO_2/CN samples (a) and the corresponding pore size distribution curves (b).

Table S1 Binding energies (B.E.) of the elements in the CeO₂, CN, and CeO₂/CN samples and the shift of the binding energies (in bracket) of the elements in CeO₂/CN compared with those in CN or CeO₂.

		CN	CeO ₂	CeO ₂ /CN (binding energy shift)	Atomi	c percenta	ge of elements
elements		B.E. (eV)	B.E.	B.E. (eV)	CN	CeO ₂	CeO ₂ /CN
			(ev)				(fresh/used)
Na 1s		1071.4		1071.5 (+0.1)	7.1	/	4.0/0.9
K 2p	$2p_{1/2}$	292.7		293.1 (+0.4)	1.0		0.9/0.0
	2p _{3/2}	295.4		295.7 (+0.3)			
	C_{I}	284.8		284.8	42.0	/	34.1/47.7
C 1s	C_{II}	286.3		285.9 (-0.4)			
	C _{III}	288.2		288.5 (+0.3)			
	N_{I}	398.5		398.6 (+0.1)			
N 1s	N_{II}	399.6		399.7 (+0.1)	35.6	/	8.2/11.3
	N _{III}	401.0		401.2 (+0.2)			
	N_{IV}	404.7		406.8 (+2.1)			
	ν		900.9	900.8 (-0.1)			
Ce 3d	ν '		903.2	903.1 (-0.1)			
	ν"		907.5	907.4 (-0.1)			

	ν'''	916.8	916.6 (-0.2)	/	28.9	12.4/5.9
	μ	882.3	882.2 (-0.1)			
	μ'	884.6	884.5 (-0.1)			
	μ"	888.9	888.8 (-0.1)			
	μ'''	898.2	898.0 (-0.2)			
	O _I	529.4	529.2 (-0.3)			
O 1s	O _{II}	531.1	530.6 (-0.5)	14.5	71.1	40.3/34.2
	O _{III}	532.4	532.2 (-0.2)			

The atomic percentage of each element was supplemented in Table S1. For both CN and CeO₂/CN, the atomic percentage of Na is higher than that of K, indicating Na is easier to dope into $g-C_3N_4$ possibly owing to its smaller ion size. Compared with CN, the atomic percentage of Na, K, C and N in CeO₂/CN shows a decrease in different degree owing to the incorporation of CeO₂. The molar ratios of C/N for CN and CeO₂/CN are 1.8 and 4.2, respectively, indicating that N vacancies are formed in both samples and more N vacancies exist in the later. The Na contents before and after reaction (for three repeated experiments) in CeO₂/CN are 4.0 % and 0.9 % of atomic percentage by XPS, and the K contents before and after reaction in CeO₂/CN are 0.9 % and 0.0 % of atomic percentage, respectively. The decrease of the contents of Na⁺ and K⁺ ions in the used sample by XPS is owing to the adsorption of intermediates formed in the degradation of TCH on the surface of CeO₂/CN because the XPS technique can only analyze elemental content in the surface thin layer.

 Table S2 Possible degradation intermediates identified by LC-MS.

Compounds	Retention time (min)	m/z	Proposed structure
TC	3.82	445	$H_3C_N CH_3$

1	6.61	387	NH ₂ OH OH OH OH OH OH OH OH OH
2	1.24	345	NH ₂ OH O OH OH
3	1.03	317	OH O OH
4	1.01	273	ОН О ОН
5	7.50	267	он ононон
6	1.27	239	он он он
7	1.19	195	ОН ОН
8	1.30	477	HO CH ₃ HO CH ₃ HO CH ₃ HO CH ₃ HO CH ₃ HO NH ₂
9	2.07	403	
10	1.45	388	
11	7.67	294	
12	1.00	256	
13	2.37	226	U OHU NH2
14	5.94	228	
15	0.92	192	
16	8.06	149	

17	2.26	145	но он
18	5.97	101	\bigvee
19	1.19	89	ОН

Table S3 Characteristic parameters of the fresh and used CeO_2/CN samples.

Sample	$S_{\rm BET}$ (m ² /g)	$V_{\rm pore} ({\rm cm^3/g})$	$d_{\rm pore} ({\rm nm})$
Fresh CeO ₂ /CN	43.4	0.17	16.4
used CeO ₂ /CN	59.6	0.17	11.7