Electronic Supporting Information

Cyclometalated iridium complexes based on monodentate aminophosphanes

Marco Palmese, Jesús J. Pérez-Torrente, and Vincenzo Passarelli*

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/ Pedro Cerbuna 12, ES-50009 Zaragoza.

1.	Crystal structure of 6PF ₆ and 12PF ₆	2
2.	IR spectrum of 4[IrCl ₂ (CO) ₂] in CH ₂ Cl ₂	4
3.	Polyhedral symbols for I, II, 5 ⁺ , IV ⁺ , V ⁺ , 12 ⁺ and 13 ⁺	5
4.	Selected NMR data for 1, 2, 5 ⁺ , 6 ⁺ , 10 ⁺ , 12 ⁺ , and 13 ⁺ ,	
	with the proposed assignment	6
5.	¹ H, ³¹ P{ ¹ H} and ¹³ C{ ¹ H}-APT NMR spectra of SiMe ₃ NP, 1-3, 4[IrCl ₂ (CO) ₂],	
	5PF ₆ , 6PF ₆ , 9 ⁺ , 11PF ₆ , 12PF ₆ , and 13PF ₆	8
6.	Monitoring of the reaction $12^+ \square 13^+$ in CH_2CI_2	26
7.	DFT data for the reaction 7 ⁺ \Box 8 ⁺	27

1. Crystal structure of $6PF_6$ and $12PF_6$

Figure SI1-top shows the asymmetric unit in the crystal structure of $6PF_6$. Two of the cations [IrH{ κ^2C , P-SiMe₃N(4-C₆H₃CH₃)PPh₂}(cod)(CH₃CN)]⁺ exhibit A configuration (Figure SI1-bottom) of the metal centre (Ir1 and Ir3), whereas C configuration (Figure SI1-bottom) is observed for the remaining two cations (Ir2 and Ir4).

Fig. SI1. (top) View of the asymmetric unit in the crystal structure of $6PF_6$. For clarity, most hydrogen atoms are omitted and a wireframe style is adopted for the phenyl groups, the SiMe₃ moiety and the hexafluorophoshate anions; (bottom) View of the *C* and *A* enantiomers of 6^+ .

Figure SI2 shows the asymmetric unit in the crystal structure of **12**PF₆. One of the cations [IrH{ κ^2C ,P–SiMe₃N(4-C₆H₃CH₃)PPh₂}(HNP)₂(CH₃CN)]⁺ exhibits *C* configuration of the metal centre (Ir1), whereas *A* configuration is observed for the remaining cation (Ir2).

Fig. SI2. View of the asymmetric unit in the crystal structure of **12**PF₆. For clarity, most hydrogen atoms are omitted and a wireframe style is adopted for phenyl and selected tolyl groups.

2. IR spectrum of $4[IrCl_2(CO)_2]$ in CH_2Cl_2

Fig. SI3. IR spectrum of $4[IrCl_2(CO)_2]$ in CH_2Cl_2 and its deconvolution.

3. Polyhedral symbols for I, II, 5^+ , IV^+ , V^+ , 12^+ and 13^+ .

Fig. SI4. Polyhedral symbols and ligand priority labelling scheme for I, II, 5⁺, IV⁺, V⁺, 12⁺ and 13⁺.

4. Selected NMR data for 1, 2, 5⁺, 6⁺, 10⁺, 12⁺, and 13⁺, with the proposed assignment

Fig. SI5. Selected NMR data for 1 and 2 and the proposed assignment (δ are given in ppm, J in Hz).

Fig. SI6. Selected NMR data for 5^+ and 6^+ and the proposed assignment (δ are given in ppm, J in Hz).

Fig. SI7. Selected ¹H, ¹³C and ³¹P NMR data of **10**⁺ with the proposed assignment (δ are given in ppm, J in Hz).

Fig. SI8. Selected ¹H, ¹³C and ³¹P NMR data for **12**⁺ and **13**⁺ with the proposed assignment (δ are given in ppm, *J* in Hz).

0.46 Me₃Si Ő SiMe₃NP O = 4-tolyl = phenyl 2.07 6.74 7.18 7.60 3.06 5.87-3.98 4.00-9.09 7.0 8.0 7.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Fig. SI9. ¹H NMR spectrum of SiMe₃NP. Me₃Si o SiMe₃NP O = 4-tolyl

5. ¹H, ³¹P{¹H} and ¹³C{¹H}-APT NMR spectra of SiMe₃NP, 1-3, 4[IrCl₂(CO)₂], 5PF₆, 6PF₆, 9⁺, 11PF₆, 12PF₆, and 13PF₆

= phenyl

95

90

Fig. SI10. ³¹P{¹H} NMR spectrum of SiMe₃NP.

10

5

Fig. SI11. ¹³C{¹H}-apt NMR spectrum of SiMe₃NP.

Fig. SI12. ¹H NMR spectrum of 1.

Fig. SI13. ³¹P{¹H} NMR spectrum of 1.

Fig. SI14. ¹³C{¹H}-apt NMR spectrum of 1.

Fig. SI16. ${}^{31}P{}^{1}H$ NMR spectrum of 2.

Fig. SI17. ¹³C{¹H}-apt NMR spectrum of 2.

Fig. SI18. ¹H NMR spectrum of 3 (298 K).

Fig. SI19. ${}^{31}P{}^{1}H$ NMR spectrum of 3 (298 K).

Fig. SI20. ¹³C{¹H}-apt NMR spectrum of **3** (298 K).

Fig. SI22. ³¹P{¹H} NMR spectrum of **3** (213 K).

Fig. SI23. ¹³C{¹H}-apt NMR spectrum of **3** (213 K).

Fig. SI24. ¹H NMR spectrum of 4.

Fig. SI25. ³¹P{¹H} NMR spectrum of 4.

Fig. SI26. ¹³C{¹H}-apt NMR spectrum of 4.

Fig. SI27. ¹H NMR spectrum of 5PF₆.

Fig. SI28. ³¹P{¹H} NMR spectrum of 5PF₆.

Fig. SI29. ¹³C{¹H}-apt NMR spectrum of **5**PF₆.

Fig. SI30. ¹H NMR spectrum of 6PF₆.

Fig. SI31. ³¹P{¹H} NMR spectrum of **6**PF₆.

Fig. SI33. ¹H NMR spectrum of **9**⁺ (233 K, CD₂Cl₂, prepared in situ).

Fig. SI34. ${}^{31}P{}^{1}H$ NMR spectrum of 9⁺ (233 K, CD₂Cl₂, prepared in situ).

Fig. SI35. $^{13}\text{C}\{^{1}\text{H}\}\text{-}\text{apt}$ NMR spectrum of $9^{\text{+}}$ (233 K, CD_2Cl_2, prepared in situ).

80 60 40 20 0 -30 -60 -90 -120 -160

Fig. SI37. ³¹P{¹H} NMR spectrum of **11**PF₆.

Fig. SI38. ¹³C{¹H}-apt NMR spectrum of **11**PF₆.

Fig. SI40. ${}^{31}P{}^{1}H$ NMR spectrum of $12PF_6$.

Fig. SI41. ¹³C{¹H}-apt NMR spectrum of **12**PF₆.

Fig. SI42. ¹H NMR spectrum of 13PF₆.

Fig. SI43. ³¹P{¹H} NMR spectrum of **13**PF₆.

Fig. SI44. ¹³C{¹H}-apt NMR spectrum of **13**PF₆.

6. Monitoring of the reaction $12^{\scriptscriptstyle +}$ \Box $13^{\scriptscriptstyle +}$ in CH_2Cl_2

Fig. SI45. Monitoring of the reaction $12^+ \square 13^+$ in CH_2Cl_2 at 298 K: (top) ¹H NMR; (bottom) ³¹P{¹H} NMR.

7. DFT data for the reaction $7^+ \square 8^+$

Fig. SI46. Gibbs free energy profile for the reaction $7^+ \square 8^+$ along with the calculated Gibbs free energies (kcal·mol⁻¹, B3PW91-GD3BJ/def2svp, CH₂Cl₂, 298 K, 1 atm).