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Experiment

Chemicals

Glucose (Glu), Dicyandiamide (DCDA) (99 wt%), Ammonium tetrachloropalladate
(HgCI4N,Pd), All the chemicals were procured from Aladdin (China). The aqueous
solutions were prepared using deionized (DI) water (18.2 MQ c¢m!). Nafion solution

(5.0 wt%), carbon paper, high-purity argon (99.99%) gas was supplied by the Xiangyu


mailto:zl104@sxu.edu.cn

company in Shanxi. All chemicals used in the synthesis of electrocatalysts were of
analytical grade (AR) and used without further purification.

Fabrication of electrocatalysts

A simple freeze-drying method was used to prepare a Pd;/N-C electrocatalyst.
Generally, 1 g of Glu and 4 g of DCDA are first dissolved in 60 ml deionized water,
and heated in an 80 °C Oil bath under constant stirring until the aqueous solution
becomes transparent. Next, 1 mL of 10 mmol L' (NH4),PdCl; was dropped into the
solution, stirred for 3 h until it was completely dissolved, and then freeze-dried. During
the freeze-drying process, a support material with a three-dimensional ordered needle-
like structure is formed. The obtained needle-like material was placed into the center of
a quartz tube furnace, and the temperature was raised to 800 °C at a heating rate of 5
°C min! under an Ar flow and calcined for 2 h. The obtained sample was expressed as
Pd;/N-C. As a control, Pd-NPs/N-C (adding 1 mL of 100 mmol L-! (NH4),PdCly) and

N-C electrocatalyst also synthesized use the same method.

Characterization

Scanning electron microscopy (SEM) was performed by a Field emission JSM-7900F
and Transmission electron microscopy (TEM) images were performed on a Ticnai G2
F20 S-Twin instrument. Atomic high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) characterization and corresponding energy-
dispersive spectroscopy (EDS) were conducted on EM-ARM300F. Bruker D8 Advance

(Germany) was used to probe powder X-ray diffraction (XRD). The X-ray



photoelectron spectrum (XPS) were collected on an Axis Ultra DLD spectrometer
equipped with an Al Ka excitation and with C as internal standard (C 1s = 284.6 eV).
N, adsorption-desorption experiments were conducted on a BELS ORP physical
adsorption apparatus, and the specific surface area testing was performed by the
Brunauer-Emmett-Teller (BET), and the pore size was calculated by Barrett-Joyner-
Halenda (BJH). Raman spectrum was recorded on an Alpha 300 R spectrometer. The
actual Pd loadings were measured by inductively coupled plasma atomic emission
spectroscopy (ICP-AES, Aglient 5110). Fourier Transform infrared spectroscopy (FT-
IR) was collected on a Bruker Tensor-27 analyzer using the pressed KBr pellets.
Thermogravimetric analysis (TGA) was conducted with a Thermogravimetric (TGA Q

50) with a heating rate of 5 °C min-!' from 20 °C to 800 °C under Ar atmosphere.
Results and discussion
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Fig. S1 EDS spectra of (a) N-C, (b) Pd;/N-C and (c) Pd-NPs/N-C samples.




Fig. S3 TEM image of Pd-NPs/N-C.
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Fig. S4 High-resolution XPS spectra of (a-c) N 1s, (d-f) C 1s, (g-1) O 1s for N-C, Pd;/N-C and Pd-

NPs/N-C.



) o~
Q
~

o 20001 Pd,/N-C
|
> 15001 —a— adsorption isotherm
@
2 4000 ——¥— Desorption isotherm
2
ES
> 500
£
g
3 0+
o
0.0 0.2 0.4 0.6 0.8 1.0
PIP
(c) ;
=
o N-C
£3200
L
©
824001 —a— Adsorption isotherm
§ —v— Desorption isotherm
«1600
2
S 800
=
<] AAMMAAAAAAA:vAyVV
o . . .
0.0 0.2 0.4 0.6 0.8 1.0
PIP,

(b)

0.12
0.12
* *
_ 3o A
TE £ 0.08 l**\
£ 0.08 ng *\*.**
mg ‘, 5: o ) ¥ \*/ *\*__
3 o 00
< 0.044 *"" 5 10 15 20
*— Pore diamerter (nm)
e **\*/ \ /*
*: *
0.00+— T T T T
0 50 100 150 200
(d) Pore diamerter (nm)
0.124
0.09 13}
0.09 . [\
S §>“ 0.06 \&&\
T A% ,
-20.06+ 003{ | \/\,
: |
863K . .
0.03 0 10 15
d, (nm)
0.00 1~ T T T T
0 50 100 150 200
d, (nm)

Fig. S5 (a) N, sorption isotherms, (b) and (inset) pore size distribution curves of Pd;/N-C, (¢) N,

adsorption-desorption isotherms of N-C, (d) and (inset) the pore size distribution curve.
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Fig. S6 TGA of N-C, Pd;/N-C and Pd-NPs/N-C.
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Fig. S7 Koutecky-Levich plots of Pd;/N-C at diverse potentials (0.2~0.8 V).

Fig. S8 TEM images of Pd;/N-C after stability tests.
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Fig. S9 TOF as a function of overpotential during (a) ORR and (b) OER.



Table S1 The surface contents of various N species determined by XPS for the N-C, Pd;/N-C and

Pd-NPs/N-C.

Atomic ratio of different N species (%)

Entry catalysts Pd-N Pyridinic Pyrrolic Graphitic  Oxidized
Moiety(%) N (%) N (%) N (%) N (%)
1 N-C 0 39.1 22.4 21.2 17.3
2 Pd,/N-C 13.8 33.8 18.5 19 14.9
3 Pd-NPs/N-C 0 30.02 21.52 30.02 18.45

Table S2 Nitrogen adsorption-desorption measurements at 77 k for Pd;/N-C and N-C.

Catalysts SBET Vicro Dhicro
(m* g (em® g) (nm)

Pd;/N-C 641.29 2.8503 17.778
N-C 747.36 4.2167 22.259

Table S3 Performance of recently reported electrocatalyst in Zn-air batteries.

Sample OCV (V) PDyax (mW cm2) Stability VE% Ref
NFPC 1.6 200 57.9@10 mA cm™ [1]
sCu-ONPC 1.42 88.5@140 mA cm? 15 59.5@5 mA cm? [2]
NiCo/CNF@NC 1.45 85.8@110 mA cm? 95 56.2@5 mA cm [3]
Ni SAsPd@NC 1.44 134.2@170 mA cm? 700 55.6@10 mA cm? [4]
PdMnO,~CNT 135 297.7@190 mA cm2 600 61.0@10 mA cm-2 [5]
N-Mo-holey G 1.37 83@120 mA cm™ 500 60.0@2 mA cm™ [6]
Pd/Co(OH), 1.40 500 57.0@5 mA cm? (7]

Pd/N-C 1.38 113.7@175 mA cm? 495 64.0@5 mA cm This work




Reference
[1]M. G. Wu, Y. Q. Wang, Z. X. Wei, L. Wang, M. Zhuo, J. T. Zhang, X. P. Han and

J. M. Ma, J. Mater. Chem. A4, 2019, 6, 10918-10925.

[2] Y. F. Wang, M. Jin, X. Zhang, C. J. Zhao, H. J. Wang, S. H. Liand Z. Y. Liu, ACS
Appl. Energy Mater., 2019, 2, 8659-8666.

[3] T. T. Gebremariam, F. Y. Chen, Y. C. Jin, Q. Wang, J. L. Wang and J. P. Wang,
Catal. Sci. Technol., 2019, 9, 2532-2542.

[4] S. Z. Wang, Z. N. Lin, M. M. Li, Z. H. Yu, M. J. Zhang, M. X. Gong, Y. W. Tang
and X. Y. Qiu, J. Mater. Chem. A, 2022, 10, 6086-6095.

[5] W. K. Xiang, Y. H. Zhao, Z. Jiang, X. P. Li, H. Zhang, Y. Sun, Z. J. Ning, F.P. Du,
P. Gao, J. Qian, K. Kato, M. Yamauchi and Y. H. Sun, J. Mater. Chem. A, 2018, 6,
23366-23377.

[6] P. Du, K. L. Hu, J. Lyu, H. L. L1, X. Lin, G. Q. Xie, X. J. Liu, Y. Ito and H. J. Qiu,
Appl. Catal. B-Environ., 2021, 276, 119172.

[7] S. Hyun, A. Saejio and S. Shanmugam, Nanoscale, 2020, 12, 17858-17869.



