Mesoporous catalyst supports based on ZnO–ZnAl₂O₄ nanocomposites with enhanced selectivity and coking resistance in isobutane dehydrogenation

Anna N. Matveyeva^a, Shamil O. Omarov^a, Alexey V. Nashchekin^b, Vadim I. Popkov^a, Dmitry Yu. Murzin^c

^{*a*}Laboratory of Materials and Processes for Hydrogen Energy, Ioffe Institute, Politekhnicheskaya ul. 28, St. Petersburg 194021, Russia

^bFederal Joint Research Center "Material science and characterization in advanced technology", Ioffe Institute, Politekhnicheskaya ul. 26, St. Petersburg 194021, Russia

^cLaboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi University,

Henriksgatan 2, Turku/Åbo 20500, Finland

Figure S1. SEM images of the synthesized materials.

Figure S2. Multi-peak Gaussian fitting for the samples calcined at 700 °C.

Figure S3. Acidity dependence of weak, medium, and strong acid sites on the ZnO content for the samples calcined at 700 °C.

Figure S4. Isobutane conversion depending on the ZnO content, obtained after 10 min of dehydrogenation in the 1st, 2nd and 3rd cycle (full cycle: dehydrogenation 50 min – helium purge – air regeneration – helium purge) (a); evolution of H₂ during isobutane dehydrogenation on 20ZnO-80ZnAl₂O₄ (b). Reaction conditions: 550 °C, 20 ml/min of isobutane : He = 40 : 60.

Table S1. Isobutane conversion, space time yield (STY) of isobutene and isobutene selectivity. Reaction conditions: 550 °C, 10 min, iso-C₄H₁₀:N₂ = 40:60, contact time of 0.24 g·s·ml⁻¹.

Catalyst	Conversion, %	Selectivity to iso- C ₄ H ₈ , mol. %	STY, kg/($h \cdot m^3$)	Reference
20ZnO-80ZnAl ₂ O ₄	12	95	1704	This work
$Cr_{10}Zr_{90}O_x$	36	81	5861	[38]
Cr_2O_3/Al_2O_3	7	92	950	This work
Note: STY = mass flow of isobutene $(kg/h) / volume of the catalyst (m3)$				