Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information for:

Identification of the U(V) Complex (C₅Me₅)₂U^VI(=NSiMe₃)

in the Reaction of (C₅Me₅)₂U^{III}I(THF) with N₃SiMe₃

Justin C. Wedal, Joseph W. Ziller, and William J. Evans*

Department of Chemistry, University of California, Irvine, California 92697, United States

Email: wevans@uci.edu

*To whom correspondence should be addressed.

Table of Contents	
Experimental Details	S3
NMR Spectra	S 5
Crystallographic Data	S8
References and Definitions	S16

Experimental Details

Caution! ²³⁸U is an alpha emitter with a half-life of approximately 4.5x10⁹ years. Samples should only be handled in laboratories equipped with appropriate radiological safety controls and radiation-counting equipment.

All syntheses and manipulations described below were conducted under argon with rigorous exclusion of air and water using standard glovebox and vacuum line techniques. Solvents were sparged with UHP argon and dried by passage through columns containing Q-5 and molecular sieves prior to use. Deuterated NMR solvents were dried over NaK alloy, degassed by three freeze-pump-thaw cycles, and vacuum transferred before use. ¹H spectra were recorded on a CRYO500 MHz at 298 K and referenced to residual protio-solvent resonances. (C₅Me₅)₂U^{III}I(THF)^{1,2} was prepared as previously described. N₃SiMe₃ was degassed by three freeze-pump-thaw cycles before use. PhN=NPh was sublimed prior to use. N₃Ad was used as received.

Crystallization of (C₅**Me**₅)₂**U**^V**I**(=**NSiMe**₃), **1.** (C₅Me₅)₂**U**^{III}I(THF) (50 mg, 0.071 mmol) was dissolved in toluene (2 mL) to form a dark green solution. N₃SiMe₃ (9 mg, 0.078 mmol) was dissolved in toluene (0.5 mL) and added to the stirred solution. The solution became brown. The solution was stirred for two hours and then dried under vacuum. Hexane (5 mL) was added to form a brown suspension. The mixture was centrifuged to remove the solids and dried under vacuum. ¹H NMR and IR spectroscopy showed the presence of a new paramagnetic compound. Brown X-ray quality crystals of 1 were grown from a concentrated hexane solution at -35 °C.

Reaction of (C_5Me_5)_2U^{III}I(THF) and N_3SiMe_3. $(C_5Me_5)_2U^{III}I(THF)$ (100 mg, 0.141 mmol) was dissolved in toluene (5 mL) to form a dark green solution. N_3SiMe_3 (18 mg, 0.16 mmol) was dissolved in toluene (0.5 mL) and added to the stirred solution by pipet. The solution

became dark brown immediately. The solution was stirred for 30 minutes and then dried under vacuum. Hexane (8 mL) was added and the solution was stirred for one hour. Red solids were removed by filtration and the solution was dried to yield brown solids (68 mg, 67%). The ¹H NMR spectrum in C₆D₆ showed a ratio of roughly 3:4 of (C₅Me₅)₂U^{VI}(=NSiMe₃)₂ (δ 4.91 ppm, C₅Me₅)³ to (C₅Me₅)₂U^{IVI}₂ (δ 17.99 ppm, C₅Me₅).⁴

Reaction of $(C_5Me_5)_2U^{III}I(THF)$ **and** N_3Ad . As above, $(C_5Me_5)_2U^{III}I(THF)$ (50 mg, 0.071 mmol) and N_3Ad (13 mg, 0.073 mmol) were combined in toluene (5 mL) to form a brown solution. Slight gas evolution was observed. The solution was dried and the products were extracted into hexane (47 mg, 85%). The ¹H NMR spectrum in C_6D_6 showed a ratio of roughly 3:4 $(C_5Me_5)_2U^{VI}(=NAd)_2$ (δ 4.07 ppm, C_5Me_5)⁵ to $(C_5Me_5)_2U^{IV}I_2$ (δ 18.00 ppm, C_5Me_5).⁴ Brown crystals of $(C_5Me_5)_2U^{VI}(=NAd)_2$ were grown from a concentrated toluene solution at -35 °C and identified by X-ray diffraction.⁵

Reaction of (C₅Me₅)₂UI^{III}(THF) and PhN=NPh. As above, (C₅Me₅)₂U^{III}I(THF) (50 mg, 0.071 mmol) and PhN=NPh (6.5 mg, 0.036 mmol) were combined in toluene (5 mL) to form a red/brown solution. The solution was stirred for 30 minutes and then dried. The products were extracted into hexane, filtered, and dried to yield dark brown solids (39 mg, 76%). The ¹H NMR spectrum in C₆D₆ showed a ratio of roughly 2:3 (C₅Me₅)₂U^{VI}(=NPh)₂ (δ 4.11 ppm, C₅Me₅)⁶ to (C₅Me₅)₂U^{IV}I₂ (δ 17.95 ppm, C₅Me₅).⁴

to $(C_5Me_5)_2U^{IV}I_2$.⁴

L 02

X-ray Data Collection, Structure Solution and Refinement for 1.

A brown crystal of approximate dimensions 0.059 x 0.091 x 0.213 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer system. The APEX2⁷ program package was used to determine the unit-cell parameters and for data collection (120 sec/frame scan time). The raw frame data was processed using SAINT⁸ and SADABS⁹ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL¹⁰ program

package. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space groups $P2_1$ and $P2_1/m$. It was later determined that space group $P2_1/m$ was correct.

The structure was solved by direct methods and refined on F² by full-matrix least-squares techniques. The analytical scattering factors¹¹ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. There were two molecules of the formulaunit present, each located on a mirror plane. The pentamethylcyclopentadienyl ligands were disordered and included using multiple components, partial site-occupancy-factors, geometric and displacements constraints.

Least-squares analysis yielded wR2 = 0.1737 and Goof = 1.075 for 153 variables refined against 6170 data (0.82 Å), R1 = 0.0670 for those 4634 data with I > 2.0σ (I).

There were several high residuals present in the final difference-Fourier map. It was not possible to determine the nature of the residuals although it was probable that *n*-hexane solvent was present. The SQUEEZE^{12a} routine in the PLATON^{12b} program package was used to account for the electrons in the solvent accessible voids.

 Table S1: Crystal data and structure refinement for 1.

Identification code	jcw104	
Empirical formula	C ₂₃ H ₃₉ I N Si U	
Formula weight	722.57	
Temperature	133(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/m$	
Unit cell dimensions	a = 10.0187(12) Å	$\alpha = 90^{\circ}$.
	b = 15.8538(19) Å	$\beta = 101.6286(18)^{\circ}.$

	$c = 19.991(2) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	3110.2(6) Å ³
Ζ	4
Density (calculated)	1.543 Mg/m ³
Absorption coefficient	6.257 mm^{-1}
F(000)	1372
Crystal color	brown
Crystal size	0.213 x 0.091 x 0.059 mm ³
Theta range for data collection	1.040 to 25.740°
Index ranges	$-12 \le h \le 12, -19 \le k \le 19, -24 \le l \le 24$
Reflections collected	35670
Independent reflections	6170 [R(int) = 0.0722]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.2594 and 0.1951
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6170 / 0 / 153
Goodness-of-fit on F ²	1.075
Final R indices [I>2sigma(I) = 4634 data]	R1 = 0.0670, wR2 = 0.1616
R indices (all data, 0.82 Å)	R1 = 0.0911, wR2 = 0.1737
Largest diff. peak and hole	2.934 and -2.413 e.Å ⁻³

Table S2: Bond lengths [Å] and angles [°] for 1.

U(1)-Cnt1	2.525	U(1)-C(3B)#1	2.85(3)
U(1)-N(1)	2.061(10)	U(1)-C(5)	2.877(18)
U(1)-C(2)#1	2.69(4)	U(1)-C(5)#1	2.88(4)
U(1)-C(2)	2.692(19)	U(1)-C(4)	2.898(19)
U(1)-C(1B)#1	2.731(13)	U(1)-C(4)#1	2.90(4)
U(1)-C(1B)	2.731(13)	U(1)-I(1)	3.1137(14)
U(1)-C(5B)	2.745(11)	Si(1)-N(1)	1.662(12)
U(1)-C(5B)#1	2.75(3)	Si(1)-C(11)	1.84(3)
U(1)-C(1)	2.750(17)	Si(1)-C(12)#1	1.84(3)
U(1)-C(1)#1	2.750(17)	Si(1)-C(12)	1.84(3)
U(1)-C(3)#1	2.79(4)	C(1)-C(2)	1.403(10)
U(1)-C(3)	2.79(2)	C(1)-C(5)	1.403(10)
U(1)-C(2B)#1	2.80(3)	C(1)-C(6)	1.492(11)
U(1)-C(2B)	2.797(13)	C(2)-C(3)	1.403(10)
U(1)-C(4B)	2.820(11)	C(2)-C(7)	1.492(10)
U(1)-C(4B)#1	2.82(3)	C(3)-C(4)	1.403(10)
U(1)-C(3B)	2.852(13)	C(3)-C(8)	1.492(11)

C(4)-C(5)	1.403(10)	C(13)-C(14)	1.402(6)
C(4)-C(9)	1.492(11)	C(13)-C(17)	1.402(6)
C(5)-C(10)	1.492(10)	C(13)-C(19)	1.490(6)
C(1B)-C(5B)	1.410(6)	C(14)-C(15)	1.402(6)
C(1B)-C(2B)	1.410(6)	C(14)-C(20)	1.490(6)
C(1B)-C(6B)	1.490(7)	C(15)-C(16)	1.402(6)
C(2B)-C(3B)	1.410(6)	C(15)-C(21)	1.490(6)
C(2B)-C(7B)	1.490(7)	C(16)-C(17)	1.402(6)
C(3B)-C(4B)	1.410(6)	C(16)-C(22)	1.490(6)
C(3B)-C(8B)	1.490(7)	C(17)-C(18)	1.490(6)
C(4B)-C(5B)	1.410(6)	C(13B)-C(17B)	1.409(10)
C(4B)-C(9B)	1.490(7)	C(13B)-C(14B)	1.409(10)
C(5B)-C(10B)	1.490(7)	C(13B)-C(19B)	1.488(11)
U(2)-Cnt2	2.513	C(14B)-C(15B)	1.409(10)
U(2)-N(2)	2.100(13)	C(14B)-C(20B)	1.488(11)
U(2)-C(13B)	2.665(18)	C(15B)-C(16B)	1.409(10)
U(2)-C(13B)#2	2.665(18)	C(15B)-C(21B)	1.488(11)
U(2)-C(14)#2	2.71(2)	C(16B)-C(17B)	1.409(10)
U(2)-C(14)	2.709(11)	C(16B)-C(22B)	1.488(11)
U(2)-C(17B)#2	2.73(4)	C(17B)-C(18B)	1.488(11)
U(2)-C(17B)	2.735(19)		
U(2)-C(15)	2.748(10)	Cnt1-U(1)-I(1)	111.3
U(2)-C(15)#2	2.75(2)	Cnt1-U(1)-N(1)	103.1
U(2)-C(14B)#2	2.76(4)	Cnt1-U(1)-Cnt1	132.1
U(2)-C(14B)	2.759(17)	N(1)-U(1)-C(2)#1	122.3(10)
U(2)-C(13)	2.782(11)	N(1)-U(1)-C(2)	122.3(4)
U(2)-C(13)#2	2.782(11)	C(2)#1-U(1)-C(2)	115.4(12)
U(2)-C(16)	2.844(10)	N(1)-U(1)-C(1B)#1	89.2(2)
U(2)-C(16)#2	2.84(2)	N(1)-U(1)-C(1B)	89.2(2)
U(2)-C(17)#2	2.86(3)	C(1B)#1-U(1)-C(1B)	178.3(5)
U(2)-C(17)	2.864(11)	N(1)-U(1)-C(5B)	79.7(3)
U(2)-C(16B)#2	2.87(4)	C(1B)#1-U(1)-C(5B)	149.1(4)
U(2)-C(16B)	2.868(19)	C(1B)-U(1)-C(5B)	29.84(16)
U(2)-C(15B)#2	2.88(4)	N(1)-U(1)-C(5B)#1	79.7(7)
U(2)-C(15B)	2.882(18)	C(1B)#1-U(1)-C(5B)#1	29.8(6)
U(2)-I(2)	3.1074(14)	C(1B)-U(1)-C(5B)#1	149.1(6)
Si(2)-N(2)	1.619(14)	C(5B)-U(1)-C(5B)#1	119.2(7)
Si(2)-C(23)	1.85(2)	N(1)-U(1)-C(1)	93.1(4)
Si(2)-C(24)	1.85(2)	C(2)#1-U(1)-C(1)	144.4(11)
Si(2)-C(24)#2	1.85(2)	C(2)-U(1)-C(1)	29.9(3)

N(1)-U(1)-C(1)#1	93.1(4)	C(4B)-U(1)-C(4B)#1	83.0(6)
C(2)#1-U(1)-C(1)#1	29.9(10)	N(1)-U(1)-C(3B)	127.7(3)
C(2)-U(1)-C(1)#1	144.4(7)	C(1B)#1-U(1)-C(3B)	132.9(4)
C(1)-U(1)-C(1)#1	167.4(8)	C(1B)-U(1)-C(3B)	48.2(3)
N(1)-U(1)-C(3)#1	121.3(8)	C(5B)-U(1)-C(3B)	48.1(2)
C(2)#1-U(1)-C(3)#1	29.6(6)	C(5B)#1-U(1)-C(3B)	119.6(7)
C(2)-U(1)-C(3)#1	107.0(10)	C(2B)#1-U(1)-C(3B)	107.8(7)
C(1)-U(1)-C(3)#1	134.7(8)	C(2B)-U(1)-C(3B)	28.89(16)
C(1)#1-U(1)-C(3)#1	48.4(10)	C(4B)-U(1)-C(3B)	28.79(15)
N(1)-U(1)-C(3)	121.3(4)	C(4B)#1-U(1)-C(3B)	90.9(6)
C(2)#1-U(1)-C(3)	107.0(11)	N(1)-U(1)-C(3B)#1	127.7(5)
C(2)-U(1)-C(3)	29.6(3)	C(1B)#1-U(1)-C(3B)#1	48.2(6)
C(1)-U(1)-C(3)	48.4(4)	C(1B)-U(1)-C(3B)#1	132.9(5)
C(1)#1-U(1)-C(3)	134.7(6)	C(5B)-U(1)-C(3B)#1	119.6(5)
C(3)#1-U(1)-C(3)	86.9(10)	C(5B)#1-U(1)-C(3B)#1	48.1(6)
N(1)-U(1)-C(2B)#1	118.7(6)	C(2B)#1-U(1)-C(3B)#1	28.9(4)
C(1B)#1-U(1)-C(2B)#1	29.5(7)	C(2B)-U(1)-C(3B)#1	107.8(5)
C(1B)-U(1)-C(2B)#1	152.1(7)	C(4B)-U(1)-C(3B)#1	90.9(6)
C(5B)-U(1)-C(2B)#1	148.5(7)	C(4B)#1-U(1)-C(3B)#1	28.8(3)
C(5B)#1-U(1)-C(2B)#1	48.6(6)	C(3B)-U(1)-C(3B)#1	84.7(6)
N(1)-U(1)-C(2B)	118.7(2)	N(1)-U(1)-C(5)	77.2(4)
C(1B)#1-U(1)-C(2B)	152.1(4)	C(2)#1-U(1)-C(5)	153.2(11)
C(1B)-U(1)-C(2B)	29.53(17)	C(2)-U(1)-C(5)	48.0(4)
C(5B)-U(1)-C(2B)	48.6(3)	C(1)-U(1)-C(5)	28.8(2)
C(5B)#1-U(1)-C(2B)	148.5(7)	C(1)#1-U(1)-C(5)	163.8(7)
C(2B)#1-U(1)-C(2B)	122.6(7)	C(3)#1-U(1)-C(5)	126.3(9)
N(1)-U(1)-C(4B)	102.5(3)	C(3)-U(1)-C(5)	47.2(4)
C(1B)#1-U(1)-C(4B)	131.5(4)	N(1)-U(1)-C(5)#1	77.2(9)
C(1B)-U(1)-C(4B)	48.5(2)	C(2)#1-U(1)-C(5)#1	48.0(9)
C(5B)-U(1)-C(4B)	29.31(16)	C(2)-U(1)-C(5)#1	153.2(11)
C(5B)#1-U(1)-C(4B)	105.7(7)	C(1)-U(1)-C(5)#1	163.8(11)
C(2B)#1-U(1)-C(4B)	119.5(7)	C(1)#1-U(1)-C(5)#1	28.8(10)
C(2B)-U(1)-C(4B)	47.9(2)	C(3)#1-U(1)-C(5)#1	47.2(8)
N(1)-U(1)-C(4B)#1	102.5(6)	C(3)-U(1)-C(5)#1	126.3(11)
C(1B)#1-U(1)-C(4B)#1	48.5(5)	C(5)-U(1)-C(5)#1	135.0(11)
C(1B)-U(1)-C(4B)#1	131.5(5)	N(1)-U(1)-C(4)	93.3(4)
C(5B)-U(1)-C(4B)#1	105.7(6)	C(2)#1-U(1)-C(4)	125.7(11)
C(5B)#1-U(1)-C(4B)#1	29.3(4)	C(2)-U(1)-C(4)	47.7(4)
C(2B)#1-U(1)-C(4B)#1	47.9(6)	C(1)-U(1)-C(4)	47.3(4)
C(2B)-U(1)-C(4B)#1	119.5(5)	C(1)#1-U(1)-C(4)	143.0(6)

C(3)#1-U(1)-C(4)	98.2(9)	C(12)#1-Si(1)-C(12)	109(2)
C(3)-U(1)-C(4)	28.5(2)	Si(1)-N(1)-U(1)	164.0(7)
C(5)-U(1)-C(4)	28.1(2)	C(2)-C(1)-C(5)	108.0
C(5)#1-U(1)-C(4)	119.4(11)	C(2)-C(1)-C(6)	126.0
N(1)-U(1)-C(4)#1	93.3(9)	C(5)-C(1)-C(6)	126.0
C(2)#1-U(1)-C(4)#1	47.7(8)	C(2)-C(1)-U(1)	72.8(6)
C(2)-U(1)-C(4)#1	125.7(10)	C(5)-C(1)-U(1)	80.6(6)
C(1)-U(1)-C(4)#1	143.0(8)	C(6)-C(1)-U(1)	113.0(6)
C(1)#1-U(1)-C(4)#1	47.3(10)	C(1)-C(2)-C(3)	108.0
C(3)#1-U(1)-C(4)#1	28.5(5)	C(1)-C(2)-C(7)	126.0
C(3)-U(1)-C(4)#1	98.2(10)	C(3)-C(2)-C(7)	126.0
C(5)-U(1)-C(4)#1	119.4(9)	C(1)-C(2)-U(1)	77.4(6)
C(5)#1-U(1)-C(4)#1	28.1(5)	C(3)-C(2)-U(1)	78.9(6)
C(4)-U(1)-C(4)#1	95.9(10)	C(7)-C(2)-U(1)	110.5(6)
N(1)-U(1)-I(1)	82.4(3)	C(4)-C(3)-C(2)	108.0
C(2)#1-U(1)-I(1)	95.3(10)	C(4)-C(3)-C(8)	126.0
C(2)-U(1)-I(1)	95.3(4)	C(2)-C(3)-C(8)	126.0
C(1B)#1-U(1)-I(1)	90.2(2)	C(4)-C(3)-U(1)	80.2(6)
C(1B)-U(1)-I(1)	90.2(2)	C(2)-C(3)-U(1)	71.5(6)
C(5B)-U(1)-I(1)	116.5(2)	C(8)-C(3)-U(1)	114.6(6)
C(5B)#1-U(1)-I(1)	116.5(6)	C(3)-C(4)-C(5)	108.0
C(1)-U(1)-I(1)	85.0(4)	C(3)-C(4)-C(9)	126.0
C(1)#1-U(1)-I(1)	85.0(4)	C(5)-C(4)-C(9)	126.0
C(3)#1-U(1)-I(1)	124.9(8)	C(3)-C(4)-U(1)	71.3(6)
C(3)-U(1)-I(1)	124.9(3)	C(5)-C(4)-U(1)	75.1(6)
C(2B)#1-U(1)-I(1)	92.4(6)	C(9)-C(4)-U(1)	119.4(6)
C(2B)-U(1)-I(1)	92.4(2)	C(1)-C(5)-C(4)	108.0
C(4B)-U(1)-I(1)	137.7(2)	C(1)-C(5)-C(10)	126.0
C(4B)#1-U(1)-I(1)	137.7(5)	C(4)-C(5)-C(10)	126.0
C(3B)-U(1)-I(1)	119.5(2)	C(1)-C(5)-U(1)	70.6(6)
C(3B)#1-U(1)-I(1)	119.5(5)	C(4)-C(5)-U(1)	76.8(6)
C(5)-U(1)-I(1)	106.3(3)	C(10)-C(5)-U(1)	118.5(6)
C(5)#1-U(1)-I(1)	106.3(10)	C(5B)-C(1B)-C(2B)	108.0
C(4)-U(1)-I(1)	132.0(3)	C(5B)-C(1B)-C(6B)	126.0
C(4)#1-U(1)-I(1)	132.0(8)	C(2B)-C(1B)-C(6B)	126.0
N(1)-Si(1)-C(11)	110.3(10)	C(5B)-C(1B)-U(1)	75.6(4)
N(1)-Si(1)-C(12)#1	111.8(9)	C(2B)-C(1B)-U(1)	77.8(4)
C(11)-Si(1)-C(12)#1	106.8(9)	C(6B)-C(1B)-U(1)	112.9(4)
N(1)-Si(1)-C(12)	111.8(8)	C(3B)-C(2B)-C(1B)	108.0
C(11)-Si(1)-C(12)	106.8(9)	C(3B)-C(2B)-C(7B)	126.0

C(1B)-C(2B)-C(7B)	126.0	C(14)-U(2)-C(15)	29.75(14)
C(3B)-C(2B)-U(1)	77.7(4)	N(2)-U(2)-C(15)#2	79.7(6)
C(1B)-C(2B)-U(1)	72.6(4)	C(14)#2-U(2)-C(15)#2	29.8(4)
C(7B)-C(2B)-U(1)	115.8(4)	C(14)-U(2)-C(15)#2	147.5(6)
C(2B)-C(3B)-C(4B)	108.0	C(15)-U(2)-C(15)#2	117.8(6)
C(2B)-C(3B)-C(8B)	126.0	N(2)-U(2)-C(14B)#2	93.8(11)
C(4B)-C(3B)-C(8B)	126.0	C(13B)-U(2)-C(14B)#2	142.7(12)
C(2B)-C(3B)-U(1)	73.4(4)	C(13B)#2-U(2)-C(14B)#	2 30.1(11)
C(4B)-C(3B)-U(1)	74.4(4)	C(17B)#2-U(2)-C(14B)#	2 49.0(10)
C(8B)-C(3B)-U(1)	118.1(4)	C(17B)-U(2)-C(14B)#2	137.1(11)
C(5B)-C(4B)-C(3B)	108.0	N(2)-U(2)-C(14B)	93.8(4)
C(5B)-C(4B)-C(9B)	126.0	C(13B)-U(2)-C(14B)	30.1(3)
C(3B)-C(4B)-C(9B)	126.0	C(13B)#2-U(2)-C(14B)	142.7(7)
C(5B)-C(4B)-U(1)	72.4(4)	C(17B)#2-U(2)-C(14B)	137.1(9)
C(3B)-C(4B)-U(1)	76.8(4)	C(17B)-U(2)-C(14B)	49.0(4)
C(9B)-C(4B)-U(1)	116.8(4)	C(14B)#2-U(2)-C(14B)	162.1(11)
C(4B)-C(5B)-C(1B)	108.0	N(2)-U(2)-C(13)	118.8(2)
C(4B)-C(5B)-C(10B)	126.0	C(14)#2-U(2)-C(13)	152.0(7)
C(1B)-C(5B)-C(10B)	126.0	C(14)-U(2)-C(13)	29.54(15)
C(4B)-C(5B)-U(1)	78.3(4)	C(15)-U(2)-C(13)	48.4(2)
C(1B)-C(5B)-U(1)	74.5(4)	C(15)#2-U(2)-C(13)	146.9(6)
C(10B)-C(5B)-U(1)	113.6(4)	N(2)-U(2)-C(13)#2	118.8(2)
Cnt2-U(2)-I(2)	110.8	C(14)#2-U(2)-C(13)#2	29.5(7)
Cnt2-U(2)-N(2)	102.8	C(14)-U(2)-C(13)#2	152.0(4)
Cnt2-U(2)-Cnt2	133.4	C(15)-U(2)-C(13)#2	146.9(3)
N(2)-U(2)-C(13B)	122.8(4)	C(15)#2-U(2)-C(13)#2	48.4(6)
N(2)-U(2)-C(13B)#2	122.8(4)	C(13)-U(2)-C(13)#2	122.5(4)
C(13B)-U(2)-C(13B)#2	114.4(8)	N(2)-U(2)-C(16)	102.3(3)
N(2)-U(2)-C(14)#2	89.2(6)	C(14)#2-U(2)-C(16)	130.0(6)
N(2)-U(2)-C(14)	89.2(2)	C(14)-U(2)-C(16)	48.1(2)
C(14)#2-U(2)-C(14)	177.2(7)	C(15)-U(2)-C(16)	28.97(14)
N(2)-U(2)-C(17B)#2	120.2(8)	C(15)#2-U(2)-C(16)	104.3(6)
C(13B)-U(2)-C(17B)#2	108.5(10)	C(13)-U(2)-C(16)	47.5(2)
C(13B)#2-U(2)-C(17B)#	2 30.2(9)	C(13)#2-U(2)-C(16)	118.3(3)
N(2)-U(2)-C(17B)	120.2(4)	N(2)-U(2)-C(16)#2	102.3(5)
C(13B)-U(2)-C(17B)	30.2(3)	C(14)#2-U(2)-C(16)#2	48.1(6)
C(13B)#2-U(2)-C(17B)	108.5(7)	C(14)-U(2)-C(16)#2	130.0(4)
C(17B)#2-U(2)-C(17B)	89.2(11)	C(15)-U(2)-C(16)#2	104.3(5)
N(2)-U(2)-C(15)	79.7(3)	C(15)#2-U(2)-C(16)#2	29.0(4)
C(14)#2-U(2)-C(15)	147.5(7)	C(13)-U(2)-C(16)#2	118.3(5)

C(13)#2-U(2)-C(16)#2	47.5(5)
C(16)-U(2)-C(16)#2	81.9(6)
N(2)-U(2)-C(17)#2	127.3(5)
C(14)#2-U(2)-C(17)#2	47.9(6)
C(14)-U(2)-C(17)#2	131.9(4)
C(15)-U(2)-C(17)#2	118.2(5)
C(15)#2-U(2)-C(17)#2	47.6(5)
C(13)-U(2)-C(17)#2	107.2(5)
C(13)#2-U(2)-C(17)#2	28.7(4)
C(16)-U(2)-C(17)#2	89.9(5)
C(16)#2-U(2)-C(17)#2	28.4(3)
N(2)-U(2)-C(17)	127.3(3)
C(14)#2-U(2)-C(17)	131.9(6)
C(14)-U(2)-C(17)	47.9(2)
C(15)-U(2)-C(17)	47.6(2)
C(15)#2-U(2)-C(17)	118.2(6)
C(13)-U(2)-C(17)	28.71(14)
C(13)#2-U(2)-C(17)	107.2(4)
C(16)-U(2)-C(17)	28.44(14)
C(16)#2-U(2)-C(17)	89.9(5)
C(17)#2-U(2)-C(17)	84.0(5)
N(2)-U(2)-C(16B)#2	91.5(9)
C(13B)-U(2)-C(16B)#2	129.2(11)
C(13B)#2-U(2)-C(16B)#2	2 48.5(10)
C(17B)#2-U(2)-C(16B)#2	2 29.0(5)
C(17B)-U(2)-C(16B)#2	102.0(11)
C(14B)#2-U(2)-C(16B)#2	2 47.7(9)
C(14B)-U(2)-C(16B)#2	148.1(9)
N(2)-U(2)-C(16B)	91.5(4)
C(13B)-U(2)-C(16B)	48.5(4)
C(13B)#2-U(2)-C(16B)	129.2(7)
C(17B)#2-U(2)-C(16B)	102.0(10)
C(17B)-U(2)-C(16B)	29.0(2)
C(14B)#2-U(2)-C(16B)	148.1(10)
C(14B)-U(2)-C(16B)	47.7(4)
C(16B)#2-U(2)-C(16B)	100.8(10)
N(2)-U(2)-C(15B)#2	76.6(10)
C(13B)-U(2)-C(15B)#2	156.0(12)
C(13B)#2-U(2)-C(15B)#2	2 48.3(11)
C(17B)#2- $U(2)$ - $C(15B)$ #2	2 47.8(9)

130.3(11)
28.8(6)
168.1(11)
28.4(6)
124.5(11)
76.6(4)
48.3(4)
156.0(7)
130.3(9)
47.8(4)
168.1(11)
28.8(2)
124.5(10)
28.4(2)
139.7(11)
81.7(3)
94.6(4)
94.6(4)
91.1(6)
91.1(2)
124.8(9)
124.8(4)
117.0(2)
117.0(5)
82.5(10)
82.5(4)
93.8(2)
93.8(2)
138.4(2)
138.4(4)
120.9(5)
120.9(2)
129.4(9)
129.4(4)
102.7(10)
102.7(4)
110.9(10)
111.9(7)
107.3(8)
111.9(7)

C(23)-Si(2)-C(24)#2	107.3(8)	C(18)-C(17)-U(2)	118.5(3)
C(24)-Si(2)-C(24)#2	107.3(18)	C(17B)-C(13B)-C(14B)	108.0
Si(2)-N(2)-U(2)	163.7(7)	C(17B)-C(13B)-C(19B)	126.0
C(14)-C(13)-C(17)	108.0	C(14B)-C(13B)-C(19B)	126.0
C(14)-C(13)-C(19)	126.0	C(17B)-C(13B)-U(2)	77.6(6)
C(17)-C(13)-C(19)	126.0	C(14B)-C(13B)-U(2)	78.7(6)
C(14)-C(13)-U(2)	72.3(3)	C(19B)-C(13B)-U(2)	110.4(6)
C(17)-C(13)-U(2)	78.9(3)	C(15B)-C(14B)-C(13B)	108.0
C(19)-C(13)-U(2)	115.0(3)	C(15B)-C(14B)-C(20B)	126.0
C(15)-C(14)-C(13)	108.0	C(13B)-C(14B)-C(20B)	126.0
C(15)-C(14)-C(20)	126.0	C(15B)-C(14B)-U(2)	80.4(6)
C(13)-C(14)-C(20)	126.0	C(13B)-C(14B)-U(2)	71.3(6)
C(15)-C(14)-U(2)	76.7(3)	C(20B)-C(14B)-U(2)	114.5(6)
C(13)-C(14)-U(2)	78.1(4)	C(14B)-C(15B)-C(16B)	108.0
C(20)-C(14)-U(2)	111.8(3)	C(14B)-C(15B)-C(21B)	126.0
C(14)-C(15)-C(16)	108.0	C(16B)-C(15B)-C(21B)	126.0
C(14)-C(15)-C(21)	126.0	C(14B)-C(15B)-U(2)	70.7(5)
C(16)-C(15)-C(21)	126.0	C(16B)-C(15B)-U(2)	75.3(6)
C(14)-C(15)-U(2)	73.6(3)	C(21B)-C(15B)-U(2)	119.8(6)
C(16)-C(15)-U(2)	79.3(3)	C(17B)-C(16B)-C(15B)	108.0
C(21)-C(15)-U(2)	113.5(3)	C(17B)-C(16B)-C(22B)	126.0
C(15)-C(16)-C(17)	108.0	C(15B)-C(16B)-C(22B)	126.0
C(15)-C(16)-C(22)	126.0	C(17B)-C(16B)-U(2)	70.2(6)
C(17)-C(16)-C(22)	126.0	C(15B)-C(16B)-U(2)	76.4(6)
C(15)-C(16)-U(2)	71.7(3)	C(22B)-C(16B)-U(2)	119.2(5)
C(17)-C(16)-U(2)	76.6(3)	C(16B)-C(17B)-C(13B)	108.0
C(22)-C(16)-U(2)	117.6(3)	C(16B)-C(17B)-C(18B)	126.0
C(13)-C(17)-C(16)	108.0	C(13B)-C(17B)-C(18B)	126.0
C(13)-C(17)-C(18)	126.0	C(16B)-C(17B)-U(2)	80.8(6)
C(16)-C(17)-C(18)	126.0	C(13B)-C(17B)-U(2)	72.1(6)
C(13)-C(17)-U(2)	72.4(3)	C(18B)-C(17B)-U(2)	113.4(6)
C(16)-C(17)-U(2)	75.0(3)		

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z #2 x,-y+3/2,z

References

1. L. R. Avens, C. J. Burns, R. J. Butcher, D. L. Clark, J. C. Gordon, A. R. Schake, B. L. Scott,

J. G. Watkin and B. D. Zwick, Organometallics, 2000, 19, 451–457.

- J. C. Wedal, C. J. Windorff, D. N. Huh, A. J. Ryan, J. W. Ziller and W. J. Evans, J. Coord. Chem., 2021, 74, 74–91.
- P. Rungthanaphatsophon, C. L. Barnes, S. P. Kelley and J. R. Walensky, *Dalton Trans.*, 2018, 47, 8189–8192.
- J. Maynadié, J.-C. Berthet, P. Thuéry and M. Ephritikhine, J. Am. Chem. Soc., 2006, 128, 1082–1083.
- 5. B. P. Warner, B. L. Scott and C. J. Burns, Angew. Chem. Int. Ed., 1998, 37, 959–960.
- 6. D. S. J. Arney, C. J. Burns and D. C. Smith, J. Am. Chem. Soc. 1992, 114, 10068–10069.
- 7. APEX2 Version 2014.11-0, Bruker AXS, Inc.; Madison, WI 2014.
- 8. SAINT Version 8.34a, Bruker AXS, Inc.; Madison, WI 2013.
- 9. Sheldrick, G. M. SADABS, Version 2014/5, Bruker AXS, Inc.; Madison, WI 2014.
- 10. Sheldrick, G. M. SHELXTL, Version 2014/7, Bruker AXS, Inc.; Madison, WI 2014.
- 11. International Tables for Crystallography **1992**, Vol. C., Dordrecht: Kluwer Academic Publishers.
- 12. (a) Spek, A.L. SQUEEZE, *Acta Cryst.* **2015**, *C71*, 9-19., (b) Spek, A. L. PLATON, *Acta. Cryst.* **2009**, *D65*, 148-155

Definitions:

 $wR2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$

 $\mathbf{R}\mathbf{1} = \Sigma ||\mathbf{F}_{\mathbf{o}}| - |\mathbf{F}_{\mathbf{c}}|| / \Sigma |\mathbf{F}_{\mathbf{o}}|$

Goof = S = $[\Sigma[w(F_o^2-F_c^2)^2] / (n-p)]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.