Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

**Electronic Supplementary File for:** 

# γ-FeO(OH) with Multi-surface Terminations Intrinsically Active for Electrocatalytic Oxygen Evolution Reaction

Laxmikanta Mallick,<sup>‡</sup> Anubha Rajput,<sup>‡</sup> Mrinal Kanti Adak, Avinava Kundu, Pratigya Choudhary Biswarup Chakraborty\*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India

\*E-mail: cbiswarup@chemistry.iitd.ac.in

‡These authors contributed equally to this work

#### **Characterization and Analysis Methods**

### 1.1. Powder X-ray diffraction (PXRD)

The as-synthesized crystalline and amorphous  $\alpha$ -and  $\gamma$ -FeO(OH) were characterized by powder x-ray diffraction on Bruker D8 Advance X-ray diffractometer equipped with Cu K $\alpha$  (K $\alpha$ 1 = 1.540598 Å, K $\alpha$ 2 = 1.544426 Å, K $\alpha$  ratio 0.5, K $\alpha$ av = 1.541874Å) X-ray tubes.

#### 1.2. Fourier Transform Infrared spectroscopy (FTIR)

The FTIR of crystalline and amorphous  $\alpha$ -and  $\gamma$ -FeO(OH) was characterized by Nicolet, Protege 460 by making pellet. The pellet was made by mixing small amount of KBr with minute quantity of the sample

### 1.3. Raman spectroscopy

Raman spectroscopy was analyzed by micro-Raman spectrometer model (Renishaw plc, Old Town, Wotton-under-Edge, Gloucestershire, GL 12 7 DW, United Kingdom), in which 514nm Argon laser was used.

### 1.4. Field Emission Scanning Electron Microscope (FESEM)

The field emission scanning electron microscopy (FESEM), and the Energy-dispersive X-ray spectroscopy (EDX) techniques were used for mapping and elemental analysis was done by JSM-IT300HR, JEOL instrument.

#### 1.5. High-resolution Transmission Electron Microscopy (HRTEM)

The synthesized crystalline and amorphous  $\alpha$ -and  $\gamma$ -FeO(OH) were further characterized by high-resolution transmission electron microscopy (HRTEM). HRTEM images and selected area electron diffraction (SAED) patterns were performed using a Thermo Fischer Technik microscope working at accelerated voltage 200 kV. TEM grids for crystalline and amorphous  $\alpha$ -and  $\gamma$ -FeO(OH) were prepared on the 200-mesh carbon-coated Cu grids [TED PELLA, INC.] with the help of their respective dilute suspensions in HPLC grade acetone (Merck, India).

#### 1.6. X-ray photoelectron spectroscopy (XPS)

The X-ray photoelectron spectroscopy (XPS) measurements were conducted through omicron nanotechnology, Oxford Instrument Germany, equipped with an aluminum monochromator

with an aluminium source (Al K $\alpha$  radiation hv =1486.7eV). The operational voltage and current of the instrument were at 15 kV and 15 mA.



Figure S1. Preparation of  $\alpha$ -FeO(OH) (top) and  $\gamma$ -FeO(OH) (bottom) via hydrothermal route.



**Figure S2.** FTIR spectra of (a)  $\alpha$ -FeO(OH)@RT and (b)  $\gamma$  -FeO(OH)@RT.



**Figure S3.** Raman spectra of (a)  $\alpha$ -FeO(OH)@RT and (b)  $\gamma$  -FeO(OH)@RT.



**Figure S4.** EDS spectra of the as-prepared (a)  $\alpha$ -FeO(OH)@85°C (b)  $\gamma$ -FeO(OH)@75°C. The atomic ratio of Fe and O atoms was 1:2.



Figure S5. (a) FESEM image of α-FeO(OH)@RT. Elemental mapping of (b) O-atom (c) Fe-atom.



Figure S6. (a) FESEM image of γ-FeO(OH)@RT. Elemental Mapping of (b) O-atom (c) Fe-atom.



**Figure S7.** EDS spectra of the as-prepared (a)  $\alpha$ -FeO(OH)@RT (b)  $\gamma$ -FeO(OH)@RT. The atomic ratio of Fe and O atoms was 1:2.



Figure S8. SAED pattern of amorphous α-FeO(OH)@RT.



Figure S9. XPS study with  $\alpha$ -FeO(OH)@RT showing the high resolution (a) Fe 2p scan (b) O 1s scan.



**Figure S10:** XPS study with  $\gamma$ -FeO(OH)@RT showing the high resolution (a) Fe 2p scan (b) O 1s scan.



Figure S11. Preparation of electrode with FeO(OH) catalysts on NF electrode.

**Table S1.** Overpotentials ( $\eta$ ) recorded for OER study with FeO(OH) iron-based oxyhydroxide anodes reported earlier as the anode in 1 M KOH.

| Anode material                              | Substrate                                                  | $\eta(mV)@10 \text{ mA cm}^{-2}$ | Reference |
|---------------------------------------------|------------------------------------------------------------|----------------------------------|-----------|
| FeO(OH)                                     | NF                                                         | 428                              | 1         |
| FeO(OH)                                     | NF                                                         | 290                              | 2         |
| FeO(OH)(Se)                                 | IF                                                         | 287                              | 3         |
| Fe <sub>2</sub> O <sub>3</sub> /CNT         | GC                                                         | 383                              | 4         |
| γ-Fe <sub>2</sub> O <sub>3</sub> -CNT       | GC                                                         | 340                              | 5         |
| CNT/FeO(OH)                                 | CC                                                         | 250                              | 6         |
| FeO(OH) nanosheet                           | NF                                                         | 390                              | 7         |
| FeO(OH)                                     | NF                                                         | 280                              | 8         |
| NiFeOX                                      | GC                                                         | 350                              | 9         |
| Ni-FeO(OH)                                  | Fe-foil                                                    | 274                              | 1         |
| Co <sub>0.54</sub> Fe <sub>0.46</sub> O(OH) | GC                                                         | 390                              | 10        |
| RGO/Ni-FeO(OH)                              | FTO                                                        | 260                              | 11        |
| FeO(OH)/CeO <sub>2</sub>                    | NF                                                         | 250                              | 12        |
| FeO(OH)@NG                                  | Fe <sub>78</sub> Si <sub>9</sub> B <sub>13</sub> amorphous | 240                              | 13        |
|                                             | alloy                                                      |                                  |           |
| FeO(OH)/LDH                                 | GCDE                                                       | 174                              | 14        |
| Se doped FeO(OH)                            | NF                                                         | $348@500 \text{ mA cm}^{-2}$     | 3         |
| NiCo <sub>2</sub> S <sub>4</sub> /FeO(OH)   | CC                                                         | 200                              | 15        |
| β/δ-FeO(OH)                                 | NF                                                         | 180 mV                           | 16        |
| FeO(OH)@CNTs                                | NF                                                         | 206                              | 17        |
| FeO(OH) powder                              | NF                                                         | 441                              | 17        |
| FeO(OH)/Co/FeO(OH                           | NF                                                         | 350                              | 18        |
| ) HNTAs                                     |                                                            |                                  |           |
| γ-FeO(OH)                                   | NF                                                         | 286                              | 19        |
| α-FeO(OH)                                   | FTO                                                        | 620                              | 20        |
| FeO(OH)/Ni <sub>3</sub> N                   | CC                                                         | 244                              | 21        |
| δ-FeO(OH)                                   | NF                                                         | 292                              | 16        |
| FeO(OH)                                     | IF                                                         | 428                              | 1         |
| δ-FeO(OH)                                   | NF                                                         | 290                              | 22        |
| F-modified β-                               |                                                            | 360                              | 23        |
| FeO(OH)                                     |                                                            |                                  |           |

Abbreviations: NF = Nickel Foam; CC = Carbon Cloth; GC = Glassy Carbon electrode; IF = Iron Foam; CP = Carbon fibre Paper; SS = Stainless Steel; FTO = Fluorine doped Tin Oxide; NC = N-doped Carbon; GCDE = glassy carbon disk electrode



**Figure S12**. Powder X-ray diffraction spectrum of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (black curve) prepared herein and indexing of the reflections to the JCPDS 33-0664 (blue bars).

| Table S2. Mass loading of the iron materials on NI | F. |
|----------------------------------------------------|----|
|----------------------------------------------------|----|

| Material       | Mass loading (mg) |
|----------------|-------------------|
| γ-FeO(OH)@RT   | 7.4               |
| γ-FeO(OH)@50°C | 5.8               |
| γ-FeO(OH)@75°C | 7.3               |
| α-FeO(OH)@RT   | 9.1               |
| α-FeO(OH)@50°C | 7.2               |
| α-FeO(OH)@85°C | 6.1               |



**Figure S13.** Linear sweep voltammetry of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and mixed phase  $\alpha$ -FeO(OH)/ $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and  $\gamma$ -FeO(OH)/ $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> materials in comparison to RuO<sub>2</sub> and IrO<sub>2</sub>.



**Figure S14.** Powder X-ray diffraction spectra of (a)  $\alpha$ -FeO(OH)/ $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(b)  $\gamma$ -FeO(OH)/ $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> along with the indexing of peaks with reference to the JCPDS cards.



**Figure S15.** Powder X-ray diffraction spectra of partially crystalline (a)  $\alpha$ -FeO(OH)@50°C and (b)  $\gamma$ -FeO(OH)@50°C.



**Figure S16.** Polarization curves recorded with the working electrodes prepared with  $\gamma$ -FeO(OH)@RT,  $\alpha$ -FeO(OH)@RT, IrO<sub>2</sub>, RuO<sub>2</sub> deposited on 1 cm<sup>2</sup> NF surface and bare NF using 1 M KOH solution and in a sweep rate of 1 mV s<sup>-1</sup>. (Inset) Overpotential calculated from the LSV plots of  $\gamma$ -FeO(OH)@RT,  $\alpha$ -FeO(OH)@RT, IrO<sub>2</sub>, RuO<sub>2</sub>, and bare NF at a current density of 10 mA cm<sup>-2</sup>.



**Figure S17.** The ECSA plot used to determine the double-layer capacitance ( $C_{dl}$ ) of different catalysts. CV scans in the non-Faradaic potential range (-0.05 – 0.05V) at scan rates of 10 mV s<sup>-1</sup>, 25 mV s<sup>-1</sup>, 50 mV s<sup>-1</sup>, 100 mV s<sup>-1</sup>, 150 mV s<sup>-1</sup> and 200 mV s<sup>-1</sup>. The ECSA plots of (a)  $\gamma$ -FeO(OH)@RT (b)  $\gamma$ -FeO(OH)@50°C (c)  $\gamma$ -FeO(OH)@75°C (d)  $\alpha$ -FeO(OH)@RT (e)  $\alpha$ -FeO(OH)@50°C (f)  $\alpha$ -FeO(OH)@85°C.



Figure S18. ECSA normalized activity of γ-FeO(OH)@RT, γ-FeO(OH)@50°C, γ-FeO(OH)@75°C.

| Material       | Turn over frequency                      |
|----------------|------------------------------------------|
| γ-FeO(OH)@RT   | 1.6 x 10 <sup>-3</sup> s <sup>-1</sup>   |
| γ-FeO(OH)@50°C | 0.59 x 10 <sup>-3</sup> s <sup>-1</sup>  |
| γ-FeO(OH)@75°C | 0.3 x 10 <sup>-3</sup> s <sup>-1</sup>   |
| α-FeO(OH)@RT   | 0.845 x 10 <sup>-3</sup> s <sup>-1</sup> |
| α-FeO(OH)@50°C | 0.436 x 10 <sup>-3</sup> s <sup>-1</sup> |
| α-FeO(OH)@85°C | 0.343 x 10 <sup>-3</sup> s <sup>-1</sup> |

**Table S3.** Comparison of TOF of,  $\gamma$ -FeO(OH)@RT  $\gamma$ -FeO(OH)@50°C  $\gamma$ -FeO(OH)@85°C,  $\alpha$ -FeO(OH)@RT,  $\alpha$ -FeO(OH)@50°C, and  $\alpha$ -FeO(OH)@85°C.

Table S4. Rs value obtained from the Nyquist plot (Figure 9a and 9b).

| Material             | $R_s(\Omega)$  |
|----------------------|----------------|
| γ-FeO(OH)@RT         | $2.12 \pm 0.2$ |
| γ-FeO(OH)@50⁰C       | 1.96 ± 0.3     |
| γ-FeO(OH)@75⁰C       | 2.21 ± 0.2     |
| $\alpha$ -FeO(OH)@RT | 2.13 ± 0.1     |
| α-FeO(OH)@50°C       | $2.01 \pm 0.2$ |
| α-FeO(OH)@85°C       | $2.53 \pm 0.2$ |
|                      |                |

## **Reference:**

- Zou, J.; Peleckis, G.; Lee, C.-Y.; Wallace, G. G. Facile Electrochemical Synthesis of Ultrathin Iron Oxyhydroxide Nanosheets for the Oxygen Evolution Reaction. *Chem. Commun.* 2019, 55 (60), 8808–8811.
- Babar, P. T.; Pawar, B. S.; Lokhande, A. C.; Gang, M. G.; Jang, J. S.; Suryawanshi, M. P.;
   Pawar, S. M.; Kim, J. H. Annealing Temperature Dependent Catalytic Water Oxidation
   Activity of Iron Oxyhydroxide Thin Films. *J. energy Chem.* 2017, *26* (4), 757–761.
- Niu, S.; Jiang, W.-J.; Wei, Z.; Tang, T.; Ma, J.; Hu, J.-S.; Wan, L.-J. Se-Doping Activates FeOOH for Cost-Effective and Efficient Electrochemical Water Oxidation. *J. Am. Chem. Soc.* 2019, *141* (17), 7005–7013.
- Bandal, H. A.; Jadhav, A. R.; Chaugule, A. A.; Chung, W. J.; Kim, H. Fe2O3 Hollow Nanorods/CNT Composites as an Efficient Electrocatalyst for Oxygen Evolution Reaction. *Electrochim. Acta* 2016, 222, 1316–1325.
- (5) Tavakkoli, M.; Kallio, T.; Reynaud, O.; Nasibulin, A. G.; Sainio, J.; Jiang, H.; Kauppinen, E.

I.; Laasonen, K. Maghemite Nanoparticles Decorated on Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction. *J. Mater. Chem. A* **2016**, *4* (14), 5216–5222.

- (6) Zhang, Y.; Jia, G.; Wang, H.; Ouyang, B.; Rawat, R. S.; Fan, H. J. Ultrathin CNTs@ FeOOH Nanoflake Core/Shell Networks as Efficient Electrocatalysts for the Oxygen Evolution Reaction. *Mater. Chem. Front.* 2017, 1 (4), 709–715.
- (7) Lee, J.; Lee, H.; Lim, B. Chemical Transformation of Iron Alkoxide Nanosheets to FeOOH Nanoparticles for Highly Active and Stable Oxygen Evolution Electrocatalysts. *J. Ind. Eng. Chem.* 2018, 58, 100–104.
- (8) Zhang, C.; Zhang, B.; Li, Z.; Hao, J. Deep Eutectic Solvent-Mediated Hierarchically Structured Fe-Based Organic–Inorganic Hybrid Catalyst for Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2019, 2 (5), 3343–3351.
- McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. *J. Am. Chem. Soc.* 2013, *135* (45), 16977– 16987.
- (10) Zhang, X.; An, L.; Yin, J.; Xi, P.; Zheng, Z.; Du, Y. Effective Construction of High-Quality Iron Oxy-Hydroxides and Co-Doped Iron Oxy-Hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application. *Sci. Rep.* **2017**, *7* (1), 1–10.
- (11) Zhang, X.; Zhang, B.; Liu, S.; Kang, H.; Kong, W.; Zhang, S.; Shen, Y.; Yang, B. RGO Modified Ni Doped FeOOH for Enhanced Electrochemical and Photoelectrochemical Water Oxidation. *Appl. Surf. Sci.* **2018**, *436*, 974–980.
- (12) Feng, J.; Ye, S.; Xu, H.; Tong, Y.; Li, G. Design and Synthesis of FeOOH/CeO2 Heterolayered Nanotube Electrocatalysts for the Oxygen Evolution Reaction. *Adv. Mater.* 2016, 28 (23), 4698–4703.
- (13) Zhu, K. Z.; Liu, C. B.; Ye, X. K.; Wu, Y. A Study of Catalysis of Copper-Aluminium Hydrotalcite-like Compounds in the Phenol Hydroxylation. *Acta Chim. Sin.* 1998, *56* (1), 36.
- (14) Chen, J.; Zheng, F.; Zhang, S.-J.; Fisher, A.; Zhou, Y.; Wang, Z.; Li, Y.; Xu, B.-B.; Li, J.-T.; Sun, S.-G. Interfacial Interaction between FeOOH and Ni–Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis. *ACS Catal.* **2018**, *8* (12), 11342– 11351.
- (15) Li, X.; Kou, Z.; Xi, S.; Zang, W.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH

Nanowire Arrays with Rich Sulfide/Hydroxide Interfaces Enable High OER Activity. *Nano Energy* **2020**, *78*, 105230.

- (16) Hu, J.; Li, S.; Chu, J.; Niu, S.; Wang, J.; Du, Y.; Li, Z.; Han, X.; Xu, P. Understanding the Phase-Induced Electrocatalytic Oxygen Evolution Reaction Activity on FeOOH Nanostructures. *ACS Catal.* 2019, *9* (12), 10705–10711.
- (17) Li, H.; Zhou, Q.; Liu, F.; Zhang, W.; Tan, Z.; Zhou, H.; Huang, Z.; Jiao, S.; Kuang, Y.
  Biomimetic Design of Ultrathin Edge-Riched FeOOH@ Carbon Nanotubes as High-Efficiency Electrocatalysts for Water Splitting. *Appl. Catal. B Environ.* 2019, 255, 117755.
- (18) Feng, J.; Xu, H.; Dong, Y.; Ye, S.; Tong, Y.; Li, G. FeOOH/Co/FeOOH Hybrid Nanotube Arrays as High-performance Electrocatalysts for the Oxygen Evolution Reaction. *Angew. Chemie Int. Ed.* **2016**, *55* (11), 3694–3698.
- (19) Wang, K.; Du, H.; He, S.; Liu, L.; Yang, K.; Sun, J.; Liu, Y.; Du, Z.; Xie, L.; Ai, W. Kinetically Controlled, Scalable Synthesis of Γ-FeOOH Nanosheet Arrays on Nickel Foam toward Efficient Oxygen Evolution: The Key Role of In-situ-generated Γ-NiOOH. *Adv. Mater.* 2021, *33* (11), 2005587.
- (20) Chakraborty, B.; Beltrán-Suito, R.; Hausmann, J. N.; Garai, S.; Driess, M.; Menezes, P. W. Enabling Iron-Based Highly Effective Electrochemical Water-Splitting and Selective Oxygenation of Organic Substrates through In Situ Surface Modification of Intermetallic Iron Stannide Precatalyst. *Adv. Energy Mater.* **2020**, *10* (30), 2001377.
- (21) Guan, J.; Li, C.; Zhao, J.; Yang, Y.; Zhou, W.; Wang, Y.; Li, G.-R. FeOOH-Enhanced Bifunctionality in Ni3N Nanotube Arrays for Water Splitting. *Appl. Catal. B Environ.* 2020, 269, 118600.
- (22) Liu, B.; Wang, Y.; Peng, H.; Yang, R.; Jiang, Z.; Zhou, X.; Lee, C.; Zhao, H.; Zhang, W. Iron Vacancies Induced Bifunctionality in Ultrathin Feroxyhyte Nanosheets for Overall Water Splitting. *Adv. Mater.* **2018**, *30* (36), 1803144.
- (23) Chen, G.-F.; Luo, Y.; Ding, L.-X.; Wang, H. Low-Voltage Electrolytic Hydrogen Production Derived from Efficient Water and Ethanol Oxidation on Fluorine-Modified FeOOH Anode. *ACS Catal.* 2018, 8 (1), 526–530.