SUPPORTING INFORMATION

Pb₃SBrI₃: The first Pb-based chalcohalide with multiple halogens features unique twodimensional structure composed by diverse Pb-centered polyhedra

Mei Yan, Ru-Ling Tang, * Wenfeng Zhou, Wenlong Liu, and Sheng-Ping Guo*

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

Corresponding authors: rltang@yzu.edu.cn, spguo@yzu.edu.cn

Contents

Tables and Figures

Table S1. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (U_{eq} , Å² × 10³) for Pb₃SBrI₃.

Table S2. Important bond lengths (Å) and bond angles (°) for Pb₃SBrI₃.

Table S3. Pb-based chalcohalides.

Table S4. Chalcohalides with multiple halogens.

Figure S1. Unique stepped layers shape formed by adjacent parallelograms extending along the *b*-axis.

Figure S2. Two seesaw-like $[Pb_4S_3I]^+$ units in the $[Pb_3I_4S_2]_{\infty}$ neutral layer.

Figure S3. The TG-DSC curves of Pb₃SBrI₃.

Figure S4. Simulated and experimental XRD patterns of powder sample of Pb₃SBrI₃ after heated at 400 °C.

atom	Wyckoff site	x	У	z	$U_{ m eq}/ m \AA^2$
Pb(1)	2 <i>e</i>	3000.9(9)	7500	9323.6(7)	28.6(3)
Pb(2)	2 <i>e</i>	7045.6(10)	7500	7828.8(6)	30.3(3)
Pb(3)	2 <i>e</i>	2495.1(11)	2500	5444.9(7)	32.9(3)
I(1)	2 <i>e</i>	9476.5(16)	2500	8671.4(12)	29.3(4)
I(2)	2 <i>e</i>	-421.9(17)	2500	3725.1(12)	31.0(4)
I(3)	2 <i>e</i>	4058.2(17)	2500	7685.0(11)	31.5(4)
Br(1)	2 <i>e</i>	3478(2)	-2500	4209.3(16)	24.0(5)
S(1)	2 <i>e</i>	6280(6)	7500	9535(4)	18.7(10)

Table S1. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters $(U_{eq}, Å^2 \times 10^3)$ for Pb₃SBrI₃.

 $^{a}U_{\mathrm{eq}}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Bond	Dist./Å	Bond	Angle/Å
Pb(1)–S(1)	2.753(5)	S(1)-Pb(1)-S(1)#1	79.48(11)
Pb(1)–S(1)#1	2.799(3)	I(1)#3–Pb(2)–I(1)	90.74(5)
Pb(1)–S(1)#2	2.799(3)	I(1)#3–Pb(2)–I(3)	159.28(5)
Pb(1)–I(1)	3.158(13)	I(1)–Pb(2)–I(3)	89.23(3)
Pb(2)–I(1)#3	3.158(13)	I(3)–Pb(2)–I(3)#3	83.60(4)
Pb(2)–I(3)	3.372(13)	S(1)–Pb(2)–I(1)	83.41(8)
Pb(2)–I(3)#3	3.372(13)	S(1)–Pb(2)–I(3)	76.00(8)
Pb(2)–S(1)	2.668(5)	I(2)-Pb(3)-I(2)#4	83.76(4)
Pb(3)–I(2)#4	3.213(13)	I(2)–Pb(3)–I(3)	153.79(5)
Pb(3)–I(2)#5	3.213(13)	I(2)#5–Pb(3)–I(3)	77.62(4)
Pb(3)–I(2)	3.211(2)	Br(1)–Pb(3)–I(2)	78.24(5)
Pb(3)–I(3)	3.302(2)	Br(1)#3–Pb(3)–I(2)#4	161.66(6)
Pb(3)–Br(1)#3	3.078(16)	Br(1)-Pb(3)-I(2)#4	85.87(4)
Pb(3)–Br(1)	3.078(16)	Br(1)–Pb(3)–I(3)	118.09(5)

Table S2. Important bond lengths (Å) and bond angles (°) for Pb₃SBrI₃.

Symmetry transformations used to generate equivalent atoms: #1 1-*x*, -*y*, 2-*z*; #2 1-*x*, 1-*y*, 2-*z*; #3 +*x*, 1+*y*, +*z*; #4 -*x*, -*y*, 1-*z*; #5 -*x*, 1-*y*, 1-*z*; #6 +*x*, -1+*y*, +*z*.

Compound	Crystal system	Space	Dh haaad unita	Structural	Ref.
Compound		group	r D-based units	dimensionality	
$Pb_7S_2Br_{10}$	Hexagonal	<i>P</i> 6 ₃ / <i>m</i>	Pb(Br/S) ₃ , PbBr ₅ (Br/S) ₃	3D	1
Pb ₄ SeBr ₆	Orthorhombic	Imm2	PbSeBr ₆ , PbSe ₂ Br ₆ , PbBr ₇	3D	2
$Pb_5S_2I_6$	Monoclinic	<i>C</i> 2/ <i>m</i>	PbI ₇ , PbSI ₆ , PbS ₃ I ₃	3D	1
$Pb_2BiS_2I_3$	Orthorhombic	Стст	PbS ₃ , PbS ₆ I ₃	3D	3
$Pb_2SbS_2I_3$	Orthorhombic	Стст	PbS ₃ , PbS ₆ I ₃	3D	4
$Pb_{22}Sb_{26}S_{60}Cl$	Triclinic	$P\bar{1}$	PbS ₅ , PbS ₇ , PbS ₆ I, PbS ₈	3D	5
Pb ₂₃ Sb ₂₅ S ₆₀ Cl	Triclinic	P^{1}	PbS ₅ , PbS ₇ , PbS ₈ , PbS ₆ Cl	3D	5
$Pb_{10}Sb_{10}S_{23}Cl_4$	Triclinic	P2/m	PbS ₇ , PbS ₅ Cl ₂	3D	6
$Pb_{12.65}Sb_{11.35}S_{28.35}Cl_{2.65}$	Monoclinic	C2/m	$(Pb/Sb)S_3$, $(Pb/Sb)S_5$, PbS_5 ,	3D	7
			PbS_6 , $(Pb/Sb)S_7$, PbS_8 , PbS_6Cl_2		
$Cu_{3.12}Pb_{0.12}Bi_{2.88}S_5I_2$	Orthorhombic	Стст	(Bi/Pb)S ₆	3D	8
$Pb_{3.45}Sb_{2.55}S_{6.55}Cl_{1.45}$	Orthorhombic	Pnma	$PbS_2(S/Cl)_4Cl_2, Pb(S/Cl)_2,$	3D	6
			Pb(S/Cl) ₂ Cl		
$Pb_{4.32}Sb_{3.68}S_{8.68}Cl_{2.32}$	Orthorhombic	Pnma	(Pb/Sb)S ₅ , PbS ₆ Cl ₂ , PbS ₇	3D	9
$Hg_2PbI_2S_2$	Tetragonal	P4/nnc	PbS_4I_3	3D	10
Pb ₂ AsS ₃ I	Tetragonal	Pnma	PbS ₄ I ₂ , PbS ₄ I ₃	3D	11
Pb ₄ As ₂ S ₆ ICl	Orthorhombic	$Pmn2_1$	PbS ₆ I ₂ , PbS ₆ I ₃	3D	12
$Ba_4Ge_2PbS_8Br_2$	Orthorhombic	Pnma	PbS ₅ Br	3D	13
$Ba_4Ge_2PbSe_8Br_2$	Orthorhombic	Pnma	PbSe ₅ Br	3D	13
Pb ₃ SBrI ₃	Monoclinic	$P2_{1}/m$	PbS3, PbSI4, PbBr2I4	2D	This
		•			work

|--|

Compound	Space group	Functional units	S/X ratio	Dimensionality	Ref.
Hg ₅ Ag ₄ S ₅ (I/Br) ₂ Cl ₂	P212121	AgS ₃ (I/Br), AgSCl(Br/I) ₂	5:4	3D	14
$Hg_{3}S_{2}Br_{1.5}Cl_{0.5}$	C2/m	HgS2Br, HgS2BrCl,	1:1	3D	15
		HgS_2Br_2			
$Hg_{3}S_{2}Br_{1.5}Cl_{0.5}$	$Pm\overline{3}n$	HgS2Br/Cl, HgS2(Br/Cl)2	1:1	3D	15
$Hg_{3}S_{2}Br_{0.5}Cl_{1.5}$	C2/m	HgS ₂ Cl, HgS ₂ (Cl/Br) ₂ Br,	1:1	3D	16
0.5 2 0.5 1.5		HgS ₂ (Cl/Br)Cl,			
		HgS ₂ (Cl/Br)			
$Hg_{3}S_{2}Br_{0.5}Cl_{1.5}$	$Pm^{3}n$	HgS ₂ (Cl/Br) ₂ Cl, HgS ₂	1:1	3D	16
Hg ₆ S ₄ IBr ₂ Cl	Pmna	$HgS_2Cl, HgS_4, HgS_2Br_2I_2,$	1:1	3D	17
		HgS_2BrI_2			
Pb ₄ As ₂ S ₆ ICl	$Pma2_1$	PbS ₃ , PbS ₂ Cl, PbAsS ₆ ICl	3:1	3D	12
Pb ₃ SBrI ₃	$P2_{1}/m$	PbS ₃ , PbSI ₄ , PbBr ₂ I ₄	1:4	2D	This
	÷	57 17 2 4			work

Table S4. Chalcohalides contain multiple halogens.

Figure S1. Unique stepped layers shape formed by adjacent parallelograms extending along the *b*-axis.

Figure S2. Two seesaw-like $[Pb_4S_3I]^+$ units in the $[Pb_3I_4S_2]_\infty$ neutral layer.

Figure S3. The TG-DSC curves of Pb₃SBrI₃.

Figure S4. Simulated and experimental XRD pattern of powder calcinated at 400 °C.

References

- 1. B. Krebs, Z. Naturforsch. B, 1970, 25, 223–224.
- 2. J. K. Wang, H. P. Wu, H. W. Yu, Z. G. Hu, J. Y. Wang and Y. C. Wu, *Adv. Opt. Mater.*, 2022, **10**, 2102673–2102680.
- S. M. Islam, C. D. Malliakas, D. Sarma, D. C. Maloney, C. C. Stoumpos, O. Y. Kontsevoi, A. J. Freeman and G. Kanatzidis, *Chem. Mater.*, 2016, 28, 7332–7343.
- 4. C. Doussier, Y. Moëlo, P. Léone, A. Meerschaut and M. Evain, *Solid State Sci.*, 2007, 9, 792–803.
- 5. E. Makovicky, D. Topa and W. G. Mumme, *Can. Mineral.*, 2006, 44, 1499–1512.
- D. Charlotte, M. Yves, M. Alain, L. Philippe and G. D. Catherine, J. Solid. State. Chem., 2008, 181, 920–934.
- 7. V. V. Kostov and J. Macicek, Eur. J. Mineral., 1995, 4, 1007–1018.
- 8. M. Ohmasa and K. Mariolacos, *Acta Crystallog. B*, 1974, **30**, 2640–2643.
- 9. V. V. Kostov, R. Petrova, J. Macicek, Eur. J. Mineral., 1997, 9, 1191–1198.
- 10. R. Blachnik, W. Buchmeier and H. A. Dreisbach, Acta Cryst. C, 1986, 42, 515–517.
- M. Zelenski, T. Balić-Žunić, L. Bindi, A. Garavelli, E. Makovicky, D. Pinto and F. Vurro, *Am. Mineral.*, 2006, 91, 21–28.
- 12. L. Bindi, A. Garavelli, D. Pinto, G. Pratesi and F. Vurro, J. Solid. State. Chem., 2008, 181, 306–312.
- Z. H. Lin, K. Feng, H. Tu, L. Kang, Z. S. Lin, J. Y. Yao and Y. C. Wu, J. Alloy. Compd., 2014, 611, 422–426.
- 14. K. Paul, L. Falk and S. Thomas, *Neues Jb. Miner. Abh.*, 2005, 181, 1–9.
- 15. N. V. Pervukhina, S. A. Magarill, D. Y. Naumov, S. V. Borisov, V. I. Vasil'yev and B. G. Nenashev, J. Struct. Chem., 2006, 47, 312–317.
- N. V. Pervukhina, S. A. Magarill, D. Y. Naumov, S. V. Borisov, V. I. Vasil'ev and B. G. Nenashev, J. Struct. Chem., 2005, 46, 641–646.
- N. V. Pervukhina, V. I. Vasil'ev, S. V. Borisov, S. A. Magarill, and D. Y. Naumov, *Can. Mineral.*, 2003, 41, 1445–1453.