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Fig. S3a: 'H NMR spectrum (500 MHz, D-0O) of Ligand KL-1
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Fig. S3b: 3C{*H} NMR spectrum (125 MHz, D20) of Ligand KL-1
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Fig. S3c: *H NMR spectrum (500 MHz, D20) of Ligand KL-2
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Fig. S3d: 3C{*H} NMR spectrum (125 MHz, D20) of Ligand KL-2
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Fig. S3e: *H NMR spectrum (500 MHz, D,0) of Ligand KL-3
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Table S1. Comparison of the OER activity of complex 2 with recently reported complexes.

Catalyst? Electrolyte Overpotential Reference
(mV)
Ni[(TMC)(CH3CN)](NOs3), Phosphate buffer 590 (0.5 mA cm™?) Chem. Commun.,
2019, 55, 6122
6125
[NiL](PFe)2 Phosphate buffer 270 (0.65 mA cm?) Catal. Sci.
Technol., 2019, 9,
5651-5659.
Ni—-Hmfchce 0.1 KOH 490 (10 mA cm™) Polyhedron, 2019,
174, 114160
Ni(Il) 1,1-dithiolate-phosphine 1 M KOH 350 (10 mA cm™) Dalton Trans.,

2020, 49, 3592

Cobalt Salen Complex-4

0.1 M potassium borate

350 (0.1 mA cm™)

J. Phys. Chem. C,
2015,  119(17),

8998-9004
0O=PN3-Co 0.1 M tetrabutyl ammonium | 340 (0.5 mA cm™) Inorg. Chem.,
perchlorate 2021, 60, 614-
622.

& [Ni(TMC)(CH3CN)](NO3).:

where TMC =

1,4,8,11-tetramethyl-1,4,8,11

tetraazacyclotetradecane, ([NiL](PFs)2: where L = bis(2-pyridylmethylimidazolylidene)
methane, Ni—-Hmfchce: Nickel complex of N’-(2-methylfuran-3-carbonyl)hydrazine
carbodithioic acid ethyl ester, Ni(ll) 1,1-dithiolate-phosphine: Nickel complex of 2-
(methylene-1,1'-dithiolato)-5,5-dimethylcyclohexane-1,3-dione, Cobalt Salen Complex-4:
Cobalt complex of 6,6’-((1E,1’E)-(ethane-1,2-
diylbis(azanylylidene))bis(methanylylidene))bis-(2,4-ditert-butylphenol), O=PN3-Co: Cobalt
complex of N-(di-tert-butylphosphino)[2,2'-bipyridine]-6-amine, Co(dmgBF2),(OH2).:BF2-
annulated cobaloxime, Co(dmgBF2)2(OH2); (Co-DMB, dmgBF =
difluoroboryldimethylglyoxime).
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Fig. S8: Redox peak integration for the determination of number of active sites for the

complexes 1-4.

Equation S1. Determination of Number of Active Sites
The number of active sites in the complexes was calculated by the redox peak integration

method.

For complex 1
Calculated area associated with the oxidation peak = 0.00711 x 102V A
Hence the associated charge was = 0.00711 x 103V A/ 0.005 V s*
=1.42 x 103 As
=142x103C
Now, the number of electron transferred was = 1.42 x 103 C / 1.602 x10° C
=0.88 x10%
The number of electron calculated above was same as the number of surface active site due to
single electron transfer involving Ni?*/ Ni** oxidation process.
Hence,
The surface-active site of 1 that participated in OER = 0.88 x 1016

17



For complex 2
Calculated area associated with the oxidation peak = 0.02376 x 102V A
Hence the associated charge was = 0.02376 x 103V A/0.005 V s*

=4.75 x 10 As

=4.75x103C
Now, the number of electron transferred was = 4.75x 102 C / 1.602 x101° C

=2.96 x10%

The number of electron calculated above was same as the number of surface active site due to
single electron transfer involving Ni?*/ Ni** oxidation process.
Hence,

The surface-active site of 2 that participated in OER = 2.96 x 106

For complex 3
Calculated area associated with the oxidation peak = 0.01948 x 102V A
Hence the associated charge was = 0.01948 x 103V A/0.005 V s*
=3.89 x 103 As
=3.89x103C
Now, the number of electron transferred was = 3.89 x 103 C / 1.602 x10° C
=2.43 x10%°

The number of electron calculated above was same as the number of surface active site due to
single electron transfer involving Ni?*/ Ni®* oxidation process.

Hence,

The surface-active site of 3 that participated in OER = 2.43 x 10%6

For complex 4
Calculated area associated with the oxidation peak = 0.01043 x 103V A
Hence the associated charge was = 0.01043 x 103V A/0.005 V s
=2.08 x 103 As
=2.08x103C
Now, the number of electron transferred was = 2.08 x 103 C / 1.602 x10*° C
=1.29 x10%

18



The number of electron calculated above was same as the number of surface active site due to
single electron transfer involving Ni?*/ Ni** oxidation process.

Hence,

The surface-active site of 4 that participated in OER = 1.29 x 10%6

Equation S2. Determination of Turn-Over Frequency (TOF)
The TOF of the complexes can be determined using the equation:

TOF=(j x Na)/ (4 x Fx n)

Where, j = current density at 330 mV
Na = Avogadro number
F = Faraday constant

n = number of active Ni-sites

For Complex 1:

TOF = [(2.12 x 10°3) (6.023 x 10%%)] / [(96485) (4) (0.8 x10%)]
TOF=37x101s?

For Complex 2:

TOF = [(10.00 x 10°%) (6.023 x 10%%)] / [(96485) (4) (2.96 x10'%)]
TOF=5.2x10"s"

For Complex 3:
TOF = [(4.78 x 1073) (6.023 x 10%)] / [(96485) (4) (2.43 x10'%)]
TOF=30x10"s

For Complex 4:

TOF = [(3.52 x 107%) (6.023 x 10%)] / [(96485) (4) (1.29 x10'%)]
TOF=4.2x10"s?

19



Determination of faradaic efficiency
The amount of oxygen generated during the oxygen evolution reaction was determined by the
water displacement method. The amount of O> was detected during the chronoamperometric
measurement for 1800 s at 20 mA cm current density.'

Firstly, the theoretical amount of O, was calculated using the following equation from

Faraday’s law.?

Ixt 0.02A x1800s
nQ, (theoretical)= Q = = = 0.00093 mmol
nx F nx F 4 x 96485.3 s A mol!

Where nO; denotes the theoretically calculated amount of Oz, Q is the amount of applied
charge, n is the number of electrons participating in the OER reaction (4 electrons), F is the
Faraday constant (96485.3 s A mol™!), I is the applied current (0.02 A), and t is the reaction
time (1800 s).

At the time of chronoamperometric measurements, the amount of O produced during the
experiment was measured and the theoretically calculated amount was compared with the
actually generated amount of O». Further, the faradaic efficiency was calculated using the
following equation:

nO, (experimental) %100 = 0.000915 mmol <100 = 98.3%

nO, (Theoretical) 0.00093 mmol

Faradaic efficiency (%)=

0.0010
@ Theoretical
@ Experimental

0.0008 -

o o

o o

S S

) S

= >
1 1

0.0002 +

Amount of O, gas (mmol)

0.0000 T T T T T
5 10 15 20 25 30

Time (minutes)

Fig. S9. Plot for the amount of theoretically calculated O2 (blue line) and experimentally
measured O (green line) versus time for complex 2.
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Fig. S10: Differential pulse voltammetric profile for the complex 2 utilized for the

determination of number electron transferred for the redox peak.

The number of electrons could be calculated using DPV by the following equation at a constant
pH.*®

Ep-Ep2=2218 RT/nF=57/n....................... (1)
Therefore, the equation (1) gives the number of electron transferred is
n =57/ Ep-Epr
where E, = peak potential of DPV

Epr = potential at which half the peak current is observed
n = number of electron(s) transferred

From DPV, the Ep was calculated to be 1.357 V while Ep» was determined to be 1.313 V for
complex 2.

n=57/1.357-1.313

n=>57/44
n=129

Therefore, the number of electron transferred for the redox peak is calculated to be one.

21



Before catalysis
——— After catalysis

f. 10 —— Before Catalysis|
5 After Catalysis
2 )
£ \ 8
£ 4 ! I 5
- | & 0.8
Mg Fo
v lana e TNV WU 2
204 \-W
‘LJ 0.6
sy
T T T T T T T T T T T ]
20 40 80 80 300 325 350 375 400 425 430 475

2-Theta(degrees) Wavelength (nm)

% Transmitance

4000 3500 3000 ﬁ:ﬁsﬁoﬂ;ﬁgﬂd;ﬁoo 50 0

Fig. S11: (a) Powder XRD pattern of complex 2 and after 2 h OER catalysis indicating that the
molecular structure was retained after 2 h OER catalysis (b) UV-vis. spectra of complex 2
before the OER and after the 2 h OER catalysis and (c) IR spectrum of complex 2 after 2 h
OER catalysis indicating the new peak at 830 cm™ assigned for the Ni-O-Ni stretching in

Ni(O)OH active catalyst.
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Fig. S12: (a) Ni 2p XPS of complex 2 showing the peaks at 853.8 eV and 871.1 eV assigned
for the Ni2pa2 and Ni2p12, respectively, the peak at 853.9 eV was attributed to the Ni?* species;
(b) C 1s spectra of complex 2 showing three peaks at 285.9 eV, 284.5 eV, and 283.3 eV
corresponded to the C-N bond, aromatic C and C-H bond, respectively; (c) C 1s spectra of
complex 2 indicating the peak at 398.5 eV assigned for the N-C bond; and (d) S 2p XPS
indicating two peaks at 161.0 eV and 162.9 eV attributed to the S 2ps/2 and S 2p1s2, respectively.
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respectively; (c) C 1s spectra of complex 2 indicating the peak at 398.3 eV assigned for the N-
C bond; and (d) S 2p XPS indicating two peaks at 162.3 eV and 164.2 eV attributed to the S
2p3z and S 2pas, respectively.

24

156



—— Complex-2
4 {—— Complex-2-After EDTA treatment

Current density (mA cm?)

1.0 1.2 14 1.6 18 2.0

Potential vs RHE (V)

Fig. S14: LSV profiles for the oxygen evolution reaction of complex 2 before and after EDTA
treatment. Complex 2 was activated first and treated with EDTA to remove the surface NiOOH.
After the removal of surface NiOOH, LSV was recorded in phosphate buffer (pH 7).
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