A New Three-Dimensional Zinc(II) Metal-Organic Framework as a

Fluorescent Sensor for Sensing Biomarker 3-Nitrotyrosine

Jun Geng, Yuyao Li, Hongyan Lin, Qianqian Liu, Junjun Lu and Xiuli Wang* College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China

Section 1 Experimental

I. Materials and general methods

The ligand L was prepared according to the synthesis method of the literature.¹ The reagents and solvents used in the experiments were purchased from commercial sources and used without further purification. The single X-ray diffraction data for Zn-MOF was collected by using a Bruker SMART APEX II CCD diffractometer at 273 K with Mo K α radiation ($\lambda = 0.71073$ Å). The infrared (IR) spectra data were gathered on a Varian640 FTIR spectrometer through KBr pellet from 500 cm⁻¹ to 4000 cm⁻¹ region, and the powder X-ray diffraction (PXRD) patterns were collected on a D/teX Ultra diffractometer. The thermal stabilities of Zn-MOF were analyzed with a thermogravimetric analyzer (NETZSCH STA 449C). The fluorescent spectra were recorded on a Hitachi F-4500 luminescence/phosphorescence spectrometer. Fluorescence lifetime and quantum yield data were obtained on the FLS1000 transient steady-state fluorescence spectrometer. UV–vis absorption spectra were carried out on SP-1900. The PHS-3C-meter with an E-201-C glass electrode was used to determine the pH of the solution.

II. X-ray crystallography.

Data collection was performed on a Bruker Smart APEX II diffractometer with K α ($\lambda = 0.71073$ Å) by θ and ω scan mode at room temperature. The crystal structure was solved by direct method using the SHELXT program of the Olex 2 crystallographic software package and refined on F^2 by full-matrix least-squares methods.² Anisotropic thermal parameters were utilized in all non-hydrogen atoms. Crystal data and structural refinements were displayed in Table S1. CCDC number is 1992602. Selected bond

lengths and angles were shown in Table S2 for Zn-MOF.

Complex	Zn-MOF		
Empirical formula	$C_{35}H_{24}N_4O_8Zn$		
Formula weight	693.95		
Temperature/K	273.15		
Crystal system	Monoclinic		
Space group	<i>P</i> 2 ₁ /n		
a (Å)	10.643(4)		
<i>b</i> (Å)	26.202(9)		
<i>c</i> (Å)	10.933(4)		
α (°)	90		
β (°)	94.503(7)		
γ (°)	90		
$V(\text{\AA}^3)$	3039.6(18)		
Ζ	4		
$D_c (\text{g cm}^{-3})$	1.516		
$\mu (\mathrm{mm}^{-1})$	0.871		
F (000)	1424.0		
Reflections collected	17273		
Data/restraints/parameters	5327/234/490		
Goodness-of-fit on F ²	1.009		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0581, wR_2 = 0.1397$		
Final R indexes [all data]	$R_1 = 0.1209, wR_2 = 0.1688$		
^a $R_1 = \Sigma F_o - F_c / \Sigma F_o $, ^b $wR_2 = \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]^{1/2}$			

 Table S1. Crystallographic data for Zn-MOF.

Table S2. Selected bond distances (Å) and angles (°) for Zn-MOF.

Zn-MOF				
Zn(1)-O(2)#1	1.955(4)	O(6)-Zn(1)-O(2)#1	121.7(3)	
Zn(1)-O(6)	1.942(7)	O(6)-Zn(1)-N(2)	99.4(5)	
Zn(1)-N(2)	2.034(4)	O(6)-Zn(1)-N(3)#2	102.9(5)	
Zn(1)-N(3)#2	2.058(4)	N(2)-Zn(1)-N(3)#2	116.62(18)	
Zn(1)-O(6)A	1.948(6)	O(6)A-Zn(1)-N(2)	108.1(5)	
O(2)#1-Zn(1)-N(2)	110.56(16)	O(6)A-Zn(1)-N(3)#2	95.3(5)	
O(2)#1-Zn(1)-N(3)#2	106.10(17)			
Symmetry code: #1 –1/2+X, 1/2–Y, –1/2+Z; #2 –1/2+X, 3/2–Y, 1/2+Z				

Fig. S1 ORTEP diagram of Zn-MOF at the 50% probability level.

Fig. S2 View of the 3D framework of Zn-MOF.

Fig. S3 FT-IR spectra of Zn-MOF and ligands.

Fig. S4 FT-IR spectra of Zn-MOF in the diffident pH and after detecting 3-NT.

Fig. S6 (a) The emission spectra of solid-state Zn-MOF, L and H_3BTC ; (b) The solid excitation and emission spectra of Zn-MOF.

Methods	LOD (mol/L)	References
LC-MS/MS	1.70×10^{-11}	Göen et al. (2005) ³
SPE ^a – HPLC	3.10×10^{-6}	Mergola et al. $(2013)^4$
Real time-tandem mass spectrometry	$8.80 imes 10^{-7}$	Song et al. (2015) ⁵
HPLC	$2.30 imes 10^{-8}$	Monica et al. (2017) ⁶
Surface plasmon resonance	$5.30 imes 10^{-10}$	He et al. (2019) ⁷
Molecular Imprinting	2.23×10^{-8}	Martins et al. $(2020)^8$
Electrochemiluminescence	$8.40 imes 10^{-9}$	Zhu et al. (2021) ⁹
Fluorescence	3.10×10^{-7}	Present work

Table S3 Comparison of various methods for 3-NT detection.

^a Solid-phase extraction.

Fig S7. The PXRD pattern of Zn-MOF after detecting 3-NT.

Fig. S8 (a) Emission spectra and intensities of Zn-MOF suspensions in different pH values; (b) Emission intensity line chart of Zn-MOF suspensions in different pH values.

Fig. S9 The UV-vis absorption spectra of 3-NT and excitation spectra of Zn-MOF.

Fig. S10 The UV-vis absorption spectra of 3-NT and emission spectra of Zn-MOF.

Table S4. HOMO and LUMO energies calculated for ligand L and analyte at B3LYP/6-31G(d).

	HOMO (eV)	LUMO (eV)	Band Gap (eV)
L	-6.1293	-2.2503	3.8790
3-NT	-6.5713	-2.7987	3.7726

References

- 1. Y. F. Hsu, C. H. Lin, J. D. Chen and J. C. Wang, Cryst. Growth Des., 2008, 8, 2047-2047.
- 2. G. Sheldrick, *Acta Crystallogr A*, 2008, **64**, 112-122.
- T. Göen, A. Müller-Lux, P. Dewes, A. Musiol and T. Kraus, J. Chromatogr. B, 2005, 826, 261-266.
- L. Mergola, S. Scorrano, R. Del Sole, M. R. Lazzoi and G. Vasapollo, *Biosens. Bioelectron.*, 2013, 40, 336-341.
- 5. Y. Song, J. Liao, C. Zha, B. Wang and C. C. Liu, *Acta Pharm Sin B*, 2015, 5, 482-486.
- D. Teixeira, C. Prudencio and M. Vieira, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2017, 1046, 48-57.
- Q. He, Y. Chen, D. Shen, X. Cui, C. Zhang, H. Yang, W. Zhong, S. A. Eremin, Y. Fang and S. Zhao, *Talanta*, 2019, 195, 655-661.
- 8. G. V. Martins, A. C. Marques, E. Fortunato and M. G. F. Sales, *Sensing and Bio-Sensing Research*, 2020, **28**.
- L. Zhu, S. Li, W. Liu, J. Chen, Q. Yu, Z. Zhang, Y. Li, J. Liu and X. Chen, *Biosens. Bioelectron.*, 2021, 187, 113284.