Supplementary Information:

High-capacity and ultrastable lithium storage in SnSe₂-SnO₂@NC microbelts

enabled by heterostructure

Haibin Sun,^{a,1,*} Wenjie Wang,^{a,1} Lianduan Zeng,^{b,1} Congcong Liu,^a Shuangshuang Liang,^a Wenhe Xie,^a Shasha Gao,^a Shenghong Liu,^{a,**} Xiao Wang^{b,***}

^a Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and

Electronic Engineering, Xinyang Normal University, Xinyang 464000, China

^b Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, Shenzhen 518055, China

*Corresponding authors :

E-mail addresses: <u>sunhaibin@xynu.edu.cn</u> (H. Sun), <u>liush@xynu.edu.cn</u> (S. Liu) & <u>xiao.wang@siat.ac.cn</u> (X. Wang)

Fig. S1. High-resolution TEM image of SnSe₂-SnO₂@NC microbelts.

Analysis of carbon contents in all samples:

As shown in **Fig. 2c**, the TGA curve of SnSe₂-SnO₂@NC is mainly divided into two parts in the temperature range of 25 to 800 °C:

1. Evaporation of water below 200 °C (m_1 (H_2O)).

 $m_1(wt\%)$ (record from the y-axis, 93.15 wt%) = $m(SnSe_2-SnO_2@NC) - m(H_2O)....(S1)$

2. The oxidation of SnSe₂-SnO₂@NC to SnO₂ in the temperature range of 250 -800 °C

and the gasification of carbon (m_c) , also occurring in this temperature region. Accordingly, the chemical reaction should be depicted as Equations (S2 or S3):

$$SnSe_2+3O_2=SnO_2+2SeO_2 \uparrow \dots (S2)$$

C+ O₂=CO₂ $\uparrow \dots (S3)$

 $m_2(wt\%)$ (record from the y-axis, 32.15 wt%) = $m(SnO_2)$ = $M(SnO_2)*n(SnO_2).....(S4)$

When Only $SnSe_2$ in the material, the $SnSe_2$ content of $SnSe_2$ - $SnO_2@NC$ is estimated by

$$m (\text{SnSe}_2) = (n(\text{SnO}_2) \times 1 \times M(\text{Sn}))/m_1(\text{wt\%}) \times 100 \text{ wt\%} = (m_2(\text{wt\%})/M(\text{SnO}_2) \times 1 \times M(\text{SnSe}_2)) / m_1(\text{wt\%}) \times 100 \text{ wt\%} = (m_2(\text{wt\%}) / 150.7 \times 1 \times (276.62) / m_1(\text{wt\%})) \times 100 \text{ wt\%}$$

$$wt\%$$

The SnSe₂ loadings in the SnSe₂@NC and SnSe₂-SnO₂@NC are calculated to be 34.5 and 63.4 wt%, corresponding to 65.5 and 36.6 wt% for N-C, respectively.

When Only the material of SnO_2 in the material, the SnO_2 content is estimated by

 $m(\text{SnO}_2) = m_2(\text{wt\%}) / m_1(\text{wt\%}) \times 100 \text{ wt\%}$

The SnO₂ loadings in the SnO₂@NC and SnSe₂-SnO₂@NC are calculated to be 58.3 and 34.5 wt%, corresponding to 31.7 and 35.5 wt% for N-C, respectively. To sum up, the carbon content of SnSe₂-SnO₂@NC is between 35.5 wt% and 36.6 wt%. The carbon contents of SnO₂@NC, SnSe₂@NC is 31.7 and 65.5 wt%, respectively.

Fig. S2. High-resolution XPS spectra of (a), (d), (g) Sn 3d; (b), (e), (h) C 1s; and (c), (f), (i) N 1s for SnO₂@NC, SnSe₂@NC, and SnSe₂-SnO₂@NC microbelts, respectively.

Fig. S3. (a,b) CV curves for the first five cycles of the $SnO_2@NC$ and $SnSe_2@NC$ electrodes at a scan rate of 0.2 mV s⁻¹. (c,d) Galvanostatic discharge-charge curves for selected cycles of the $SnO_2@NC$ and $SnSe_2@NC$ electrodes at a current density of 0.2 A g⁻¹.

Fig. S4. Comparisons of the rate performance of the $SnSe_2-SnO_2@NC$ with those of other similar reported anode materials.

Fig. S5. SEM and High-resolution TEM images of the cycled $SnSe_2$ -SnO₂@NC electrode.

Fig. S6. (a) An equivalent circuit model for fitting of the Nyquist plots of the electrodes. (b,c) Nyquist plots of $SnSe_2@NC$ and $SnSe_2$ -SnO₂@NC electrodes.

Fig. S7. Z'-@-0.5 plots in the low frequency range for SnSe2@NC and SnSe2-SnO2@NC electrodes

To further investigate the electrode kinetics, the Li⁺ diffusion coefficient (D_{Li+}) is also calculated through the linear fitting of $Z_{re} vs. \omega^{-1/2}$ (Fig. S7). The detailed calculation is based on the following equation formulas:

$$Z' = R_s + R_{ct} + \sigma \omega^{-1/2}$$
(S5)
$$D_{Li+} = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$$
(S6)

Where R, T, A, F, n and C are the gas constant (8.314 J K⁻¹ mol⁻¹), absolute temperature (298 K), the area of electrode surface, Faraday constant (96500 C mol⁻¹), number of transferred electrons and concentration of the Li⁺ (mol cm⁻³), respectively. As a result, the SnSe₂-SnO₂@NC has a smaller σ value of 298.2 than SnSe₂@NC (2418.7) and SnO₂@NC (2996.0), once again indicating its stronger diffusion dynamics of Li⁺.