Mixed-valence {Fe^{II}₂Fe^{III}₄} hexanuclear complexes with thermally induced spin crossover behavior

Shuwen Jia,^{a,} Chunyang Zheng,^{b,*} Lingyue Fan,^a Sai Jin^a and Dongfeng Li^{a,*}

^{*a*} Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Central China Normal University, 430079 Wuhan, P. R. China. E-mail: dfli@mail.ccnu.edu.cn.

^b Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Institute for Advanced Materials, Hubei Normal University, 435002 Huangshi, P. R. China.

CONTENTS

Figure S1. The asymmetric unit of 1, 2 and 3 at 100 K.
Figure S2. FT-IR transmission spectrum of 1, 2 and 3 at 298 K2
Figure S3. The variable-temperature IR spectra of compounds 1, 2, and 3
Table S1. Crystal data and structure refinement for 1 , 2 and 3 at different tempterature
Table S2. Selected bond lengths (Å) for 1, 2 and 3 at different temperature.
Table S3. Selected bond lengths (Å) for 1, 2 and 3 at different temperature.
Table S4. Selected bond angles (°) for 1, 2 and 3 at different temperature.
Figure S4 . Temperature dependence of $\chi_M T$ plots for 1, 2, and 3
Figure S5. ⁵⁷ Fe Mössbauer spectra of 2 at 298 K and 20 K
Figure S6. ⁵⁷ Fe Mössbauer spectra of 3 at 298 K and 20 K
Table S5. 57Fe Mössbauer parameters for 1, 2 and 3 at different tempterature.
Figure S7. Cyclic voltammogram of 1
Figure S8. Cyclic voltammogram of 2
Figure S9. Cyclic voltammogram of 3
Figure S10. UV-Vis-NIR spectrum of 1, 2 and 3

Figure S1. The asymmetric unit of 1, 2 and 3 at 100 K, anions and hydrogen atoms are omitted for clarity.

Figure S2. FT-IR transmission spectrum of 1, 2 and 3 at 298 K.

Figure S3. The variable-temperature IR spectra of compounds 1, 2, and 3.

Table S1. Crystal data and structure refinement for 1, 2 and 3 at different tempterature.

	1 ^{298K}	1 ^{150K}	1 ^{100K}	2 ^{298K}	2 ^{100K}	3 ^{298K}	3 ^{100K}
CCDC	2126714	2126715	2126716	2126718	2126717	2126720	2126719
Temperature /K	298	150	100	298	100	298	100
Formula	C ₁₁	$_{2}H_{142}B_{2}Cl_{6}Fe_{6}N_{34}O_{3}$	34	$C_{118}H_{150}B_2C_{118}$	$C_{118}H_{150}B_2Cl_6Fe_6N_{34}O_{32}$		$Cl_6Fe_6N_{34}O_{34}$
Formula weight	3077.96	3077.96	3077.96	3127.10	3127.10	3005.72	3005.72
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	C2/c	C2/c	C2/c	C2/c	C2/c	C2/c
Ζ	4	4	4	4	4	4	4
a /Å	25.421 (5)	25.026 (2)	25.019 (3)	25.5260 (11)	25.057 (2)	25.260 (3)	24.824 (3)
b/Å	22.267 (4)	22.1299 (19)	22.076 (3)	22.3469 (10)	22.1418 (18)	22.226 (3)	21.984 (3)
c /Å	24.753 (5)	24.392 (2)	24.338 (3)	24.7393 (11)	24.2605 (19)	24.363 (3)	23.864 (3)
α /º	90	90	90	90	90	90	90
β /°	96.334 (4)	96.767 (2)	96.654 (2)	95.456 (2)	95.759 (1)	96.680 (2)	97.145 (2)°

γ /°	90	90	90	90	90	90	90
V / Å ³	13926 (4)	13415 (2)	13352 (3)	14048.0 (11)	13392.1 (19)	13585 (3)	12922 (3)
D_{calc} (mg/m ³)	1.345	1.397	1.404	1.250	1.411	1.366	1.482
μ /mm ⁻¹	0.80	0.83	0.83	0.75	0.83	0.82	0.86
<i>F</i> (000)	5781	5792	5792	5440	5838	5728	5896
Collected reflections	72480	65550	57305	64778	62711	59617	43836
Unique reflections(Rint)	21208(0.046)	21995(0.030)	15884(0.056)	16924(0.036)	19464(0.039)	16367(0.051)	11354(0.050)
Goodness-of-fit on F^2	1.01	1.02	1.02	1.04	1.03	1.03	1.09
$R_1 \left[I > 2\sigma \left(I \right) \right]$	0.063	0.046	0.054	0.056	0.054	0.069	0.079
$wR_2 [I > 2\sigma (I)]$	0.210	0.134	0.169	0.188	0.164	0.232	0.250

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$; ^b $wR_2 = \{ \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{1/2}$

	1 ^{298K}	1 ^{150K}	1 ^{100K}	2 ^{298K}	2 ^{100K}	3 ^{298K}	3100K
Fe1–C1	1.865 (3)	1.894 (2)	1.900 (3)	1.863 (3)	1.866 (2)	1.862 (4)	1.882 (6)
Fe1–C2	1.856 (3)	1.897 (2)	1.893 (3)	1.857 (3)	1.879 (2)	1.844 (4)	1.887 (5)
Fe1–C3	1.870 (3)	1.882 (2)	1.877 (3)	1.870 (3)	1.864 (3)	1.866 (4)	1.865 (6)
Fe1-Caverage	1.864 (3)	1.891 (2)	1.890 (3)	1.863 (3)	1.869 (2)	1.857 (4)	1.878 (6)
Fe1–N4	1.994 (2)	1.976 (2)	1.970 (2)	2.009 (2)	1.991 (2)	2.008 (3)	1.986 (4)
Fe1–N6	1.986 (3)	1.969 (2)	1.960 (2)	1.999 (3)	1.986 (2)	2.000 (3)	1.980 (5)
Fe1–N8	1.988 (2)	1.984 (2)	1.981 (2)	2.005 (2)	1.999 (2)	2.000 (3)	1.995 (4)
Fe1-N _{average}	1.989 (2)	1.976 (2)	1.970 (2)	2.004 (2)	1.992 (2)	2.003 (3)	1.987 (4)
Fe2-N10	2.108 (3)	1.959 (2)	1.977 (3)	2.136 (3)	1.985 (2)	2.168 (4)	2.027 (5)
Fe2-N11	2.067 (3)	1.981 (2)	1.957 (3)	2.097 (3)	1.966 (2)	2.141 (4)	2.000 (5)
Fe2-N12	2.057 (3)	1.970 (2)	1.970 (3)	2.078 (3)	1.966 (2)	2.130 (4)	2.014 (5)
Fe2-N13	2.040 (3)	1.959 (2)	1.953 (3)	2.076 (3)	1.966 (2)	2.089 (4)	1.974 (5)
Fe2–N _{TPa}	2.068 (3)	1.967 (2)	1.964 (3)	2.096 (3)	1.970 (2)	2.132 (4)	2.003 (5)
Fe2-N1 ⁱ	1.973 (2)	1.929 (2)	1.926 (3)	1.985 (3)	1.914 (2)	1.999 (3)	1.946 (5)
Fe2–N2	1.947 (3)	1.915 (2)	1.915 (3)	1.957 (3)	1.920 (2)	1.958 (3)	1.924 (5)
Fe2-N _{cyanide}	1.96 (3)	1.922 (2)	1.920 (3)	1.971 (3)	1.917 2)	1.979 (3)	1.935 (5)
Fe3-N14	2.119 (3)	2.076 (2)	2.082 (3)	2.113 (3)	2.117 (2)	2.150 (3)	2.123 (5)
Fe3-N15	2.220 (3)	2.183 (2)	2.182 (3)	2.213 (3)	2.216 (3)	2.230 (4)	2.217 (5)
Fe3-N16	2.132 (3)	2.102 (2)	2.108 (3)	2.130 (3)	2.128 (3)	2.141 (4)	2.145 (5)
Fe3-N17	2.122 (3)	2.101 (2)	2.094 (4)	2.130 (3)	2.126 (3)	2.121 (4)	2.119 (5)
Fe3-N _{Tpa}	2.148 (3)	2.115 (2)	2.117 (3)	2.125 (3)	2.124 (3)	2.161 (4)	2.151 (5)
Fe3–N3	2.052 (3)	2.041 (2)	2.044 (3)	2.039 (3)	2.034 (2)	2.050 (3)	2.058 (5)
Fe3–O1	1.783 (3)	1.789 (2)	1.802 (3)	1.795 (3)	1.815 (3)	1.838 (4)	1.859 (5)

Table S2. Selected bond lengths (Å) for 1, 2 and 3 at different temperature.

Symmetry code: 1^{298K}: (i) -*x*+1/2, -*y*+1/2, -*z*+1; 1^{150K}: (i) -*x*+3/2, -*y*+1/2, -*z*+1; 1^{100K}: (i) -*x*+1/2, -*y*+3/2, -*z*+1; 2^{298K}: (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{298K}: (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{100K}: (i) -*x*+1/2, -*y*+3/2, -*z*+1.

Table S3. Selected bond	lengths (Å) for	1, 2 and 3 at c	lifferent temperature.

Avg. bond	l distance (Å)	1 ^{298K}	1 ^{100K}	change	2 ^{298K}	2 ^{100K}	change	3 ^{298K}	3 100K	change
FeC N	Fe1-Caverage	1.864 (3)	1.890 (3)	+0.026 Å	1.863 (3)	1.869 (2)	+0.006 Å	1.857 (4)	1.878 (6)	+0.021 Å
1003113	Fe1-N _{average}	1.989 (2)	1.970 (2)	-0.019 Å	2.004 (2)	1.992 (2)	-0.012 Å	2.003 (3)	1.987 (4)	-0.016 Å
FeN	Fe2-N _{cyanide}	1.960 (3)	1.920 (3)	-0.040 Å	1.971 (3)	1.917 (2)	-0.054 Å	1.979 (3)	1.935 (5)	-0.044 Å
1.6146	Fe2–N _{Tpa}	2.068 (3)	1.964 (3)	-0.104 Å	2.096 (3)	1.970 (2)	-0.126 Å	2.132 (4)	2.003 (5)	-0.129 Å
EaN	Fe3–N3	2.052 (3)	2.044 (3)	-0.006 Å	2.039 (3)	2.034 (2)	-0.005 Å	2.050 (3)	2.058 (5)	-0.008 Å
T'eins	Fe3–N _{Tpa}	2.148 (3)	2.117 (3)	-0.031 Å	2.125 (3)	2.124 (3)	-0.001 Å	2.161 (4)	2.151 (5)	-0.001 Å

1 298K 1 100K 1 150K 2 298K 2 100K 3 298K 3 100K Bond Angles C1-Fe1-C2 93.54 (11) 93.78 (12) 93.85 (7) 94.12 (12) 95.01 (10) 93.88 (15) 94.2 (2) C1–Fe1–N4 175.95 (11) 176.10 (11) 175.84 (7) 175.58 (12) 175.08 (10) 175.88 (14) 176.2 (2) C1-Fe1-N6 90.91 (11) 91.01 (11) 90.90(7) 90.82 (11) 90.51 (10) 89.34 (14) 90.4 (2) C1-Fe1-N8 88.76 (11) 88.11 (11) 88.11 (7) 88.88 (11) 88.55 (9) 92.85 (15) 89.1 (2) C2-Fe1-N4 89.33 (11) 88.85 (11) 89.01 (7) 89.00 (11) 88.70 (10) 89.50 (14) 89.0 (2) C2-Fe1-N6 174.58 (12) 173.91 (12) 173.83 (7) 174.01 (12) 172.71 (10) 88.57 (14) 174.1 (2) C2-Fe1-N8 88.49 (11) 87.36 (11) 87.19(7) 88.56 (11) 86.99 (9) 174.72 (15) 87.3 (2) C3–Fe1–C1 91.41 (12) 90.74 (13) 90.84 (8) 90.84 (13) 90.68 (11) 93.03 (15) 92.6 (2) C3–Fe1–C2 90.82 (12) 89.99 (12) 89.99 (8) 91.50 (13) 91.62 (11) 89.58 (15) 89.2 (2) C3–Fe1–N4 91.41 (11) 92.14 (12) 92.21 (12) 92.44 (10) 92.19 (7) 89.34 (15) 89.5 (2) C3-Fe1-N6 92.16 (12) 93.71 (12) 93.88 (8) 91.82 (12) 93.08 (10) 90.68 (14) 94.2 (2) C3–Fe1–N8 179.30 (12) 177.03 (12) 176.92 (7) 179.71 (13) 178.34 (10) 177.09 (15) 176.2 (2) N4–Fe1–N8 88.46 (10) 89.13 (10) 89.00 (6) 88.07 (10) 88.43 (9) 85.83 (14) 88.89 (18) N6–Fe1–N4 86.07 (11) 86.18 (10) 86.05 (7) 85.89 (11) 85.53 (9) 88.39 (13) 86.31 (19) 88.52 (11) 89.05 (10) N6-Fe1-N8 89.03 (7) 88.15 (11) 88.40 (9) 88.82 (13) 89.07 (19) N11-Fe2-N10 81.55 (12) 85.24 (12) 85.47 (8) 80.76 (12) 85.08 (11) 79.82 (16) 83.9 (2) N11-Fe2-N12 88.85 (13) 91.15 (12) 91.16 (8) 88.72 (13) 91.51 (10) 87.09 (16) 88.7 (2) N11-Fe2-N13 88.73 (12) 89.74 (11) 89.93 (7) 88.63 (11) 89.32 (10) 88.48 (15) 90.1 (2) N12-Fe2-N10 79.77 (12) 83.15 (12) 82.98 (8) 78.56 (12) 82.60 (10) 82.1 (2) 78.24 (16) N13-Fe2-N10 80.12 (12) 84.60 (12) 84.74 (8) 79.73 (12) 84.64 (10) 77.41 (16) 82.3 (2) N13-Fe2-N12 159.88 (11) 167.60 (12) 167.54 (8) 158.27 (11) 167.09 (10) 155.65 (15) 164.4 (2) N1-Fe2-N10 91.62 (11) 92.24 (11) 91.94 (7) 91.80 (11) 91.87 (10) 92.76 (15) 93.54 (19) N1-Fe2-N11 172.76 (11) 175.35 (11) 175.36 (7) 172.25 (12) 174.96 (10) 172.42 (15) 175.9 (2) N1-Fe2-N12 92.30 (12) 92.43 (11) 92.35 (7) 91.94 (12) 92.08 (10) 88.42 (13) 94.1 (2) N1-Fe2-N13 87.74 (11) 86.13 (11) 86.00(7) 87.91 (11) 86.39 (9) 88.42 (13) 86.29 (19) N2ⁱ-Fe2-N1 93.12 (10) 87.90 (10) 88.23 (6) 93.75 (11) 88.99 (9) 94.70 (13) 89.26 (18) 175.17 (11) 177.57 (12) 177.46 (8) 174.39 (12) 177.56 (10) 172.51 (15) 176.7 (2) N2ⁱ-Fe2-N10 N2ⁱ-Fe2-N11 93.76 (11) 94.79 (11) 94.52 (7) 93.72 (12) 94.21 (10) 92.74 (15) 93.38 (19) N2ⁱ-Fe2-N12 99.07 (12) 94.42 (11) 94.49 (7) 100.43 (12) 95.09 (9) 100.65 (14) 95.9 (2) N2ⁱ-Fe2-N13 101.02 (12) 97.83 (11) 97.80(7) 101.26 (12) 97.70 (9) 103.48 (15) 99.7 (2) N3-Fe3-N14 165.81 (12) 166.64 (12) 166.62 (8) 165.97 (13) 165.16 (10) 163.00 (16) 163.1 (2) N3-Fe3-N15 89.02 (12) 88.85 (12) 88.67 (8) 89.68 (12) 88.94 (10) 86.73 (15) 86.06 (18) N3-Fe3-N16 86.33 (12) 85.94 (11) 85.87 (7) 85.51 (12) 85.75 (10) 87.50 (16) 87.3 (2) N3-Fe3-N17 89.34 (12) 89.56 (12) 89.68 (8) 90.43 (12) 89.79 (10) 88.12 (15) 87.3 (2) N14-Fe3-N15 78.94 (11) 80.26 (11) 80.35 (7) 78.94 (12) 78.89 (10) 78.26 (14) 78.78 (18) N14-Fe3-N16 83.72 (12) 84.27 (11) 84.43 (7) 84.05 (12) 83.35 (9) 81.49 (14) 82.07 (18) N14-Fe3-N17 94.80 (11) 95.28 (11) 95.11 (7) 94.56 (12) 95.22 (9) 95.82 (14) 96.18 (18)

N16-Fe3-N15

77.32 (13)

78.08 (11)

78.26(7)

77.46 (13)

77.36 (11)

77.21 (17)

76.9 (2)

Table S4. Selected bond angles (°) for 1, 2 and 3 at different temperature.

N17–Fe3–N15	75.35 (13)	76.27 (13)	76.46 (9)	75.46 (13)	75.34 (11)	75.93 (16)	76.1 (2)
N17-Fe3-N16	152.39 (13)	154.04 (13)	154.42 (9)	152.63 (14)	152.41 (11)	152.99 (17)	152.7 (2)
O1–Fe3–N14	93.48 (13)	93.36 (12)	92.82 (8)	92.76 (13)	92.66 (11)	95.34 (17)	95.4 (2)
O1–Fe3–N15	172.02 (12)	173.44 (12)	172.98 (8)	171.30 (12)	171.09 (10)	173.42 (17)	174.1 (2)
O1–Fe3–N16	104.56 (14)	102.95 (13)	102.83 (8)	104.51 (15)	104.67 (12)	103.52 (19)	103.4 (2)
O1–Fe3–N17	103.05 (14)	102.99 (14)	102.74 (9)	102.85 (15)	102.92 (12)	103.49 (18)	103.9 (2)
O1–Fe3–N3	98.81 (13)	97.68 (13)	98.32 (9)	98.90 (13)	99.83 (11)	99.81 (18)	99.9 (2)

Symmetry code: 1^{298K} : (i) -*x*+1/2, -*y*+1/2, -*z*+1; 1^{150K} : (i) -*x*+3/2, -*y*+1/2, -*z*+1; 1^{100K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 2^{298K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 2^{100K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{298K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{100K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{298K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{100K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{298K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{100K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{298K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{298K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{100K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{298K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{100K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{298K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{100K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{298K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{100K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; 3^{10K} : (i) -*x*+1/2, -*y*+3/2, -*z*+1; (i) -*x*+1/2, -*y*+3/2, -*z*

Table S5. Structural parameters for 1, 2 and 3 at 298 K high and 100 K.

Compd.		$\Sigma_{\rm Fe}(^{\circ})$	ζFe	$\Theta_{\mathrm{Fe}}(^{\circ})$	
1	Fe1	20.62 (23.26)	1.93 (0.26)	52.81 (71.31)	[FeC3N3] [(Tpa)Fe(NC)3]
1 298 (100) K	Fe2	64.11 (44.89)	2.03 (0.12)	161.82 (117.86)	[FeN6]
	Fe3	94.68 (88.08)	2.07 (0.53)	211.27 (193.25)	[(pzTp)Fe(CN)3]
	Fe1	22.54 (26.73)	0.42 (0.37)	57.73 (73.69)	[FeC3N3] [(Tpa)Fe(NC)3]
2 298 (100) K	Fe2	68.22 (45.47)	0.34 (0.14)	173.43 (118.13)	[FeN6]
	Fe3	92.90 (95.87)	0.61 (0.59)	213.90 (215.17)	[(pzTp)Fe(CN)3]
2	Fe1	21.05 (23.01)	0.44 (0.33)	55.91 (66.37)	[FeC3N3] [(Tpa)Fe(NC)3]
3 298 (100) K	Fe2	77.81 (53.87)	0.41 (0.20)	197.35 (145.32)	[FeN6]
	Fe3	102.76 (104.28)	0.58 (0.51)	208.47 (210.01)	[(pzTp)Fe(CN)3]

[a] Σ_{Fe} : the sum of |90-a| for the 12 *cis*-N-Fe-N angles around the iron atom; [b] ζ_{Fe} : the average of the sum of the deviation of 6 unique metalligand bond lengths around the central metal atom (Fe) from the average value. [c] Θ_{Fe} : the sum of the deviation of 24 unique torsional angles between the ligand atomson opposite triangular faces of the octahedron viewed along the pseudo-threefold axis (θ i) from 60°. All of these data are obtained through the OctaDist software.

Figure S4. Temperature dependence of $\chi_M T$ plots for 1, 2, and 3 (from 300 K to 2 K to 300 K).

ARTICLE

Figure S6. ⁵⁷Fe Mössbauer spectra of **3** at 298 K and 30 K.

	T (K)	Fe site	$\delta ({ m mm \ s^{-1}})$	$\Delta E_{\rm Q} ({\rm mm}~{\rm s}^{-1})$	Aera (%)
	200 V	Fe ^{III} _{HS}	0.02	0.95	66.8
	298 K	Fe ^{II} LS	0.35	0.29	33.1
1		$\mathrm{Fe}^{\mathrm{III}}_{\mathrm{HS}}$	0.11	0.35	33.7
	30 K	$\mathrm{Fe}^{\mathrm{III}}_{\mathrm{LS}}$	0.12	0.19	33.6
		$\mathrm{Fe}^{\mathrm{II}}_{\mathrm{LS}}$	0.19	0.29	32.5
		$Fe^{III}{}_{\rm HS}$	0.14	0.31	61.9
	298 K	$\mathrm{Fe}^{\mathrm{III}}_{\mathrm{LS}}$	0.16	0.84	4.68
2		$\mathrm{Fe}^{\mathrm{II}}_{\mathrm{LS}}$	0.66	0.39	33.3
	30 K	$Fe^{III}{}_{\rm HS}$	0.03	0.28	34.5
		$\mathrm{Fe}^{\mathrm{III}}_{\mathrm{LS}}$	0.19	0.26	32.1
		Fe^{II}_{LS}	0.21	0.44	33.4
		Fe ^{III} _{HS}	0.37	0.32	58.6
	298 K	$\mathrm{Fe}^{\mathrm{III}}_{\mathrm{LS}}$	0.21	0.69	8.08
3		$\mathrm{Fe}^{\mathrm{II}}_{\mathrm{LS}}$	0.58	0.29	33.3
		Fe ^{III} HS	0.08	0.16	34.9
	30 K	Fe ^{III} LS	0.08	0.32	31.7
		Fe ^{II} LS	0.21	0.27	33.4

Table S5. 57Fe Mössbauer paramet	ers for $1, 2$ and 3 at c	different tempterature.
--	-------------------------------	-------------------------

 δ = isomer shift, ΔE_Q = quadrupole splitting, ^b with the estimated standard deviations (esd) given in brackets.

Figure S7. Cyclic voltammogram of **1** (potential *vs* Ag/AgCl, 1 mM, 0.1 M Bu₄NPF₆ in CH₂Cl₂, glassy carbon working electrode, Pt wire counter electrode, and a scan rate of 50 mV/s).

Figure S8. Cyclic voltammogram of **2** (potential vs Ag/AgCl, 1 mM, 0.1 M Bu₄NPF₆ in CH₂Cl₂, glassy carbon working electrode, Pt wire counter electrode, and a scan rate of 50 mV/s).

Figure S9. Cyclic voltammogram of **3** (potential vs Ag/AgCl, 1 mM, 0.1 M Bu₄NPF₆ in CH₂Cl₂, glassy carbon working electrode, Pt wire counter electrode, and a scan rate of 50 mV/s).

Journal Name

Figure S10. PXRD profiles of 1, 2 and 3: simulation results (Sim) and experimental results (Exp).

Figure S11. UV-Vis-NIR spectrum of 1, 2 and 3 ($c = 2.0 \text{ mmol} \cdot \text{L}^{-1}$, CH₂Cl₂).