Supporting Information

Synthesis of rare-earth metal complexes with a

morpholine-functionalized β -diketiminato ligand and their

catalytic activities towards C–O and C–N bond formation

Xiancui Zhu,^{*a} Jinqiang He,^a Yuanqing Yang,^a Shuangliu Zhou,^{*a} Yun Wei,^a Shaowu Wang^{a,b}

^{*a*}Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002 (China)

^bAnhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000 (China)

Table of contents

1. Crystallographic data of complexes	S2
Table S1. Crystallographic data for 1a-1c.	S2
Table S2. Crystallographic data for 2a-2c and 5a	S3
2. Characterization data for thiocarbamates and β -amino alcohols	S4
3. Copies of NMR Spectra	S15
Figs. S1-S2 Copies of the ligand	S15
Figs. S3-S12 Copies of rare-earth metal complexes	S16
Figs. S13-S68 Copies of thiocarbamates	S 21
Figs. S69-S96 Copies of β -amino alcohols	S49
4. Figs. S97-S98 ¹ H NMR (500 MHz, C_6D_6) monitoring the catalytic reaction	S63
5. References	S64

	1a (Y)	1b (Yb)	1c (Lu)
CCDC	2181769	2181770	2181771
Empirical formula	C ₃₁ H ₅₂ Cl ₃ LiN ₃ O ₃ Y	$C_{31}H_{52}Cl_3LiN_3O_3Yb$	$C_{31}H_{52}Cl_3LiN_3O_3Lu$
Formula weight	717.98	801.08	803.01
Crystal system	Triclinic	Triclinic	Triclinic
Space group	Pī	Pī	Pī
<i>a</i> (Å)	11.0084(8)	10.9753(17)	10.896(8)
<i>b</i> (Å)	11.5337(8)	11.5275(16)	11.454(7)
<i>c</i> (Å)	17.1823(11)	17.147(3)	17.044(10)
α (°)	103.679(2)	103.943(5)	103.77(3)
β(°)	94.344(2)	94.042(6)	94.20(3)
γ (°)	116.617(2)	116.603(5)	117.04(3)
$V(\text{\AA}^3)$	1853.2(2)	1842.3(5)	1799(2)
Z	2	2	2
$D_{\text{calcd}} (\text{mg m}^{-3})$	1.2848	1.444	1.482
μ (mm ⁻¹)	1.839	2.788	2.999
F (000)	747	814	816
θ range (°)	2.92 to 27.59	3.138 to 27.484	2.946 to 27.886
Reflections collected	75295	23047	75464
Data/restraints/parameters	8492/82/431	7900/192/422	8400/548/431
Goodness-of-fit on F ²	1.0916	1.076	1.146
R(int)	0.0604	0.0381	0.0388
$R_1, wR_2 (I > 2\sigma(I))$	0.0511, 0.1002	0.0373, 0.0741	0.0261, 0.0617
Largest diff peak/hole (e Å ⁻³)	0.7432 and -0.9134	1.351 and -1.181	0.654 and -1.045

Table 51. Crystanographic uata of complexes 1a	Fable S	S1. C	Crystall	ographi	c data	of	comp	lexes	1a-
--	---------	-------	----------	---------	--------	----	------	-------	-----

	2a (Y)	2b (Yb)	2c (Lu)	5a (Y)
CCDC	2181772	2181773	2181774	2181775
Empirical formula	$C_{31}H_{58}N_3OSi_2Y$	$C_{31}H_{58}N_3OSi_2Yb$	$C_{31}H_{58}N_3OSi_2Lu$	C ₃₉ H ₆₅ N ₄ OSiY
Formula weight	633.89	718.02	719.95	722.95
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	P21/n	P2 ₁ /c	P2 ₁ /c	Pī
<i>a</i> (Å)	11.519(2)	11.5135(6)	11.5104(10)	11.1438(11)
<i>b</i> (Å)	17.466(3)	17.4563(10)	17.4656(15)	11.2147(12)
<i>c</i> (Å)	19.217(4)	19.1193(10)	19.0773(16)	21.504(2)
α (°)	90	90.00	90	86.101(2)
β(°)	99.326(3)	99.0470(10)	98.9440(10).	84.965(2)
γ (°)	90	90.00	90	69.8760(10)
$V(\text{\AA}^3)$	3815.2(12)	3794.9(4)	3788.6(6)	2511.6(4)
Z	4	4	4	2
$D_{\text{calcd}} (\text{mg m}^{-3})$	1.104	1.257	1.262	0.956
$\mu (\mathrm{mm}^{-1})$	1.615	2.551	2.693	1.211
F (000)	1360	1484	1488	776
heta range (°) Reflections collected	1.585 to 25.000 27593	1.589 to 27.487 33002	1.590 to 27.499 32809	1.903 to 27.480 22403
Data/restraints/parameters	6733/201/425	8678/171/425	8668/105/386	11332/49/428
Goodness-of-fit on F ²	1.049	1.012	1.050	0.964
R(int)	0.1611	0.0437	0.0557	0.1144
$R_1, wR_2 (I > 2\sigma(I))$	0.0722, 0.1703	0.0343, 0.0733	0.0434, 0.1174	0.0722, 0.1830
Largest diff peak/hole (e Å ⁻³)	0.883 and -0.730	0.831 and -0.749	1.337 and -1.524	0.688 and -0.718

Table S2. Crystallographic data of complexes 2a-c and 5a

Data of thiocarbamates

White solid.¹ M.P.: 78–80 °C. ¹H NMR (500 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.28 (br, 1H, NH), 7.74 (s, 1H, ArH), 7.39–7.20 (m, 9H, ArH), 5.64 (s, 1H, CH₂), 5.56 (s, 1H, CH₂). ¹³C NMR (125 MHz, DMSO- d_6 , ppm, 20 °C): δ 188.3, 187.9 (*C*=S), 139.5, 138.5, 136.8, 136.5, 129.6, 129.3, 129.1, 126.0, 125.7, 123.8, 122.8 (ArC), 73.0, 71.3 (CH₂). ¹H NMR (500 MHz, DMSO- d_6 , ppm, 60 °C): δ 11.10 (br, 1H, NH), 7.48–7.37 (m, 9H, ArH), 7.19 (d, *J* = 6.5 Hz, 1H, ArH), 5.62 (s, 2H, CH₂). ¹³C NMR (125 MHz, DMSO- d_6 , ppm, 60 °C): δ 188.4 (*C*=S), 139.1, 136.7, 129.4, 129.2, 128.9, 125.8, 123.3 (ArC), 72.1 (*C*H₂). HRMS (ESI): *m*/*z* calcd. for C₁₄H₁₃NOS [M+H]⁺: 244.0791, found: 244.0801.

Light yellow solid. M.P.: 79–81 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 10.90, 10.79 (br, 1H, NH), 7.52–7.21 (m, 9H, ArH), 5.57 (s, 2H, CH₂), 2.24, 2.20 (s, 3H, CH₃). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 190.1 (*C*=S), 137.6, 136.6, 135.1, 130.8, 128.9, 128.6, 128.4, 128.0, 127.5, 126.7 (ArC), 71.9, 71.3 (CH₂), 18.0 (CH₃). HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₅NOS [M+H]⁺: 258.0947, found: 258.0948.

White solid. M.P.: 77–79 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.18 (br, 1H, NH), 7.49–7.37 (m, 6H, ArH), 7.18 (s, 2H, ArH), 6.98 (s, 1H, ArH), 5.60 (s, 1H, CH₂), 5.54 (s, 1H, CH₂), 2.31, 2.26 (s, 3H, CH₃). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 187.5 (*C*=S), 139.0, 138.4, 138.2, 136.4, 136.0, 128.9, 128.6, 126.2, 125.9, 123.9, 123.0, 120.6, 119.5 (ArC), 72.7, 70.8 (CH₂), 21.5 (CH₃). HRMS (APCI): *m/z* calcd. for C₁₅H₁₅NOS [M+H]⁺: 258.0947, found: 258.0941.

White solid. M.P.: 76–78 °C. ¹H NMR (400 MHz, DMSO-*d*₆, ppm, 20 °C): δ 11.15 (br, 1H, N*H*), 7.57–7.43 (m, 6H, Ar*H*), 7.21–7.13 (m, 3H, Ar*H*), 5.61 (s, 1H, C*H*₂), 5.52 (s, 1H, C*H*₂), 2.31, 2.27 (s, 3H, C*H*₃). ¹³C NMR (100 MHz, DMSO-*d*₆, ppm, 20 °C): δ 187.9, 187.3 (*C*=S), 136.5, 136.1, 135.6, 134.8, 134.5, 129.3, 128.9, 128.8, 128.6,

128.5, 123.54, 122.4 (Ar*C*), 72.6, 70.8 (*C*H₂), 20.9 (*C*H₃). HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₅NOS [M+H]⁺: 258.0947, found: 258.0942.

White solid. M.P.: 76–77 °C. ¹H NMR (400 MHz, DMSO-*d*₆, ppm, 20 °C): δ 11.11, 11.07 (br, 1H, N*H*), 7.55 (d, *J* = 8.8 Hz, 1H, Ar*H*), 7.51 (d, *J* = 7.2 Hz, 1H, Ar*H*), 7.46–7.39 (m, 4H, Ar*H*), 7.27 (d, *J* = 8.8 Hz, 1H, Ar*H*), 6.96 (d, *J* = 8.8 Hz, 1H, Ar*H*), 6.89 (d, *J* = 8.8 Hz, 1H, Ar*H*), 5.61 (s, 1H, C*H*₂), 5.53 (s, 1H, C*H*₂), 3.78, 3.74 (s, 3H, C*H*₃). ¹³C NMR (100 MHz, DMSO-*d*₆, ppm, 20 °C): δ 188.3, 187.2 (*C*=S), 157.2, 156.9, 136.5, 136.2, 131.9, 131.1, 128.9, 128.8, 128.6, 128.4, 125.3, 124.1, 114.4, 114.1 (Ar*C*), 72.4, 70.9 (*C*H₂), 55.7 (O*C*H₃). HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₅NO₂S [M+H]⁺: 274.0896, found: 274.0890.

White solid. M.P.: 85–87 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.26 (br, 1H, NH), 7.70 (s, 1H, ArH), 7.50–7.40 (m, 6H, ArH), 7.23–7.21 (m, 2H, ArH), 5.62 (s, 1H, CH₂), 5.53 (s, 1H, CH₂). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 188.4 (*C*=S), 159.6 (d, ¹*J*_{F-C} = 259.0 Hz), 136.4, 136.0, 135.4, 134.5, 129.0, 128.7, 128.5, 125.6 (d, ³*J*_{F-C} = 7.0 Hz), 124.6, 124.5, 116.1, 115.6 (d, ²*J*_{F-C} = 21.0 Hz), 72.6, 71.1 (*C*H₂). HRMS (APCI): *m*/*z* calcd. for C₁₄H₁₂FNOS [M+H]⁺: 262.0696, found: 262.0697.

White solid. M.P.: 99–101 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.35 (br, 1H, NH), 7.77 (s, 1H, ArH), 7.44–7.39 (m, 8H, ArH), 5.62 (s, 1H, CH₂), 5.54 (s, 1H, CH₂). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 187.8 (*C*=S), 138.0, 137.0, 136.1, 136.0, 129.0, 128.7, 124.7, 124.0 (ArC), 72.8, 71.1 (CH₂). HRMS (ESI): *m/z* calcd. for C₁₄H₁₂CINOS [M+H]⁺: 278.0401, found: 278.0404.

Yellow solid. M.P.: 144–146 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.80 (br, 1H, NH), 8.24 (d, J = 8.8 Hz, 2H, ArH), 7.91 (s, 2H, ArH), 7.52 (d, J = 6.8 Hz, 2H, ArH), 7.47–7.39 (m, 3H, ArH), 5.62 (s, 2H, CH₂). ¹³C NMR (100 MHz,

DMSO-*d*₆, ppm, 20 °C): δ 187.8 (*C*=S), 144.6, 143.5, 135.7, 129.0, 129.0, 128.9, 125.0, 121.6 (Ar*C*), 72.3 (*C*H₂). HRMS (APCI): *m*/*z* calcd. for C₁₄H₁₂N₂O₃S [M+H]⁺: 289.0641, found: 289.0646.

White solid. M.P.: 67–69 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 9.85 (br, 1H, N*H*), 7.47–7.23 (m, 10H, Ar*H*), 5.50 (s, 2H, C*H*₂), 4.70 (d, *J* = 5.6 Hz, 1H, C*H*₂), 4.38 (d, *J* = 5.6 Hz, 1H, C*H*₂). ¹³C NMR (101 MHz, DMSO- d_6 , ppm, 20 °C): δ 190.5 (*C*=S), 138.6, 138.3, 136.7, 128.8, 128.8, 128.7, 128.5, 128.4, 128.0, 127.8, 127.7, 127.5 (Ar*C*), 71.7, 71.1 (*C*H₂), 48.4, 46.2 (*C*H₂). HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₅NOS [M+H]⁺: 258.0947, found: 258.0957.

Yellow solid. M.P.: 64–66 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 9.20 (d, J = 8.4 Hz, 1H, NH), 7.40–7.33 (m, 5H, ArH), 5.50 (s, 1H, CH₂), 5.40 (s, 1H, CH₂), 3.93–3.82 (m, 1H, CyH), 1.88 (d, J = 10.0 Hz, 2H, CyH), 1.77–1.51 (m, 3H, CyH), 1.27–1.04 (m, 5H, CyH). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 188.3, 187.3 (*C*=S), 136.8, 128.9, 128.8, 128.6, 128.4, 128.3, 127.9 (ArC), 71.3, 70.6 (OCH₂), 54.4, 52.4 (*N*CH), 32.4, 31.7, 25.5, 25.4, 25.1, 25.0 (CH₂). HRMS (APCI): m/z calcd. for C₁₄H₁₉NOS [M+H]⁺: 250.1260, found: 250.1265.

White solid. M.P.: 96–98 °C. ¹H NMR (400 MHz, DMSO-*d*₆, ppm, 20 °C): δ 11.24 (br, 1H, N*H*), 7.73 (s, 1H, Ar*H*), 7.46–7.29 (m, 8H, Ar*H*), 5.63 (s, 1H, C*H*₂), 5.53 (s, 1H, C*H*₂), 2.37 (s, 3H, C*H*₃). ¹³C NMR (100 MHz, DMSO-*d*₆, ppm, 20 °C): δ 187.8 (*C*=S), 139.1, 137.3, 134.4, 130.6, 129.8, 129.0, 126.3, 125.4, 123.2, 122.3 (Ar*C*), 71.2, 69.6 (*C*H₂), 19.0 (*C*H₃). HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₅NOS [M+H]⁺: 258.0947, found: 258.0952.

White solid. M.P.: 78–80 °C. ¹H NMR (400 MHz, DMSO-*d*₆, ppm, 20 °C): δ 11.24 (br, 1H, N*H*), 7.72 (s, 1H, Ar*H*), 7.36–7.20 (m, 8H, Ar*H*), 5.59 (s, 1H, C*H*₂), 5.50 (s, 1H,

CH₂), 2.35 (s, 3H, CH₃). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 187.9 (C=S), 139.1, 138.1, 136.2, 136.0, 129.3, 128.8, 125.9, 125.5, 123.3, 122.4 (ArC), 72.6, 70.9 (CH₂), 21.4 (CH₃). HRMS (ESI): m/z calcd. for C₁₅H₁₅NOS [M+H]⁺: 258.0947, found: 258.0941.

White solid. M.P.: 130–132 °C. ¹H NMR (400 MHz, DMSO-*d*₆, ppm, 20 °C): δ 11.22 (br, 1H, N*H*), 7.70 (s, 1H, Ar*H*), 7.35 (s, 5H, Ar*H*), 7.24–7.23 (m, 3H, Ar*H*), 5.57 (s, 1H, C*H*₂), 5.49 (s, 1H, C*H*₂), 2.34 (s, 3H, C*H*₃). ¹³C NMR (100 MHz, DMSO-*d*₆, ppm, 20 °C): δ 187.6 (*C*=S), 139.1, 138.1, 133.3, 129.5, 128.9, 125.2, 123.4, 122.3 (Ar*C*), 72.7, 70.9 (*C*H₂), 21.3 (*C*H₃). HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₅NOS [M+H]⁺: 258.0947, found: 258.0938.

White solid. M.P.: 110–112 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.18 (br, 1H, NH), 7.69 (s, 1H, ArH), 7.43–7.17 (s, 6H, ArH), 6.98 (d, J = 7.6 Hz, 2H, ArH), 5.54 (s, 1H, CH₂), 5.46 (s, 1H, CH₂), 3.79 (s, 3H, CH₃). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 188.0 (C=S), 159.8, 138.2, 130.7, 129.2, 127.9, 125.2, 123.4, 122.2, 114.3 (ArC), 72.7, 71.0 (CH₂), 55.6 (OCH₃). HRMS (APCI): m/z calcd. for C₁₅H₁₅NO₂S [M+H]⁺: 274.0896, found: 274.0888.

White solid. M.P.: 117–119 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.28 (br, 1H, NH), 7.70 (s, 1H, ArH), 7.49 (s, 4H, ArH), 7.35 (s, 3H, ArH), 7.18 (s, 1H, ArH), 5.61 (s, 1H, CH₂), 5.54 (s, 1H, CH₂). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C) δ 187.8 (C=S), 139.0, 135.5, 133.3, 130.5, 129.3, 129.0, 125.6, 123.4, 122.5 (ArC), 71.7, 69.9 (CH₂). HRMS (APCI): *m*/*z* calcd. for C₁₄H₁₂ClNOS [M+H]⁺: 278.0401, found: 278.0407.

White solid. M.P.: 122–124 °C. ¹H NMR (400 MHz, DMSO-*d*₆, ppm, 20 °C): δ 11.25 (br, 1H, N*H*), 7.67–7.59 (m, 3H, Ar*H*), 7.43–7.32 (m, 5H, Ar*H*), 7.16 (s, 1H, Ar*H*), 5.56 (s, 1H, C*H*₂), 5.49 (s, 1H, C*H*₂). ¹³C NMR (100 MHz, DMSO-*d*₆, ppm, 20 °C): δ

187.8 (*C*=S), 139.0, 138.0, 136.0, 135.5, 131.9, 130.9, 129.3, 129.0, 125.6, 125.4, 123.4, 122.5, 121.9 (Ar*C*), 71.7, 69.9 (*C*H₂). HRMS (APCI): m/z calcd. for C₁₄H₁₂BrNOS [M+H]⁺: 321.9896, found: 321.9903.

White solid. M.P.: 136–138 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.39 (br, 1H, NH), 8.29 (s, 2H, ArH), 7.75–7.70 (m, 3H, ArH), 7.39 (s, 3H, ArH), 7.20 (s, 1H, ArH), 5.77 (s, 1H, CH₂), 5.71 (s, 1H, CH₂). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 187.6 (*C*=S), 147.5, 144.5, 138.9, 129.0, 125.7, 124.0, 123.4, 122.7 (Ar*C*), 71.0, 69.2 (*C*H₂). HRMS (ESI): *m*/*z* calcd. for C₁₄H₁₂N₂O₃S [M+H]⁺: 289.0641, found: 289.0645.

White solid. M.P.: 149–151 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.39 (br, 1H, NH), 7.91 (s, 2H, ArH), 7.70–7.61 (m, 3H, ArH), 7.37–7.20 (m, 4H, ArH), 5.72 (s, 1H, CH₂), 5.64 (s, 1H, CH₂). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 187.2 (C=S), 142.3, 141.9, 138.9, 137.9, 132.9, 129.3, 128.9, 125.7, 123.3, 122.6, 119.1, 111.1 (ArC), 71.3, 69.5 (OCH₂). HRMS (ESI): m/z calcd. for C₁₅H₁₂N₂OS [M+H]⁺: 269.0743, found: 269.0747.

S S NH

White solid.¹ M.P.: 86–88 °C. ¹H NMR (400 MHz, DMSO-*d*₆, ppm, 20 °C): δ 11.10 (br, 1H, N*H*), 7.67 (s, 1H, Ar*H*), 7.34–7.26 (m, 7H, Ar*H*), 7.18 (s, 2H, Ar*H*), 4.73 (s, 2H, C*H*₂), 3.08 (t, *J* = 6.4 Hz, 2H, C*H*₂). ¹³C NMR (100 MHz, DMSO-*d*₆, ppm, 20 °C): δ 187.6 (*C*=S), 138.4, 129.4, 129.1, 128.9, 126.9, 125.1, 123.6, 122.2 (Ar*C*), 72.3 (OCH₂), 34.6 (*C*H₂). HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₅NOS [M+H]⁺: 258.0947, found: 258.0955.

S NH

Yellow solid.¹ M.P.: 78–80 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.00 (br, 1H, NH), 7.65 (s, 1H, ArH), 7.34 (s, 3H, ArH), 7.14 (s, 1H, ArH), 5.34 (s, 1H, OCH), 1.94 (s, 2H, CyH), 1.72–1.29 (m, 8H, CyH). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 186.8 (*C*=S), 138.2, 129.2, 125.0, 122.2 (ArC), 79.8 (OCH), 31.6, 31.1, 25.3, 23.5 (CyC). HRMS (APCI): m/z calcd. for C₁₃H₁₇NOS [M+H]⁺: 236.1104, found: 236.1102.

Light yellow solid. M.P.: 144–146 °C.¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.39 (br, 1H, NH), 8.61 (s, 2H, PydH), 7.71 (s, 1H, PydH), 7.47–7.40 (m, 5H, ArH), 7.22 (s, 1H, PydH), 5.68 (s, 1H, CH₂), 5.61 (s, 1H, CH₂). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 187.3 (C=S), 150.2, 145.7, 137.9, 129.4, 129.0, 125.8, 123.4, 122.8, 122.4 (ArC), 70.5, 68.7 (CH₂). HRMS (APCI): m/z calcd. for C₁₃H₁₂N₂OS [M+H]⁺: 245.0743, found: 245.0738.

Yellow oil. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.23 (br, 1H, NH), 7.67 (s, 1H, ArH), 7.45–7.37 (m, 3H, ArH), 7.17 (s, 1H, ArH), 4.57 (s, 2H, OCH₂), 2.98 (t, J = 6.4 Hz, 1H, CH), 2.68 (dt, J = 2.8, 6.4 Hz, 2H, CH₂). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 187.2 (C=S), 138.1, 129.2, 125.1, 123.5, 122.1 (ArC), 81.4 (C=CH), 73.1 (C=CH), 69.4, 67.4 (OCH₂), 18.7 (CH₂). HRMS (ESI): m/z calcd. for C₁₁H₁₁NOS [M+H]⁺: 206.0634, found: 206.0625.

White solid. M.P.: 108–110 °C.¹H NMR (400 MHz, DMSO-*d*₆, ppm, 20 °C): δ 11.14 (br, 1H, N*H*), 7.58 (d, *J* = 6.0 Hz, 1H, Ar*H*), 7.38–7.33 (m, 2H, Ar*H*), 7.23–7.12 (m, 5H, Ar*H*), 5.57 (s, 1H, C*H*₂), 5.48 (s, 1H, C*H*₂), 2.34 (s, 3H, C*H*₃), 2.27 (s, 3H, C*H*₃). ¹³C NMR (100 MHz, DMSO-*d*₆, ppm, 20 °C): δ 187.9, 187.3 (*C*=S), 138.0, 135.6, 134.4, 133.0, 129.6, 129.4, 129.3, 128.9, 128.7, 123.4, 122.3 (Ar*C*), 72.5, 70.7 (*C*H₂), 21.2 (*C*H₃), 20.9 (*C*H₃). HRMS (ESI): *m*/*z* calcd. for C₁₆H₁₇NOS [M+H]⁺: 272.1104, found: 272.1098.

White solid. M.P.: 130–132 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.20 (br, 1H, NH), 7.58–7.47 (m, 5H, ArH), 7.24–7.14 (m, 3H, ArH), 5.60 (s, 1H, CH₂), 5.53 (s, 1H, CH₂), 2.31, 2.27 (s, 3H, CH₃). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 187.7 (*C*=S), 136.4, 135.9, 135.6, 135.1, 134.9, 134.6, 133.6, 133.2, 132.6, 130.5, 130.4, 129.6, 129.3, 128.9, 123.4, 122.4 (ArC), 71.5, 69.7 (CH₂), 20.9 (CH₃). HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₄ClNOS [M+H]⁺: 292.0557, found: 292.0562.

Light yellow solid. M.P.: 114–116 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.41 (br, 1H, NH), 8.20–8.16 (m, 1H, ArH), 7.87–7.59 (m, 4H, ArH), 7.39 (s, 1H, ArH), 7.24 (d, J = 8.4 Hz, 2H, ArH), 5.93 (s, 1H, CH₂), 5.90 (s, 1H, CH₂). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 187.9, 187.1 (*C*=S), 159.8 (d, ¹ $J_{F-C} = 242.0$ Hz), 147.7, 135.2, 134.6, 134.2, 132.4, 131.7, 129.8, 129.7, 125.5 (d, ³ $J_{F-C} = 8.0$ Hz), 125.0, 116.1, 115.6 (d, ² $J_{F-C} = 21.0$ Hz), 69.2, 67.2 (*C*H₂). HRMS (ESI): *m*/*z* calcd. for C₁₄H₁₁FN₂O₃S [M+H]⁺: 307.0547, found: 307.0549.

White solid. M.P.: 106–108 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 8.97–8.92 (m, 1H, NH), 5.26–5.13 (m, 1H, OCH), 3.89–3.54 (m, 1H, NHCH), 1.91–1.51 (m, 10H, CyH), 1.36–1.05 (m, 10H, CyH). ¹³C NMR (125 MHz, DMSO- d_6 , ppm, 20 °C): δ 188.0 (*C*=S), 78.0, 77.4 (OCH), 54.4, 52.7 (NCH), 32.7, 32.3, 32.2, 31.6, 25.9, 25.7, 25.6, 25.5, 24.3, 23.8 (CyC). HRMS (ESI): *m*/*z* calcd. for C₁₃H₂₃NOS [M+H]⁺: 242.1573, found: 242.1567.

White solid. M.P.: 187–189 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm, 20 °C): δ 11.26 (br, 2H, NH), 7.71 (s, 2H, ArH), 7.52–7.36 (m, 10H, ArH), 7.18 (s, 2H, ArH), 5.63 (s, 2H, CH₂), 5.55 (s, 2H, CH₂). ¹³C NMR (100 MHz, DMSO- d_6 , ppm, 20 °C): δ 187.8 (*C*=S), 138.9, 137.9, 136.0, 128.9, 125.5, 123.3, 122.5 (ArC), 72.2, 70.5 (CH₂). HRMS (ESI): *m*/*z* calcd. for C₂₂H₂₀N₂O₂S₂ [M+H]⁺: 409.1039, found: 409.1032.

Data of β -amino alcohols

Yellow oil.² ¹H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.38–7.32 (m, 4H, Ar*H*), 7.29–7.27 (m, 1H, Ar*H*), 7.10 (t, *J* = 8.0 Hz, 2H, Ar*H*), 6.69 (t, *J* = 7.6 Hz, 1H, Ar*H*), 6.58 (dd, *J* = 8.4, 0.8 Hz, 2H, Ar*H*), 4.52 (dd, *J* = 4.0, 6.4 Hz, 1H, C*H*), 3.95 (d, *J* = 10.4 Hz, 1H, C*H*₂), 3.76 (t, *J* = 8.0 Hz, 1H, C*H*₂), 1.73 (br, 1H, N*H*). ¹³C NMR (100

MHz, CDCl₃, ppm, 20 °C): δ 147.3, 140.2, 129.2, 128.8, 127.6, 126.8, 117.9, 113.9 (Ar*C*), 67.3 (*C*HOH), 59.9 (*C*H₂NH). HRMS (ESI): *m*/*z* calcd. for C₁₄H₁₅NO [M+H]⁺: 214.1226, found: 214.1225.

White solid. M.p.: 79–81 °C. ¹H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.38–7.27 (m, 5H, Ar*H*), 7.10 (d, *J* = 7.2 Hz, 1H, Ar*H*), 6.98 (t, *J* = 7.6 Hz, 1H, Ar*H*), 6.67 (t, *J* = 7.2 Hz, 1H, Ar*H*), 6.40 (d, *J* = 8.0 Hz, 1H, Ar*H*), 4.56 (dd, *J* = 4.0, 6.4 Hz, 1H, C*H*), 4.42 (br, 1H, O*H*), 3.99–3.97 (m, 1H, C*H*₂), 3.81–3.80 (m, 1H, C*H*₂), 2.31 (s, 3H, C*H*₃), 1.88 (br, 1H, N*H*). ¹³C NMR (100 MHz, CDCl₃, ppm, 20 °C): δ 145.1, 140.2, 130.1, 128.8, 127.6, 127.0, 126.7, 122.6, 117.5, 111.5 (Ar*C*), 67.5 (CHOH), 59.8 (CH₂NH), 17.7 (*Me*). HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₇NO [M+H]⁺: 228.1383, found: 228.1386.

Yellow oil. ¹H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.38–7.32 (m, 4H, Ar*H*), 7.29–7.27 (m, 1H, Ar*H*), 6.99 (t, *J* = 7.6 Hz, 1H, Ar*H*), 6.51 (d, *J* = 7.2 Hz, 1H, Ar*H*), 6.44 (s, 1H, Ar*H*), 6.37 (dd, *J* = 8.0, 2.0 Hz, 1H, Ar*H*), 4.51 (dd, *J* = 4.4, 6.8 Hz, 1H, C*H*), 3.94 (dd, *J* = 4.0, 11.2 Hz, 1H, C*H*₂), 3.76 (dd, *J* = 6.8, 11.2, Hz, 1H, C*H*₂), 2.22 (s, 3H, C*H*₃), 1.61 (br, 1H, N*H*). ¹³C NMR (100 MHz, CDCl₃, ppm, 20 °C): δ 147.2, 140.2, 138.9, 129.0, 128.8, 127.6, 126.7, 118.9, 114.7, 110.8 (Ar*C*), 67.3 (CHOH), 59.8 (*C*H₂NH), 21.6 (*Me*). HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₇NO [M+H]⁺: 228.1383, found: 228.1384.

White solid. M.p.: 72–74 °C. ¹H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.40–7.34 (m, 4H, Ar*H*), 7.31–7.28 (m, 1H, Ar*H*), 6.94 (d, *J* = 8.4 Hz, 2H, Ar*H*), 6.53 (d, *J* = 8.4 Hz, 2H, Ar*H*), 4.51 (dd, *J* = 4.0, 6.8 Hz, 1H, C*H*), 3.96 (dd, *J* = 4.0, 10.8 Hz, 1H, C*H*₂), 3.76 (dd, *J* = 7.2, 11.2 Hz, 1H, C*H*₂), 2.22 (s, 3H, *Me*), 1.85 (br, 1H, N*H*). ¹³C NMR (100 MHz, CDCl₃, ppm, 20 °C): δ 144.8, 140.2, 129.6, 128.8, 127.5, 127.1, 126.7, 114.0 (Ar*C*), 67.4 (CHOH), 60.1 (CH₂NH), 20.4 (*Me*). HRMS (ESI): *m/z* calcd. for C₁₅H₁₇NO [M+H]⁺: 228.1383, found: 228.1389.

Yellow oil.² ¹H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.35–7.31 (m, 4H, Ar*H*), 7.28–7.26 (m, 1H, Ar*H*), 6.70 (d, *J* = 8.8 Hz, 2H, Ar*H*), 6.54 (d, *J* = 8.8 Hz, 2H, Ar*H*), 4.43 (dd, *J* = 4.4, 7.6 Hz, 1H, C*H*), 3.92 (dd, *J* = 4.0, 11.2 Hz, 1H, C*H*₂), 3.71 (dd, *J* = 7.6, 11.2 Hz, 1H, C*H*₂), 3.69 (s, 3H, *Me*). ¹³C NMR (100 MHz, CDCl₃, ppm, 20 °C): δ 152.3, 141.3, 140.3, 128.8, 127.6, 126.7, 115.3, 114.7 (Ar*C*), 67.3 (CHOH), 60.8 (CHNH), 55.7(OM*e*). HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₇NO₂ [M+H]⁺: 244.1332, found: 244.1329.

White solid. M.p.: 78–80 °C. ¹H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.36–7.28 (m, 5H, Ar*H*), 7.03 (d, *J* = 8.8 Hz, 2H, Ar*H*), 6.47 (d, *J* = 8.8 Hz, 2H, Ar*H*), 4.59 (br, 1H, O*H*), 4.45 (dd, *J* = 4.0, 6.8 Hz, 1H, C*H*), 3.94 (d, *J* = 10.8 Hz, 1H, C*H*₂), 3.77–3.72 (m, 1H, C*H*₂), 1.79 (br, 1H, N*H*). ¹³C NMR (100 MHz, CDCl₃, ppm, 20 °C): δ 145.7, 139.6, 129.0, 128.9, 127.8, 126.7, 122.4, 114.9 (Ar*C*), 67.3 (CHOH), 59.9 (CH₂NH). HRMS (ESI): *m*/*z* calcd. for C₁₄H₁₄NOC1 [M+H]⁺: 248.0837, found: 248.0830.

Yellow oil. ¹H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.45–7.32 (m, 5H, Ar*H*), 7.10 (d, *J* = 8.0 Hz, 2H, Ar*H*), 6.81 (d, *J* = 8.0 Hz, 2H, Ar*H*), 4.98 (dd, *J* = 4.4, 8.4 Hz, 1H, C*H*), 3.48–3.37 (m, 2H, C*H*₂N), 2.93 (s, 3H, N*Me*), 2.71 (br, 1H, N*H*), 2.30 (s, 3H, *Me*). ¹³C NMR (100 MHz, CDCl₃, ppm, 20 °C): δ 148.1, 142.0, 129.8, 128.5, 127.7, 127.2, 125.9, 114.0 (Ar*C*), 71.5 (*C*HOH), 62.6 (*C*H₂N), 39.6 (N*Me*), 20.3 (*Me*). HRMS (ESI): *m*/*z* calcd. for C₁₆H₁₉NO [M+H]⁺: 242.1539, found: 242.1546.

Yellow oil. ¹H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.28–7.26 (m, 3H, Ar*H*), 7.06–7.04 (m, 2H, Ar*H*), 6.91–6.82 (m, 4H, Ar*H*), 4.81 (dd, *J* = 5.2, 10.0 Hz, 1H, C*H*), 4.12 (t, *J* = 10.8 Hz, 1H, C*H*₂N), 3.99 (s, 1H, C*H*₂N), 3.78 (s, 3H, *Me*), 2.59 (s, 3H, N*Me*), 2.45 (br, 1H, N*H*). ¹³C NMR (100 MHz, CDCl₃, ppm, 20 °C): δ 153.4, 145.3, 136.8, 128.4, 127.6, 127.5, 118.3, 114.5 (Ar*C*), 67.0 (CHOH), 61.2 (CHN), 55.6

(OMe), 32.9 (NMe). HRMS (ESI): m/z calcd. for C₁₆H₁₉NO₂ [M+H]⁺: 258.1489, found: 258.1494.

Yellow oil. ¹H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.34–7.27 (m, 5H, Ar*H*), 7.11 (d, *J* = 8.0 Hz, 2H, Ar*H*), 6.78 (d, *J* = 8.4 Hz, 2H, Ar*H*), 5.01 (t, *J* = 6.8 Hz, 1H, C*H*), 4.13–4.11 (m, 2H, C*H*₂N), 2.71 (s, 3H, *Me*), 2.02 (br, 1H, N*H*). ¹³C NMR (100 MHz, CDCl₃, ppm, 20 °C): δ 150.1, 137.1, 131.9, 128.7, 127.8, 127.0, 116.2, 110.2 (Ar*C*), 64.6 (*C*HOH), 61.7 (*C*HN), 32.2 (N*Me*). HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₆NOBr [M+H]⁺: 306.0488, found: 306.0489.

White solid.² M.p.: 57–59 °C. ¹H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.20–7.16 (m, 2H, Ar*H*), 6.76–6.71 (m, 3H, Ar*H*), 3.35 (dt, *J* = 4.0, 9.6 Hz, 1H, C*H*OH), 3.18–3.11 (m, 1H, C*H*N), 2.76 (br, 1H, O*H*), 2.13–2.20 (m, 2H, Cy*H*), 1.80–1.70 (m, 2H, Cy*H*), 1.63 (br, 1H, N*H*), 1.45–1.01 (m, 4H, Cy*H*). ¹³C NMR (100 MHz, CDCl₃, ppm, 20 °C): δ 147.8, 129.3, 118.4, 114.4 (Ar*C*), 74.5 (CHOH), 60.1 (CHNH), 33.1, 31.6, 25.0, 24.2 (Cy*C*). HRMS (ESI): *m*/*z* calcd. for C₁₂H₁₇NO [M+H]⁺: 192.1383, found: 192.1389.

Yellow oil.^{3 1}H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.00 (d, *J* = 8.0 Hz, 2H, Ar*H*), 6.65 (d, *J* = 8.0 Hz, 2H, Ar*H*), 3.33 (dt, *J* = 4.4, 9.6 Hz, 1H, C*H*OH), 3.12–3.06 (m, 1H, C*H*N), 2.95 (br, 1H, O*H*), 2.25 (s, 3H, *Me*), 2.13–2.09 (m, 2H, Cy*H*), 1.79–1.69 (m, 2H, Cy*H*), 1.44–1.27 (m, 3H, Cy*H*), 1.07–0.97 (m, 1H, Cy*H*). ¹³C NMR (100 MHz, CDCl₃, ppm, 20 °C): δ 145.5, 129.8, 127.6, 114.7 (Ar*C*), 74.4 (*C*HOH), 60.6 (*C*HNH), 33.2, 31.5, 25.0, 24.3 (Cy*C*), 20.4 (Me). HRMS (ESI): *m*/*z* calcd. for C₁₃H₁₉NO [M+H]⁺: 206.1539, found: 206.1540.

White solid.³ M.p.: 124–126 °C. ¹H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.25 (d, J = 8.8 Hz, 2H, Ar*H*), 6.59 (d, J = 8.8 Hz, 2H, Ar*H*), 3.38–3.32 (m, 2H, C*H*OH and C*H*N), 3.10–3.06 (m, 1H, Cy*H*), 2.58 (br, 1H, O*H*), 2.12–2.06 (m, 2H, Cy*H*), 1.61 (br,

1H, N*H*), 1.79–1.71 (m, 2H, Cy*H*), 1.40–1.27 (m, 2H, Cy*H*), 1.09–0.99 (m, 1H, Cy*H*). ¹³C NMR (100 MHz, CDCl₃, ppm, 20 °C): δ 146.9, 132.0, 115.8, 109.8 (Ar*C*), 74.5 (*C*HOH), 60.2 (NH*C*H), 33.2, 31.5, 24.9, 24.2 (Cy*C*).

Yellow oil.⁴ ¹H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.08 (d, *J* = 8.4 Hz, 2H, Ar*H*), 6.89 (d, *J* = 8.4 Hz, 2H, Ar*H*), 3.65 (dt, *J* = 4.4, 10.4 Hz, 1H, CHO), 3.36–3.30 (m, 1H, C*H*N), 2.96 (s, 1H, O*H*), 2.74 (s, 3H, NC*H*₃), 2.29 (s, 3H, C*H*₃), 2.24–2.19 (m, 1H, C*yH*), 1.77–1.69 (m, 3H, C*yH*), 1.42–1.26 (m, 4H, C*yH*). ¹³C NMR (100 MHz, CDCl₃, ppm, 20 °C): δ 149.3, 129.6, 128.1, 116.3 (Ar*C*), 69.9 (COH), 67.7 (CHN), 33.3, 31.3, 25.6, 25.5, 24.3, 20.3 (C*yC*).

Yellow oil.^{5 1}H NMR (400 MHz, CDCl₃, ppm, 20 °C): δ 7.29 (d, *J* = 9.2 Hz, 2H, Ar*H*), 6.78 (d, *J* = 9.2 Hz, 2H, Ar*H*), 3.65 (dt, *J* = 4.4, 10.0 Hz, 1H, C*H*O), 3.36–3.29 (m, 1H, C*H*N), 2.72 (s, 3H, NC*H*₃), 2.63 (s, 1H, O*H*), 2.18–2.15 (m, 1H, C*yH*), 1.76–1.65 (m, 3H, C*yH*), 1.42–1.23 (m, 4H, C*yH*). ¹³C NMR (100 MHz, CDCl₃, ppm, 20 °C): δ 150.4, 131.7, 116.9, 110.2 (Ar*C*), 70.7 (*C*OH), 66.9 (*C*HN), 33.4, 31.1, 26.2, 25.4, 24.3 (C*yC*).

Copies of the ligand

Fig. S1. ¹H NMR spectrum of HL (400 MHz, CDCl₃, 20 °C)

Fig. S2. ¹³C NMR spectrum of HL (100 MHz, CDCl₃, 20 $^{\circ}$ C)

Copies of rare-earth metal complexes

Fig. S4. ¹³C NMR spectrum of **1a** (100 MHz, C₆D₆, 20 °C)

Fig. S6. ¹³C NMR spectrum of 1c (100 MHz, C_6D_6 , 20 °C)

Fig. S8. ¹³C NMR spectrum of 2a (125 MHz, C₆D₆, 20 °C)

Fig. S10. ¹³C NMR spectrum of 2c (125 MHz, C₆D₆, 20 °C)

Fig. S11. ¹H NMR spectrum of **5a** (500 MHz, C₆D₆, 20 °C)

Fig. S12. ¹³C NMR spectrum of **5a** (125 MHz, C_6D_6 , 20 °C). The peaks labelled with # represent residual *n*-hexane.

Copies of thiocarbamates

Fig. S14. ¹³C NMR spectrum of **3aa** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S15. ¹H NMR spectrum of **3aa** (500 MHz, DMSO- d_6 , 60 °C)

Fig. S16. ¹³C NMR spectrum of **3aa** (125 MHz, DMSO-*d*₆, 60 °C)

Fig. S18. ¹³C NMR spectrum of **3ab** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S20. ¹³C NMR spectrum of **3ac** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S22. ¹³C NMR spectrum of **3ad** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S24. ¹³C NMR spectrum of **3ae** (100 MHz, DMSO- d_6 , 20 °C)

Fig. S26. ¹³C NMR spectrum of **3af** (100 MHz, DMSO-*d*₆, 20 ℃)

Fig. S27. ¹H NMR spectrum of **3ag** (400 MHz, DMSO-*d*₆, 20 °C)

Fig. S28. ¹³C NMR spectrum of **3ag** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S30. ¹³C NMR spectrum of **3ah** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S32. ¹³C NMR spectrum of **3ai** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S34. ¹³C NMR spectrum of **3aj** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S36. ¹³C NMR spectrum of **3ba** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S38. ¹³C NMR spectrum of **3ca** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S40. ¹³C NMR spectrum of **3da** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S42. ¹³C NMR spectrum of **3ea** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S44. ¹³C NMR spectrum of **3fa** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S46. ¹³C NMR spectrum of **3ga** (100 MHz, DMSO- d_6 , 20 °C)

Fig. S48. ¹³C NMR spectrum of **3ha** (100 MHz, DMSO- d_6 , 20 °C)

Fig. S50. ¹³C NMR spectrum of **3ia** (100 MHz, DMSO-*d*₆, 20 ℃)

Fig. S52. ¹³C NMR spectrum of **3**ja (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S54. ¹³C NMR spectrum of **3ka** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S56. ¹³C NMR spectrum of **3ma** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S58. ¹³C NMR spectrum of **3na** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S60. ¹³C NMR spectrum of **3dd** (100 MHz, DMSO-*d*₆, 20 ℃)

Fig. S62. ¹³C NMR spectrum of **3fd** (100 MHz, DMSO- d_6 , 20 °C)

Fig. S64. ¹³C NMR spectrum of **3of** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S66. ¹³C NMR spectrum of **3kj** (100 MHz, DMSO-*d*₆, 20 °C)

Fig. S68. ¹³C NMR spectrum of **3pa** (100 MHz, DMSO-*d*₆, 20 °C)

Copies of β -amino alcohols

387 371 371 366 347 327 295 295 295 273 260 088	704 667 589 567 565	529 515 504	968 785 746 746
		4444	

-1.735

Fig. S70. ¹³C NMR spectrum of 4aa (100 MHz, CDCl₃, 20 °C)

Fig. S72. ¹³C NMR spectrum of **4ab** (100 MHz, CDCl₃, 20 °C)

Fig. S74. ¹³C NMR spectrum of **4ac** (100 MHz, CDCl₃, 20 °C)

Fig. S76. ¹³C NMR spectrum of 4ad (100 MHz, CDCl₃, 20 °C)

Fig. S78. ¹³C NMR spectrum of **4ae** (100 MHz, CDCl₃, 20 °C)

Fig. S80. ¹³C NMR spectrum of **4af** (100 MHz, CDCl₃, 20 °C)

Fig. S82. ¹³C NMR spectrum of **4ah** (100 MHz, CDCl₃, 20 °C)

Fig. S84. ¹³C NMR spectrum of **4ai** (100 MHz, CDCl₃, 20 °C)

Fig. S86. ¹³C NMR spectrum of **4aj** (100 MHz, CDCl₃, 20 °C)

Fig. S88. ¹³C NMR spectrum of **4ba** (100 MHz, CDCl₃, 20 °C)

Fig. S90. ¹³C NMR spectrum of **4bd** (100 MHz, CDCl₃, 20 °C)

Fig. S92. ¹³C NMR spectrum of **4bg** (100 MHz, CDCl₃, 20 °C)

Fig. S94. ¹³C NMR spectrum of **4bh** (100 MHz, CDCl₃, 20 °C)

Fig. S96. ¹³C NMR spectrum of **4bj** (100 MHz, CDCl₃, 20 °C)

Fig. S97 ¹H NMR (500 MHz, C_6D_6) monitoring the reaction of benzyl alcohol (0.1 mmol) and phenyl isothiocyanate (0.1 mmol) in the presence of 10 mol% of **2a** at room temperature. (1) **2a** in C_6D_6 . (2) The catalytic reaction runs 3 h. (3) The catalytic reaction runs 12 h.

Fig. S98 ¹H NMR (500 MHz, C_6D_6) monitoring the catalytic reaction of styrene oxide (0.2 mmol) and aniline (0.1 mmol) in the presence of 10 mol% of **2a** at room temperature. (1) **2a** in C_6D_6 . (2) **4aa** in C_6D_6 . (3) The catalytic reaction runs 20 min. (4) The catalytic reaction runs 7 h.

Note after first publication

This electronic supplementary information replaces the version published on 28th July 2022, which contained errors in the crystallographic data for compound 5a.

References

- (1) A. R. Sardarian, I. D. Inaloo and M. Zangiabadi, New J. Chem., 2019, 43, 8557–8565.
- (2) D. Li, J. Wang, S. Yu, S. Ye, W. Zou, H. Zhang and J. Chen, *Chem. Commun.*, 2020, 56, 2256–2259.
- (3) J. Du, S. Zhou, X. Zhang, L. Zhang, P. Cui, Z. Huang, W. Yun, X. Zhu and S. Wang, Appl. Organomet. Chem., 2019, 34, e5275.
- (4) K. Tanaka, M. Kinoshita, J. Kayahara, Y. Uebayashi, K. Nakaji, M. Morawiak and Z. Urbanczyk-Lipkowskab, RSC Adv., 2018, 8, 28139–28146.
- (5) P. Ji, X. Feng, P. Oliveres, Z. Li, A. Murakami, C. Wang and W. Lin, J. Am. Chem. Soc., 2019, 141, 14878–14888.