Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

C(sp³)-H Oxidation and Chlorination Catalysed by A Bioinspired Pincer Iron(III) Complex

Jian Han, Liming Tan, Yanjun Wan, Gang Li,* and Stephen N. Anderson

Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, Unites States of America

Supporting Information

Table of Content

1. General Information	1
2. General Procedures for Fe(III) Catalysed C-H Functionalisation	1
3. Experimental Data for Fe(III) Catalysed C-H Functionalisation	3
4. NMR Spectra of Compounds	10
5. X-ray Crystal Structure and Data of catalyst 1	20
6. References	

1. General Information

Unless otherwise specified, the chemicals (AR grade) were obtained from commercial sources and were used without further purification. Fe(III) catalysts 1^{1,2} was synthesized according to reported procedures. The progress of the reactions was monitored by TLC (silica gel, Polygram SILG/UV 254 plates). Column chromatography was performed on silica gel (200-300 mesh). ¹H and ¹³C NMR spectra were recorded at 500 MHz and 125 MHz, respectively, and CDCl₃, was used as the solvent with TMS as the internal standard. GC-MS was performed on a Shimadzu GC-2010 Gas Chromatograph (GC column: Shimadzu SHR5XLB) equipped with a Shimadzu GCMS-QP2010S Mass Selective Detector. UV-vis spectra were performed on an Agilent Cary 100 UV-vis spectrophotometer using a 1-cm quartz cuvette. UV-vis kinetic studies were performed on a Hewlett Packard 8453 UV-vis spectrophotometer using a 1-cm quartz cuvette. A single crystal of complex name was mounted on glass fiber loop using paratone oil. Collection of the data was done on a Rigaku XtaLAB Mini II Diffractometer using MoKa $(\lambda = 0.71073 \text{ Å})$ radiation source at 293.7 (min) – 296.4 (max) K. The absorption correction was done using a Gaussian grid with a 0.5 mm 1D horizontal Gaussian beam correction for the graphite monochromator. The structure was solved in Olex23 with SHELXT4 using intrinsic phasing method and refined using the SHELXL program with the least square method. All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were placed in geometrically calculated positions and further refined using a riding model. Isotropic parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms with the methyl groups being 1.5 times U.

Compounds	cyclohexane and cycloheptane	cyclooctane and cyclododecane	<i>cis</i> -decalin and (+)-sclareolide
Initial temperature	40 °C	50 °C	50 °C
Ramp1	5 °C/min to 100 °C	15 °C/min to 200 °C	25 °C/min to 200 °C
Ramp2	100 °C/min to 300 °C,	100 °C/min to 300 °C,	50 °C/min to 300 °C,
	hold for 3 min	hold for 3 min	hold for 3 min
Injector temperature	250 °C	250 °C	250 °C
Detector temperature	340 °C	300 °C	300 °C

Gas chromatograph methods used for substrate characterization:

2. General Procedures for Fe(III) Catalysed C-H Functionalisation

2.1 C-H oxidation of aliphatic substrates

To a 25 mL flask equipped with a magnetic stir bar, Fe(III) catalyst 1 (0.025 mmol, 5 mol%) and substrate (0.5 mmol, 1.0 equiv.) in 5 mL HFIP were added. Then *m*-CPBA (1.5 mmol, 3 equiv.) was added in one batch. After completion of charging, the mixture was stirred for 0.5 h at room temperature. After the reaction is done, the reaction solution was filtered through a short plug of silica gel. The filtrate was analysed directly by GC/MS. For isolated product, after the reaction is done, the mixture was carefully concentrated in vacuum. The residue was diluted with saturated aqueous sodium bicarbonate and extracted with dichloromethane (3 times). The combined organic layer was washed with water, dried with anhydrous Na₂SO₄. The mixture was concentrated in vacuum and purified by

silica gel flash column chromatography eluting with hexane / ethyl acetate to afford the corresponding product.

2.2 Competition experiment

To a 25 mL flask equipped with a magnetic stir bar, Fe(III) catalyst 1 (0.025 mmol, 5 mol%), cyclohexanol (0.25 mmol, 0.5 equiv.), and cyclooctane (0.25 mmol, 0.5 equiv.) in 5 mL HFIP were added. Then *m*-CPBA (1.5 mmol, 3 equiv.) was added in portions (3-6 batches). After completion of charging, the mixture was stirred at room temperature. After the reaction is done, an aliquot was taken and run through a silica plug. The mixture was then analysed by GC-MS.

2.3 C-H oxidation of benzylic substrates

To a 25 mL flask equipped with a magnetic stir bar, Fe(III) catalyst 1 (0.025 mmol, 5 mol%) and substrate (0.5 mmol, 1.0 equiv.) in 5 mL HFIP were added. Then *m*-CPBA (1.5 mmol, 3 equiv.) was added in portions (3-6 batches). After completion of charging, the mixture was stirred at room temperature. After the reaction is done, the mixture was carefully concentrated in vacuum. The residue was diluted with saturated aqueous sodium bicarbonate and extracted with dichloromethane (3 times). The combined organic layer was washed with water, dried with anhydrous Na₂SO₄. The mixture was concentrated in vacuum and purified by silica gel flash column chromatography eluting with hexane / ethyl acetate to afford the corresponding product.

2.4 C-H chlorination

To a 25 mL flask equipped with a magnetic stir bar, Fe(III) catalyst 1 (0.025 mmol, 5 mol%) and substrate (0.5 mmol, 1.0 equiv.) in 5 mL HFIP were added. Then sodium hypochlorite solution (0.5 M, 3 equiv.) was added in portions (3-6 batches). After completion of charging, the mixture was stirred at room temperature. After the reaction is done, the mixture was extracted with dichloromethane (3 times). The combined organic layer was washed with water, dried with anhydrous Na₂SO₄. The mixture was concentrated in vacuum and purified by silica gel flash column chromatography eluting with hexane / ethyl acetate to afford the corresponding product.

3. Experimental Data for Fe(III) Catalysed C-H Functionalisation

3.1 GC trace of C-H oxidation

Figure S1. GC analysis of Fe(III)-catalysed oxidation of cyclohexane

Figure S2. GC analysis of Fe(III)-catalysed oxidation of cycloheptane

Figure S3. GC analysis of Fe(III)-catalysed oxidation of cyclooctane

Figure S5. GC analysis of Fe(III)-catalysed oxidation of cis-decalin

3.2 Kinetic profiles of iron oxo decay in the presence of substrates

Experiments were recorded on a Hewlett Packard 8453 UV-vis spectrophotometer using a 1-cm quartz cuvette at 0 °C. Concentration of iron oxo intermediate was calculated using an extinction coefficient value $\varepsilon = 1126 \text{ M}^{-1} \text{ cm}^{-1}$ calculated from Figure 1 in the main text.

Figure S7. Decay of iron oxo intermediate in 0.16 mM cyclooctane. $k_{obs} = 0.165(3) \text{ s}^{-1}$.

b). Decay of [Fe=O] in 24 mM Cyclooctane at 0 $^\circ\text{C}$

Figure S8. Decay of iron oxo intermediate in 0.24 mM cyclooctane. $k_{obs} = 0.209(8) \text{ s}^{-1}$.

Figure S9. Decay of iron oxo intermediate in 0.32 mM cyclooctane. $k_{obs} = 0.34(1) \text{ s}^{-1}$.

Figure S10. Decay of iron oxo intermediate in 0.48 mM cyclooctane. $k_{obs} = 0.59(2) \text{ s}^{-1}$.

Figure S11. Second order rate constant for the C-H functionalization step at 0 °C. k = 11.3(7) M⁻¹s⁻¹.

3.3 Product Characterization

1-adamantanol (4e): Synthesized according to the general procedure, and isolated as a white solid (51 mg, 77%). ¹H NMR (500 MHz, CDCl₃), δ (ppm): 2.16 (s, 3H), 1.73 (d, J = 2 Hz, 6H), 1.64 (q, J = 12 Hz, 6H), 1.37-1.39 (m, 1H); ¹³C NMR (125 MHz, CDCl₃), δ 20, 45, 24, 26, 08, 20, 72

(ppm): 68.20, 45.34, 36.08, 30.72.

OH cis-4f *cis*-9-Decalol (*cis*-**4f**): Synthesized according to the general procedure, and isolated as a colorless oil (28 mg, 42%). ¹H NMR (500 MHz, CDCl₃), δ (ppm): 1.27-1.91 (m, 18H); ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 72.1, 42.7, 29.7, 20.6. The spectra match previous report.⁵

(+)-sclareolide (**3g**): Synthesized according to the general procedure, and isolated as a white solid (51 mg, 50%). ¹H NMR (500 MHz, CDCl₃), δ (ppm): 2.23-2.45 (m, 2H), 1.96-2.11 (m, 3H), 1.64-1.74 (m, 2H), 1.34-1.51 (m, 7H), 1.18-1.28 (m, 1H), 1.03-1.09 (m, 2H), 0.93 (s, 3H), 0.91 (s, 3H), 0.86 (s, 3H); ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 176.85, 86.36, 59.11, 56.65, 42.17, 39.50, 38.71, 36.05, 33.16, 28.71, 21.57, 20.92,

20.56, 18.09, 15.07.

4-acetylphenyl acetate (3i): Synthesized according to the general procedure, and isolated as a white solid (49 mg, 55%). ¹H NMR (500 MHz, CDCl₃), δ (ppm): 8.01 (d, J = 9 Hz, 2H), 7.22 (d, J = 9 Hz, 2H), 2.62 (s, 3H), 2.35 (s, 3H); ¹³C NMR (125 MHz,

CDCl₃), δ (ppm): 196.82, 168.85, 154.35, 134.74, 129.94, 121.77, 26.60, 21.16.

4-chloroacetophenone (3j): Synthesized according to the general procedure, and isolated as a yellow oil (45 mg, 59%). ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.91 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 2.61 (s, 3H); ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 196.79, 139.56, 135.44, 129.72, 128.89, 26.56.

3k

4-cyanoacetophenone (3k): Synthesized according to the general procedure, and isolated as a colorless oil (23 g, 32%). ¹H NMR (500 MHz, CDCl₃), δ (ppm): 8.04-8.06 (m, 2H), 7.78-7.79 (m, 2H), 2.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃), δ (ppm):

196.51, 139.92, 132.52, 128.70, 117.92, 116.43, 26.77.

4-nitroacetophenone (31): Synthesized according to the general procedure, and isolated as a colorless oil (35 mg, 42%). ¹H NMR (500 MHz, CDCl₃), δ (ppm): 8.33 $(d, J = 9 Hz, 2H), 8.13 (d, J = 9 Hz, 2H), 2.70 (s, 3H); {}^{13}C NMR (125 MHz, CDCl₃), \delta$ (ppm): 196.29, 150.37, 141.38, 129.3, 123.86, 26.99.

7-acetyl-5-(tert-butyl)-3,3-dimethyl-2,3-dihydro-1H-inden-1-one (**3m**): Synthesized according to the general procedure, and isolated as a white solid (100 mg, 78%). ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.55 (d, J = 1.5 Hz, 1H), 7.33 (d, J = 1.5Hz, 1H), 2.63 (s, 3H), 2.61 (s, 2H), 1.43 (s, 6H), 1.36 (s, 9H); ¹³C NMR (125 MHz,

CDCl₃), δ (ppm): 204.65, 204.02, 164.57, 159.38, 139.18, 129.34, 123.23, 121.77, 53.23, 38.69, 35.76, 31.12, 30.93, 30.02.

methyl 2-(4-isobutyrylphenyl)propanoate (3n): Synthesized according to the general procedure, and isolated as a colorless oil (55 mg, 47%). ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.94 (d, *J* = 8 Hz, 2H), 7.41 (d, *J* = 8 Hz, 2H), 3.81 (q, *J* = 7 Hz, 1H), 3.70 (s, 3H), 3.56 (hept, J = 7 Hz, 1H), 1.55 (d, J = 7 Hz, 3H), 1.23

(d, J = 7 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 203.95, 174.31, 145.46, 135.14, 128.76, 127.81, 52.20, 45.40, 35.34, 19.14, 18.41.

chlorocyclooctane (5a): Synthesized according to the general procedure, and isolated as CI a colorless oil (32 mg, 45%). ¹H NMR (500 MHz, CDCl₃), δ (ppm): δ 4.25 (t, J = 4 Hz, 1H), 2.11-2.17 (m, 2H), 1.97-2.05 (m, 2H), 1.74-1.82 (m, 2H), 1.48-1.61 (m, 8H); ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 63.59, 35.16, 27.40, 24.93, 23.57.

4. NMR Spectra of Compounds

Figure S15¹³C NMR spectrum of *cis*-9-decalinol (CDCl₃, 125 MHz)

Figure S17 ¹³C NMR spectrum of (3a*R*)-(+)-Sclareolide (CDCl₃, 125 MHz)

Figure S19¹³C NMR spectrum of 4-Acetylphenyl acetate (CDCl₃, 125 MHz)

Figure S21 ¹³C NMR spectrum of 4-Chloroacetophenone (CDCl₃, 125 MHz)

Figure S23 ¹³C NMR spectrum of 4-Cyanoacetophenone (CDCl₃, 125 MHz)

Figure S25¹³C NMR spectrum of 4-Nitroacetophenone (CDCl₃, 125 MHz)

Figure S27 ¹³C NMR spectrum of 7-acetyl-5-(tert-butyl)-3,3-dimethyl-2,3-dihydro-1H-inden-1-one (CDCl₃, 125 MHz)

Figure S29 ¹³C NMR spectrum of methyl 2-(4-isobutyrylphenyl)propanoate (CDCl₃, 125 MHz)

Figure S31 ¹³C NMR spectrum of Chlorocyclooctane (CDCl₃, 125 MHz)

5. X-ray Crystal Structure and Data of catalyst 1

Figure S32 ORTEP diagram of 1. Color code: carbon (grey), oxygen (red), nitrogen (blue) Table S1. Crystal data for 1

Compound	1
Empirical formula	$C_{30}H_{22}Cl_2FeN_3O_2$
Formula weight	582.04
Temperature	295(2) K
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 11.3885(3) Å alpha = 78.630(3) deg.
	b = 13.9248(4) Å $beta = 79.475(3)$ deg.
	c = 16.7200(7) Å gamma = 89.481(2) deg.
Volume	2554.73(15) Å ³
Ζ	2
Calculated density	1.516 g/cm^3
Absorption coefficient	0.836 mm ⁻¹
F(000)	1196
Crystal size	$0.32 \times 0.27 \times 0.12 \text{ mm}$
Theta range for data collection	1.8120 to 2 24.8150 deg.

Accession Codes

CCDC 2086380 contains the supplementary crystallographic data for this paper. This data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Table S2. Selected bond lengths for 1

Length/Å

Fe1A—Cl1A	2.2760 (11)
Fe1A—Cl2A	2.2208 (12)
Fe1A—N3A	1.976 (3)
Fe1A—N2A	2.145 (3)
Fe1A—N1A	2.152 (3)
Fe1B—Cl1B	2.2720 (12)
Fe1B—Cl2B	2.2189 (12)
Fe1B—N3B	1.973 (3)
Fe1B—N2B	2.143 (3)
Fe1B—N1B	2.130 (3)
O3B—C22B	1.352 (5)
O3B—C23B	1.448 (5)
O3A—C22A	1.358 (5)
O3A—C23A	1.452 (5)
O1B—C9B	1.343 (5)
O1B—C8B	1.427 (5)
N3B—C15B	1.382 (5)
N3B—C16B	1.407 (5)
01A—C9A	1.359 (5)
O1A—C8A	1.417 (5)
N3A—C15A	1.397 (5)
N3A—C16A	1.400 (5)
N2A—C22A	1.283 (5)
N2A—C24A	1.496 (5)
N2B—C22B	1.292 (5)
N2B—C24B	1.485 (5)
N1A—C9A	1.288 (5)
N1A—C1A	1.499 (5)
N1B—C9B	1.296 (5)
N1B—C1B	1.506 (5)
C15B—C14B	1.408 (5)
C15B—C10B	1.401 (5)
C15A—C14A	1.406 (5)
C15A—C10A	1.403 (5)
C16B—C17B	1.404 (5)
C16B—C21B	1.413 (5)
C17A—C14A	1.436 (6)
C17A—C16A	1.403 (5)
C17A—C18A	1.399 (6)
C14B—C17B	1.439 (6)
C14B—C13B	1.392 (6)
C14A—C13A	1.401 (6)
C16A—C21A	1.405 (5)
C21A—C22A	1.430 (5)

C21A—C20A	1.412 (5)
C17B—C18B	1.403 (6)
C25A—C26A	1.394 (6)
C25A—C24A	1.504 (6)
C25A—C30A	1.381 (6)
C21B—C22B	1.436 (6)
C21B—C20B	1.406 (5)
C9A—C10A	1.436 (6)
C25B—C24B	1.511 (6)
C25B—C26B	1.394 (6)
C25B—C30B	1.387 (6)
C2B—C1B	1.498 (6)
C2B—C7B	1.376 (6)
C2B—C3B	1.371 (7)
C9B—C10B	1.443 (6)
C10B—C11B	1.399 (5)
C10A—C11A	1.396 (5)
C13B—C12B	1.388 (6)
C2A—C1A	1.504 (7)
C2A—C7A	1.380 (7)
C2A—C3A	1.365 (7)
C20A—C19A	1.375 (6)
C11B—C12B	1.374 (6)
C26A—C27A	1.372 (7)
C11A—C12A	1.376 (6)
C13A—C12A	1.374 (7)
C20B—C19B	1.377 (6)
C18B—C19B	1.390 (7)
C19A—C18A	1.383 (7)
C23B—C24B	1.541 (6)
C23A—C24A	1.530 (6)
C26B—C27B	1.371 (7)
C8B—C1B	1.534 (6)
C8A—C1A	1.542 (7)
C30A—C29A	1.400 (8)
C30B—C29B	1.385 (7)
C27A—C28A	1.367 (8)
C7B—C6B	1.381 (8)
C5B—C6B	1.358 (8)
C5B—C4B	1.354 (8)
C3B—C4B	1.395 (7)
C7A—C6A	1.372 (8)
C27B—C28B	1.370 (8)
C3A—C4A	1.378 (8)

C29B—C28B	1.344 (9)
C29A—C28A	1.361 (9)
C6A—C5A	1.360 (10)
C5A—C4A	1.388 (9)

Table S3. Selected bond angles for 1

	Angle (°)
Cl2A—Fe1A—Cl1A	121.72 (5)
N3A—Fe1A—Cl1A	130.25 (10)
N3A—Fe1A—Cl2A	108.02 (10)
N3A—Fe1A—N2A	87.57 (12)
N3A—Fe1A—N1A	88.59 (13)
N2A—Fe1A—Cl1A	87.01 (9)
N2A—Fe1A—Cl2A	95.56 (9)
N2A—Fe1A—N1A	167.20 (13)
N1A—Fe1A—Cl1A	86.17 (9)
N1A—Fe1A—Cl2A	97.25 (10)
Cl2B—Fe1B—Cl1B	121.70 (5)
N3B—Fe1B—Cl1B	128.62 (9)
N3B—Fe1B—Cl2B	109.68 (10)
N3B—Fe1B—N2B	88.29 (12)
N3B—Fe1B—N1B	87.98 (13)
N2B—Fe1B—Cl1B	87.16 (9)
N2B—Fe1B—Cl2B	94.78 (9)
N1B—Fe1B—Cl1B	86.98 (10)
N1B—Fe1B—Cl2B	96.36 (10)
N1B—Fe1B—N2B	168.86 (13)
C22B—O3B—C23B	106.7 (3)
C22A—O3A—C23A	106.8 (3)
C9B—O1B—C8B	106.1 (3)
C15B—N3B—Fe1B	127.7 (3)
C15B—N3B—C16B	104.7 (3)
C16B—N3B—Fe1B	127.0 (3)
C9A—O1A—C8A	106.4 (3)
C15A—N3A—Fe1A	127.0 (2)
C15A—N3A—C16A	104.7 (3)
C16A—N3A—Fe1A	127.6 (3)
C22A—N2A—Fe1A	127.6 (3)
C22A—N2A—C24A	108.1 (3)
C24A—N2A—Fe1A	124.3 (2)
C22B—N2B—Fe1B	127.4 (3)
C22B—N2B—C24B	108.1 (3)
C24B—N2B—Fe1B	124.2 (2)

C9A—N1A—Fe1A	125.6 (3)
C9A—N1A—C1A	107.9 (3)
C1A—N1A—Fe1A	125.3 (3)
C9B—N1B—Fe1B	127.1 (3)
C9B—N1B—C1B	107.0 (3)
C1B—N1B—Fe1B	124.9 (3)
N3B—C15B—C14B	112.3 (3)
N3B-C15B-C10B	128.0 (4)
C10B—C15B—C14B	119.7 (3)
N3A—C15A—C14A	111.6 (3)
N3A—C15A—C10A	127.9 (3)
C10A—C15A—C14A	120.4 (4)
N3B—C16B—C21B	128.5 (4)
C17B—C16B—N3B	111.2 (3)
C17B—C16B—C21B	120.3 (3)
C16A—C17A—C14A	106.3 (3)
C18A—C17A—C14A	133.5 (4)
C18A—C17A—C16A	120.2 (4)
C15B—C14B—C17B	105.5 (3)
C13B—C14B—C15B	120.5 (4)
C13B—C14B—C17B	134.0 (4)
C15A—C14A—C17A	105.9 (3)
C13A—C14A—C15A	119.6 (4)
C13A—C14A—C17A	134.5 (4)
N3A—C16A—C17A	111.5 (3)
N3A—C16A—C21A	127.6 (3)
C17A—C16A—C21A	120.9 (3)
C16A—C21A—C22A	121.2 (3)
C16A—C21A—C20A	117.4 (4)
C20A—C21A—C22A	121.4 (4)
C16B—C17B—C14B	106.3 (3)
C18B—C17B—C16B	120.5 (4)
C18B—C17B—C14B	133.2 (4)
C26A—C25A—C24A	121.6 (4)
C30A—C25A—C26A	118.7 (4)
C30A—C25A—C24A	119.7 (4)
C16B—C21B—C22B	120.5 (3)
C20B—C21B—C16B	117.5 (4)
C20B—C21B—C22B	122.0 (4)
O1A—C9A—C10A	115.6 (4)
N1A—C9A—O1A	115.9 (4)
N1A-C9A-C10A	128.4 (4)
O3A—C22A—C21A	116.9 (3)
N2A—C22A—O3A	116.2 (4)

N2A—C22A—C21A	127.0 (3)
O3B—C22B—C21B	116.8 (3)
N2B—C22B—O3B	116.1 (4)
N2B—C22B—C21B	127.1 (3)
C26B—C25B—C24B	121.5 (4)
C30B—C25B—C24B	120.4 (4)
C30B—C25B—C26B	118.1 (4)
C7B—C2B—C1B	119.7 (5)
C3B—C2B—C1B	122.2 (4)
C3B—C2B—C7B	118.0 (5)
O1B—C9B—C10B	116.3 (4)
N1B—C9B—O1B	116.8 (4)
N1B—C9B—C10B	126.9 (4)
C15B—C10B—C9B	120.9 (3)
C11B—C10B—C15B	118.6 (4)
C11B—C10B—C9B	120.4 (4)
C15A—C10A—C9A	121.0 (3)
C11A—C10A—C15A	117.8 (4)
C11A—C10A—C9A	121.1 (4)
C12B—C13B—C14B	119.2 (4)
C7A—C2A—C1A	117.4 (5)
C3A—C2A—C1A	123.8 (4)
C3A—C2A—C7A	118.6 (5)
C19A—C20A—C21A	121.2 (4)
C12B—C11B—C10B	121.4 (4)
C27A—C26A—C25A	120.4 (5)
C12A—C11A—C10A	121.9 (4)
C12A—C13A—C14A	119.8 (4)
C19B—C20B—C21B	122.0 (4)
C19B—C18B—C17B	119.0 (4)
C20B—C19B—C18B	120.6 (4)
C20A—C19A—C18A	121.5 (4)
O3B—C23B—C24B	104.1 (3)
O3A—C23A—C24A	104.4 (3)
C19A—C18A—C17A	118.7 (4)
N2B—C24B—C25B	111.7 (3)
N2B—C24B—C23B	102.2 (3)
C25B—C24B—C23B	115.0 (3)
N2A—C24A—C25A	111.4 (3)
N2A—C24A—C23A	102.5 (3)
C25A—C24A—C23A	114.8 (4)
C27B—C26B—C25B	121.2 (5)
C11B—C12B—C13B	120.6 (4)
C13A—C12A—C11A	120.3 (4)

O1B—C8B—C1B	105.7 (3)
N1B—C1B—C8B	100.5 (3)
C2B—C1B—N1B	117.4 (4)
C2B—C1B—C8B	111.4 (4)
O1A—C8A—C1A	105.5 (4)
C25A—C30A—C29A	120.1 (5)
N1A—C1A—C2A	117.9 (4)
N1A—C1A—C8A	100.3 (4)
C2A—C1A—C8A	111.5 (4)
C29B—C30B—C25B	119.4 (5)
C28A—C27A—C26A	120.5 (5)
C2B—C7B—C6B	121.5 (6)
C4B—C5B—C6B	120.0 (6)
C2B—C3B—C4B	120.2 (5)
C6A—C7A—C2A	120.3 (6)
C5B—C6B—C7B	119.7 (5)
C28B—C27B—C26B	119.6 (5)
C2A—C3A—C4A	121.1 (5)
C28B—C29B—C30B	121.6 (6)
C28A—C29A—C30A	119.9 (5)
C5A—C6A—C7A	121.6 (6)
C29A—C28A—C27A	120.4 (5)
C6A—C5A—C4A	118.2 (6)
C5B—C4B—C3B	120.5 (6)
C29B—C28B—C27B	120.2 (5)
C3A—C4A—C5A	120.2 (7)

6. References

_

- 1. W. Chen, Q. Yang, T. Zhou, Q. Tian, and G. Zhang. Org. Lett., 2015, 21, 5236.
- 2. T. Niwa and M. Nakada. J. Am. Chem. Soc., 2012, 33, 13538.
- 3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339.
- 4. G. M. Sheldrick, Acta Crystallogr, Sect. C: Struct. Chem., 2015, 71, 3.
- 5. K. Kamata, K. Yonehara, Y. Nagakawa, K. Uehara, and N. Mizuno, Nat. Chem., 2010, 2, 478.
- 6. R. K. Quinn, Z. A. Könst, S. E. Michalak, Y. Schmidt, A. R. Szklarski, A. R. Flores, S. Nam, D. A. Horne, C. D. Vanderwal, and E. J. Alexanian. *J. Am. Chem. Soc.*, **2016**, *138*, 696