Supporting Information

Iron-doped novel Co-based metal-organic frameworks for preparation of bifunctional catalysts with amorphous structure for OER/HER in alkaline solution

Siyu Dai^a, Yuqi Liu^a *, Kaiming Wang^a, Yanghua Li^a, Nanhao Jin^a, Xinying Wang^a*, Huilong Luo^c, Huilong Luo^c, Wei Li^{a,b}.

^a Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. China

^b Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China

^c Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650093, P. R. China

*corresponding author: Yuqi Liu (liuyuqi7547@163.com); Xinying Wang(1447448766@qq.com)

Figure S8.Cyclic voltammograms (CV) of **a**) Fe@Co-MOF-1. **b**) Fe@Co-MOF-2. **c**) Fe@Co-MOF-3. **d**) Fe@Co-MOF-4.

Figure S9. Zeta potential measurement data for Co-MOF, Fe@Co-MOF-1, Fe@Co-MOF-2, Fe@Co-MOF-3 and Fe@Co-MOF-4.

	Co-MOF	FeSO ₄ •7H ₂ O
Co-MOF	0.1 mmol	0
Fe@Co-MOF-1	0.1 mmol	0.033 mmol
Fe@Co-MOF-2	0.1 mmol	0.066 mmol
Fe@Co-MOF-3	0.1 mmol	0.1 mmol
Fe@Co-MOF-4	0.1 mmol	0.133 mmol

Table S1. List of ingredients for different catalysts.

Table S2. Crystallographic data and structural refinements for Co-MOF.

Compound	Со
chemical formula	$C_{26}H_{16}CoN_6O_5$
formula weight	697.57
crystal size (mm)	0.11
temperature (K)	273(2)
radiation	0.71073
crystal system	Monoclinic
space group	P2 ₁ /c
Unit cell dimensions	<i>a</i> =13.942(2) (Å)
	<i>b</i> =13.1857(19) (Å)

	<i>c</i> =18.636(3) (Å)
	<i>α</i> =90.00°
	<i>β</i> =111.414(3) °
	$\gamma=90.00^{\circ}$
Volume/V(Å ³)	3189.5(8)
Z	4
$\rho(_{calc}) (g/cm^3)$	1.453
F (000)	1444.0
$\mu (mm^{-1})$	0.600
θ range (deg)	1.569 to 25.008
Independent reflections	15957 (R _{int} =0.0666, Rsigma =0.0852)
Data/restraints/parameters	5615/231/485
GOF	0.991
$R_1/wR_2[I \ge 2\sigma(I)]$	0.0548/ 0.1224
R_1/wR_2 (all data)	0.1098/ 0.1534
large peak and hole(e/Å ³)	0.379/ -0.443

Table S3. Selected Bond lengths (Å) and Angles (°) for Co-MOF.

Parameter	Value	Parameter	Value	
Co(1)-O(4)#3	2.156(3)	Co(1)-O(5)#3	2.192(3)	
Co(1)-O(1)	2.033(3)	Co(1)-O(2)#2	2.019(3)	
Co(1)-N(6)#1	2.181(3)	Co(1)-N(1)	2.151(3)	
O(4)#3-Co(1)-N(6)#1	90.31(12)	O(2)#2-Co(1)-O(1)	116.88(11)	
O(4)#3-Co(1)-O(5)#3	60.04(11)	O(2)#2-Co(1)-N(6)#1	87.65(13)	
O(1)-Co(1)-O(4)#3	150.30(12)	O(2)#2-Co(1)-O(5)#3	152.38(12)	
O(1)-Co(1)-N(6)#1	87.03(12)	O(2)#2-Co(1)-N(1)	92.11(13)	
O(1)-Co(1)-O(5)#3	90.33(11)	N(1)-Co(1)-O(4)#3	92.58(12)	
O(1)-Co(1)-N(1)	90.51(12)	N(1)-Co(1)-N(6)#1	177.11(12)	
N(6)#1-Co(1)-O(5)#3	89.21(12)	N(1)-Co(1)-O(5)#3	92.33(12)	
O(2)#2-Co(1)-O(4)#3	92.53(12)			

Complex 1 Symmetry code: #1= x, 1+y, z; #2= -x, -y, -z; #3= 1+x, 1/2-y, 1/2+z.

Table S4. Hydrogen-bonding Geometry of Co-MOF. (Å and °)

ruble 51. Hydrogen boliding Geometry of Co Mort. (A and)				
D-H···A	D-H	Н…А	[D…A]	∠D-H…A
C10-H10…O4#1	0.93(5)	2.6(3)	3.497(4)	162.3(2)
C17-H17…O5#2	0.929(5)	2.559(3)	3.386(7)	148.4 (2)

Symmetry code: #1= -1-x, -1/2+y, -1/2-z; #2= -1-x, -y, -z

Num ber	Catalyst	Electrolyte	Overpotential (mV)	Ref.
1	Fe@Co-MOF-3	1 м КОН	247 mV@50mA·cm ⁻²	This work
2	Co-MOF	1 м КОН	315 mV@10mA·cm ⁻²	This work
3	ZIF-FeCo/C	1 м КОН	250 mV@10mA·cm ⁻²	1
4	ZIF-67/CoNiAl-LDH/NF	1 м КОН	303 mV@10mA·cm ⁻²	2
5	CoP-InNC@CNT	1 м КОН	270 mV@10mA·cm ⁻²	3
7	FeCo-MNS-1.0	0.1 м КОН	367 mV@150mA·cm ⁻²	4
8	CoP/NF	1 м КОН	317 mV@50mA·cm ⁻²	5
9	FCO-Vo@NC	1 м КОН	318 mV@10mA·cm ⁻²	6
10	CoCu-MOF NBs	1 м КОН	271 mV@10mA·cm ⁻²	7
11	Fe ₂ Ni MIL-88B	1 м КОН	264 mV@10 mA·cm ⁻²	8
13	CoNi MOF-mCNTs	1 м КОН	306 mV@10mA·cm ⁻²	9
14	Co ₃ S ₄ /EC-MOF	1 м КОН	336 mV@100mA·cm ⁻²	10
15	CoNiFe LTHs	1 м КОН	262 mV@10mA·cm ⁻²	11
16	3DGS-Co _{3.0} Cu _{1.0} -MOF	0.1 м КОН	460 mV@10mA · cm ⁻²	12
17	CuCo-MOF	1 м КОН	340 mV@10mA · cm ⁻²	13
16	Ni _{0.75} Fe _{0.25} BDC	1 м КОН	310 mV@10mA·cm ⁻²	14
15	aCo(OH)2-ZIF-L/NF-40	0.1 м КОН	290 mV@100mA·cm ⁻²	15

Table S5. The OER performance of recently reported most active MOFs-based catalysts in alkaline media.

References

1. Gu, X.; Ji, Y.-G.; Tian, J.; Wu, X.; Feng, L., Combined MOF derivation and fluorination imparted efficient synergism of Fe-Co fluoride for oxygen evolution reaction. Chem Eng J 2022, 427. https://doi.org/10.1016/j.cej.2021.131576

2. Xu, J.; Zhao, Y.; Li, M.; Fan, G.; Yang, L.; Li, F., A strong coupled 2D metal-organic framework and ternary layered double hydroxide hierarchical nanocomposite as an excellent electrocatalyst for the oxygen evolution reaction. Electrochim Acta 2019, 307, 275-284. https://doi.org/10.1016/j.electacta.2019.03.210

3. Chai, L.; Hu, Z.; Wang, X.; Xu, Y.; Zhang, L.; Li, T. T.; Hu, Y.; Qian, J.; Huang, S., Stringing Bimetallic Metal-Organic Framework-Derived Cobalt Phosphide Composite for High-Efficiency Overall Water Splitting. Adv Sci (Weinh) 2020, 7 (5), 1903195. https://doi.org/10.1002/advs.201903195

4. Zhuang, L. Z.; Ge, L.; Liu, H. L.; Jiang, Z. R.; Jia, Y.; Li, Z. H.; Yang, D. J.; Hocking, R. K.; Li, M. R.; Zhang, L. Z.; Wang, X.; Yao, X. D.; Zhu, Z. H., A Surfactant-Free and Scalable General Strategy for Synthesizing Ultrathin Two-Dimensional Metal-Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angew. Chem., Int. Ed. 2019, 58 (38), 13565-13572. https://doi.org/10.1002/anie.201907600

5. Liu, J.; Gao, Y.; Tang, X.; Zhan, K.; Zhao, B.; Xia, B. Y.; Yan, Y., Metal-organic frameworkderived hierarchical ultrathin CoP nanosheets for overall water splitting. J. Mater. Chem. A 2020, 8 (37), 19254-19261. https://doi.org/10.1039/d0ta07616c

6. Min, K.; Hwang, M.; Shim, S. E.; Lim, D.; Baeck, S.-H., Defect-rich Fe-doped Co₃O₄ derived from bimetallic-organic framework as an enhanced electrocatalyst for oxygen evolution reaction. Chem Eng J 2021, 424. https://doi.org/10.1016/j.cej.2021.130400

7. Weiren Cheng, Z.-P. W., Deyan Luan, Shuang-Quan Zang, and Xiong Wen (David) Lou, Synergetic Cobalt-Copper-Based Bimetal–Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution. Angew. Chem. Int. Ed. 2021, 60, 1-7. https://doi.org/10.1002/anie.202112775

10.1002/ange.202112775

 Abazari, R.; Sanati, S.; Morsali, A., Mixed Metal Fe₂Ni MIL-88B Metal-Organic Frameworks Decorated on Reduced Graphene Oxide as a Robust and Highly Efficient Electrocatalyst for Alkaline Water Oxidation. Inorg Chem 2022. https://doi.org/10.1021/acs.inorgchem.1c03216

9. Yu, S.; Wu, Y.; Xue, Q.; Zhu, J.-J.; Zhou, Y., A novel multi-walled carbon nanotube-coupled CoNi MOF composite enhances the oxygen evolution reaction through synergistic effects. J Mater Chem A 2022. https://doi.org/10.1039/d1ta10681c

10. Liu, T.; Li, P.; Yao, N.; Kong, T.; Cheng, G.; Chen, S.; Luo, W., Self-Sacrificial Template-Directed Vapor-Phase Growth of MOF Assemblies and Surface Vulcanization for Efficient Water Splitting. Adv. Mater. 2019, 31 (21), 1806672. https://doi.org/10.1002/adma.201806672

11. Yu, R.; Liu, D.; Yuan, M.; Wang, Y.; Ye, C.; Li, J.; Du, Y., Universal MOF-Mediated synthesis of 2D CoNi-based layered triple hydroxides electrocatalyst for efficient oxygen evolution reaction. J Colloid Interf Sci 2021, 602, 612-618. https://doi.org/10.1016/j.jcis.2021.06.035

Wang, H.; Xie, A.; Li, X.; Wang, Q.; Zhang, W.; Zhu, Z.; Wei, J.; Chen, D.; Peng, Y.; Luo,
S., Three-dimensional petal-like graphene Co_{3.0}Cu_{1.0} metal organic framework for oxygen evolution reaction. J Alloy Compd 2021, 884. https://doi.org/10.1016/j.jallcom.2021.161144

13. Liu, Q.; Chen, J.; Yu, F.; Wu, J.; Liu, Z.; Peng, B., Multifunctional book-like CuCo-MOF for highly sensitive glucose detection and electrocatalytic oxygen evolution. New J Chem, 2021, 45 (36),

16714-16721. https://doi.org/10.1039/d1nj02931b

 Hao, Y.; Liu, Q.; Zhou, Y.; Yuan, Z.; Fan, Y.; Ke, Z.; Su, C. Y.; Li, G., A 2D NiFe Bimetallic Metal–Organic Frameworks for Efficient Oxygen Evolution Electrocatalysis. Energy Environ Mater, 2019, 2 (1), 18-21. https://doi.org/10.1002/eem2.12024

15. Ding, J.; Fan, T.; Shen, K.; Li, Y., Electrochemical synthesis of amorphous metal hydroxide microarrays with rich defects from MOFs for efficient electrocatalytic water oxidation. Appl. Catal. B: Environ. 2021, 292, 120174. https://doi.org/10.1016/j.apcatb.2021.120174