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Characterization and Analysis Methods 

1.1. Powder X-ray diffraction (PXRD) 

The as-synthesized crystalline and amorphous α-and γ-FeO(OH) were characterized by powder 

x-ray diffraction on Bruker D8 Advance X-ray diffractometer equipped with Cu Kα (Kα1 = 

1.540598 Å, Kα2 = 1.544426 Å, Kα ratio 0.5, Kαav = 1.541874Å) X-ray tubes. 

1.2. Fourier Transform Infrared spectroscopy (FTIR) 

The FTIR of crystalline and amorphous α-and γ-FeO(OH) was characterized by Nicolet, 

Protege 460 by making pellet. The pellet was made by mixing small amount of KBr with minute 

quantity of the sample 

1.3. Raman spectroscopy  

Raman spectroscopy was analyzed by micro-Raman spectrometer model (Renishaw plc, Old 

Town, Wotton-under-Edge, Gloucestershire, GL 12 7 DW, United Kingdom), in which 514nm 

Argon laser was used. 

  

1.4. Field Emission Scanning Electron Microscope (FESEM) 

The field emission scanning electron microscopy (FESEM), and the Energy-dispersive X-ray 

spectroscopy (EDX) techniques were used for mapping and elemental analysis was done by 

JSM-IT300HR, JEOL instrument. 

1.5. High-resolution Transmission Electron Microscopy (HRTEM) 

The synthesized crystalline and amorphous α-and γ-FeO(OH) were further characterized by 

high-resolution transmission electron microscopy (HRTEM). HRTEM images and selected 

area electron diffraction (SAED) patterns were performed using a Thermo Fischer Technik 

microscope working at accelerated voltage 200 kV. TEM grids for crystalline and amorphous 

α-and γ-FeO(OH) were prepared on the 200-mesh carbon-coated Cu grids [TED PELLA, INC.] 

with the help of their respective dilute suspensions in HPLC grade acetone (Merck, India).  

1.6. X-ray photoelectron spectroscopy (XPS) 

The X-ray photoelectron spectroscopy (XPS) measurements were conducted through omicron 

nanotechnology, Oxford Instrument Germany, equipped with an aluminum monochromator 
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with an aluminium source (Al Kα radiation hν =1486.7eV). The operational voltage and current 

of the instrument were at 15 kV and 15 mA.  

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Preparation of α-FeO(OH) (top) and γ-FeO(OH) (bottom) via hydrothermal route. 

Figure S2. FTIR spectra of (a) α-FeO(OH)@RT and (b) γ -FeO(OH)@RT.   
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Figure S3. Raman spectra of (a) α-FeO(OH)@RT and (b) γ -FeO(OH)@RT. 

 

 

 

 

 

 

 

 

 

Figure S4. EDS spectra of the as-prepared (a) α-FeO(OH)@85⁰C (b) γ-FeO(OH)@75⁰C. The atomic 

ratio of Fe and O atoms was 1:2. 
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Figure S5. (a) FESEM image of α-FeO(OH)@RT. Elemental mapping of (b) O-atom (c) Fe-atom.  

 

Figure S6. (a) FESEM image of γ-FeO(OH)@RT. Elemental Mapping of (b) O-atom (c) Fe-atom.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7. EDS spectra of the as-prepared (a) α-FeO(OH)@RT (b) γ-FeO(OH)@RT.  The atomic ratio 

of Fe and O atoms was 1:2.  
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 Figure S8. SAED pattern of amorphous α-FeO(OH)@RT. 

 

Figure S9. XPS study with α-FeO(OH)@RT showing the high resolution (a) Fe 2p scan (b) O 1s scan. 

 

Figure S10: XPS study with -FeO(OH)@RT showing the high resolution (a) Fe 2p scan (b) O 1s 

scan. 
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Figure S11. Preparation of electrode with FeO(OH) catalysts on NF electrode. 

Table S1. Overpotentials (η) recorded for OER study with FeO(OH) iron-based oxyhydroxide anodes 

reported earlier as the anode in 1 M KOH. 

 

Anode material Substrate Ƞ(mV)@10 mA cm-2 Reference 

FeO(OH) NF 428 1 

FeO(OH) NF 290 2 

FeO(OH)(Se) IF 287 3 

Fe2O3/CNT GC 383 4 

γ-Fe2O3-CNT GC 340 5 

CNT/FeO(OH) CC 250 6 

FeO(OH) nanosheet NF 390 7 

FeO(OH) NF 280 8 

NiFeOX GC 350 9 

Ni-FeO(OH) Fe-foil 274 1 

Co0.54Fe0.46O(OH)  GC 390 10 

RGO/Ni-FeO(OH) FTO 260 11 

FeO(OH)/CeO2 NF 250 12 

FeO(OH)@NG Fe78Si9B13 amorphous 

alloy 

240 13 

FeO(OH)/LDH  GCDE 174 14 

Se doped FeO(OH) NF 348@500 mA cm−2 3 

NiCo2S4/FeO(OH) CC 200 15 

β/δ-FeO(OH) NF 180 mV 16 

FeO(OH)@CNTs NF 206 17 

FeO(OH) powder NF 441  17 

FeO(OH)/Co/FeO(OH

) HNTAs 

NF 350 18 

γ-FeO(OH) NF 286 19 

α-FeO(OH) FTO 620 20 

FeO(OH)/Ni3N CC 244 21 

δ-FeO(OH) NF 292 16 

FeO(OH) IF 428 1 

δ-FeO(OH)  NF 290 22 

F-modified β-

FeO(OH) 

 360 23 

Abbreviations: NF = Nickel Foam; CC = Carbon Cloth; GC = Glassy Carbon electrode; IF = Iron 

Foam; CP = Carbon fibre Paper; SS = Stainless Steel; FTO = Fluorine doped Tin Oxide; NC = N-

doped Carbon; GCDE = glassy carbon disk electrode 
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Figure S12. Powder X-ray diffraction spectrum of α-Fe2O3 (black curve) prepared herein and 

indexing of the reflections to the JCPDS 33-0664 (blue bars). 

Table S2. Mass loading of the iron materials on NF. 

Material 
Mass loading (mg) 

γ-FeO(OH)@RT 7.4 

γ-FeO(OH)@50⁰C 5.8 

γ-FeO(OH)@75⁰C 7.3 

α-FeO(OH)@RT 9.1 

α-FeO(OH)@50⁰C 7.2 

α-FeO(OH)@85⁰C 6.1 
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Figure S13. Linear sweep voltammetry of α-Fe2O3 and mixed phase α-FeO(OH)/α-Fe2O3 and γ-

FeO(OH)/α-Fe2O3 materials in comparison to RuO2 and IrO2. 

 

 

Figure S14. Powder X-ray diffraction spectra of (a) α-FeO(OH)/α-Fe2O3 (b) γ-FeO(OH)/ α-Fe2O3 along 

with the indexing of peaks with reference to the JCPDS cards. 
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Figure S15. Powder X-ray diffraction spectra of partially crystalline (a) α-FeO(OH)@50⁰C and (b) γ-

FeO(OH)@50⁰C. 

 

 

Figure S16. Polarization curves recorded with the working electrodes prepared with γ-FeO(OH)@RT, 

α-FeO(OH)@RT, IrO2, RuO2 deposited on 1 cm2 NF surface and bare NF using 1 M KOH solution and 

in a sweep rate of 1 mV s-1. (Inset) Overpotential calculated from the LSV plots of γ-FeO(OH)@RT, α-

FeO(OH)@RT, IrO2, RuO2, and bare NF at a current density of 10 mA cm-2.  
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Figure S17. The ECSA plot used to determine the double-layer capacitance (Cdl) of different catalysts. 

CV scans in the non-Faradaic potential range (-0.05 – 0.05V) at scan rates of 10 mV s-1, 25 mV s-1, 50 

mV s-1, 100 mV s-1, 150 mV s-1 and 200 mV s-1. The ECSA plots of (a) γ-FeO(OH)@RT (b) γ-

FeO(OH)@50°C (c) γ-FeO(OH)@75°C (d) α-FeO(OH)@RT (e) α-FeO(OH)@50°C (f) α-

FeO(OH)@85°C.  

 

 

 

Figure S18. ECSA normalized activity of γ-FeO(OH)@RT, γ-FeO(OH)@50°C, γ-FeO(OH)@75°C. 
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Table S3. Comparison of TOF of, γ-FeO(OH)@RT γ-FeO(OH)@50⁰C γ-FeO(OH)@85⁰C, α-

FeO(OH)@RT, α-FeO(OH)@50⁰C, and α-FeO(OH)@85⁰C.  

Material  Turn over frequency  

γ-FeO(OH)@RT 1.6 x 10-3 s-1  

γ-FeO(OH)@50⁰C 0.59 x 10-3 s-1  

γ-FeO(OH)@75⁰C 0.3 x 10-3 s-1  

α-FeO(OH)@RT 0.845 x 10-3 s-1  

α-FeO(OH)@50⁰C 0.436 x 10-3 s-1  

α-FeO(OH)@85⁰C 0.343 x 10-3 s-1  

 

Table S4. Rs value obtained from the Nyquist plot (Figure 9a and 9b). 

Material Rs (Ω) 

γ-FeO(OH)@RT 2.12 ± 0.2 

γ-FeO(OH)@50⁰C 1.96 ± 0.3 

γ-FeO(OH)@75⁰C 2.21 ± 0.2 

α-FeO(OH)@RT 2.13 ± 0.1 

α-FeO(OH)@50⁰C 2.01 ± 0.2 

α-FeO(OH)@85⁰C 2.53 ± 0.2 
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