Supporting information for:

Heterolytic carbon–iodine bond cleavage by a palladium(I) metalloradical

Table of contents

1.	G	eneral e	xperimental methods	2	
2.	Re	eactions	of [Pd(P <i>t</i> Bu ₃) ₂][PF ₆] 1	2	
	2.1.	Gen	eral procedure	2	
	2.2.	Pher	nyl iodide	3	
	2.	2.1.	1.1 equivalents monitored by NMR spectroscopy	3	
	2.2.2.		1.5 equivalents monitored by NMR spectroscopy	4	
	2.2.3.		1.5 equivalents in presence of excess phosphine monitored by NMR spectroscopy	y 5	
	2.	2.4.	1.5 equivalents monitored by UV/vis spectroscopy	6	
	2.3.	2-me	ethoxyphenyl iodide	7	
	2.4.	2,6-0	limethoxyophenyl iodide	8	
	2.5. Adamantyl iodide		nantyl iodide	8	
	2.6.	tert-l	Butyl iodide	9	
	2.7.	Pota	ssium iodide / 18-crown-6	9	
3.	Co	ontrol re	actions with tri- <i>tert</i> -butylphosphine	10	
	3.1.	Gen	eral procedure	10	
	3.2.	Pher	nyl iodide	10	
	3.3.	Adar	nantyl iodide	11	
	3.4.	tert-l	Butyl iodide	11	
	3.5.	lodir	e	12	
	3.6.	Prep	aration of [PtBu ₃ H][PF ₆]	12	
4.	ls	olation,	characterisation, and stability of [Pd(P <i>t</i> Bu ₃) ₂ (2-(MeO)C ₆ H ₄)][PF ₆] 4b	14	
	4.1.	Prep	aration of 4b	14	
	4.2.	Stab	ility of 4b	16	
	4.3.	Stab	ility of 4b in the presence of excess P <i>t</i> Bu ₃	17	
5.	ls	olation,	characterisation, and stability of [Pd(P <i>t</i> Bu ₃) ₂ (2,6-(MeO) ₂ C ₆ H ₃)][PF ₆] 4c	18	
	5.1.	Prep	aration of 4c	18	
	5.2.	Stab	ility of 4c	20	
6.	Mechanistic sketch			20	
7.	Re	References			

1. General experimental methods

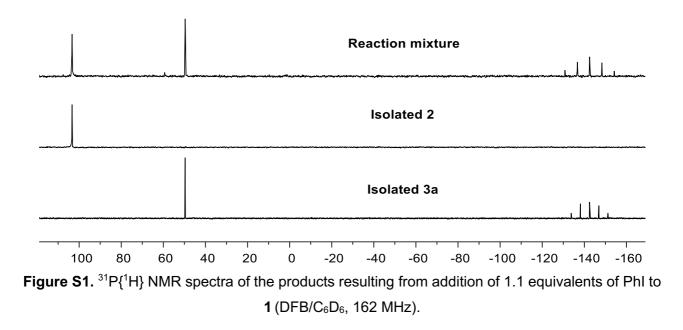
All manipulations were performed under an atmosphere of argon using Schlenk and glove box techniques unless otherwise stated. Glassware was oven dried at 150 °C overnight and flame-dried under vacuum prior to use. Molecular sieves were activated by heating at 300 °C in vacuo overnight. 1,2-Difluorobenzene (DFB) was stirred over neutral aluminium oxide, filtered, dried over CaH₂, vacuum distilled, freeze-pump-thaw degassed, and then stored over activated 3 Å molecular sieves.¹ Commercial anhydrous CH₂Cl₂, pentane, and hexane were freeze-pump-thaw degassed and stored over activated 3 Å molecular sieves. Phenyl iodide, 2-methoxyphenyl iodide and *tert*-butyl iodide were freeze-pump-thaw degassed and stored over activated 3 Å molecular sieves. [Pd(PtBu₃)₂][PF₆] 1^2 and $[Pd(PtBu_3)(\mu-I)]_2$ 2^3 were prepared using literature procedures. All other reagents are commercial products and were used as received. NMR spectra were recorded on Bruker spectrometers under argon at 298 K unless otherwise stated. Chemical shifts are quoted in ppm and coupling constants in Hz. Coupling constants for virtual triplets are reported as the separation between the first and third lines.⁴ NMR spectra in DFB were recorded using an internal capillary of C_6D_6 .^{1 31}P NMR spectra are referenced to a solution of O=P(OMe)₃ in C₆D₆ (0.025 mol·L⁻¹, δ 3.80 relative to 85% H₃PO₄). UV-vis spectra were recorded on an Agilent Cary 3500 UV-vis Spectrometer Compact Peltier System. HR ESI-MS were recorded on a Bruker MaXis mass spectrometer.

2. Reactions of [Pd(PtBu₃)₂][PF₆] 1

2.1. General procedure

To a solution of **1** (6.6 mg, 10 µmol) in DFB (0.5 mL) within a J. Young valve NMR tube was added the substrate at RT. The resulting solution was monitored using ¹H and ³¹P NMR spectroscopy, with constant mixing when not in the spectrometer. The concentration of **1** can be monitored by a broad paramagnetically shifted ¹H resonance at δ 19 in DFB.

Compound	δ _{31P}	Comment
[Pd(P <i>t</i> Bu ₃) ₂]	84.8	Isolated (commercial)
$[Pd(PtBu_3)_2][PF_6]$ 1	No signal	Isolated (literature)
$[Pd(PtBu_3)(\mu-I)]_2$ 2	103.5	Isolated (literature)
$[Pd(PtBu_3)_2(Ph)][PF_6]$ 4a	61.0	Observed <i>in situ</i> (new)
$[Pd(PtBu_3)_2(2-(MeO)C_6H_4)][PF_6]$ 4b	62.0	Isolated (new)
[Pd(P <i>t</i> Bu ₃) ₂ (2,6-(MeO) ₂ C ₆ H ₃)][PF ₆] 4c	65.3	Isolated (new)
PtBu ₃	62.9	Isolated (commercial)
[P <i>t</i> Bu ₃ H][PF ₆]	56.0	Isolated (literature)
[P <i>t</i> Bu ₃ I]I	114.7	Generated in situ (literature)
[P <i>t</i> Bu₃Ph][PF ₆] 3a	49.7	Isolated (literature)
[P <i>t</i> Bu ₃ (2-(MeO)C ₆ H ₄)][PF ₆] 3b	64.2	Generated in situ (literature)
[P <i>t</i> Bu₃Ad][PF ₆] 3d	49.9	Generated in situ (literature)


Table S1. ³¹P NMR data in DFB solution (excluding anion).

2.2. Phenyl iodide

2.2.1. 1.1 equivalents monitored by NMR spectroscopy

Following the general procedure using PhI (1.2 μ L, 11 μ mol). Complete consumption of **1** was observed by ¹H NMR spectroscopy within 24 h at RT. At this point, formation of [Pd(P*t*Bu₃)(μ -I)]₂ **2** and [P*t*Bu₃Ph]⁺ **3a** in a 1:2 mixture (>97% selectivity) was observed by ³¹P NMR spectroscopy. Phenyl phosphonium **3a** was subsequently isolated as a white solid by successive recrystallisation from DFB/hexane, pyridine/hexane and finally CH₂Cl₂/hexane at RT. Yield: 1.3 mg (3.1 μ mol, 30%/Pd). Spectroscopic data is consistent with that reported for the corresponding triflate salt and the assignment is supported by determination of the solid-state structure and ESI-MS.⁵

³¹P{¹H} NMR (162 MHz, DFB/C₆D₆): δ 49.7 (s, 1P, P*t*Bu₃Ph), -142.5 (sept, ¹*J*_{PF} = 710, 1P, PF₆). HR ESI-MS (positive ion, 4 kV): 279.2238 ([*M*]⁺, calcd 279.2236) *m/z*.

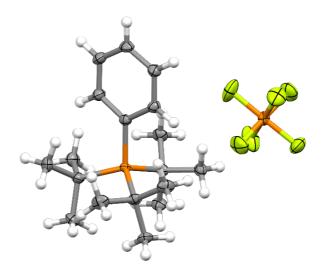
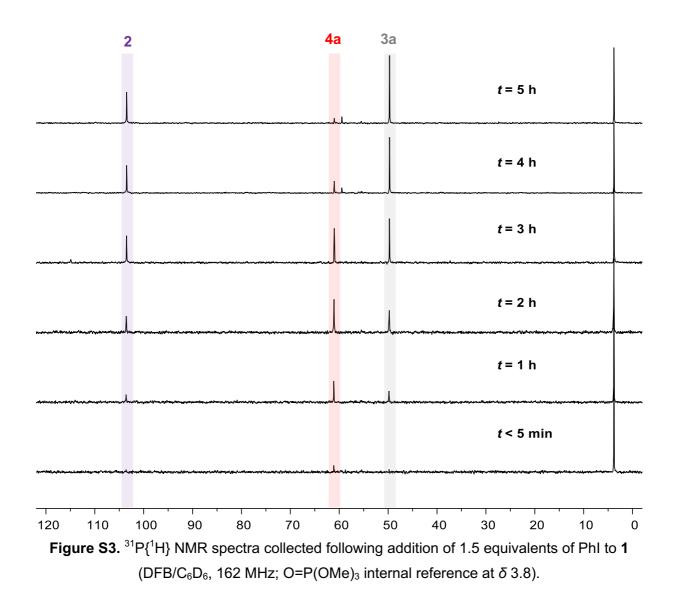



Figure S2. Solid-state structure of 3a. Thermal ellipsoids at 50% probability.

2.2.2. 1.5 equivalents monitored by NMR spectroscopy

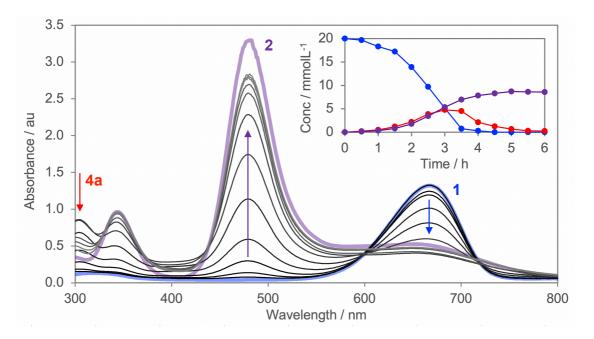
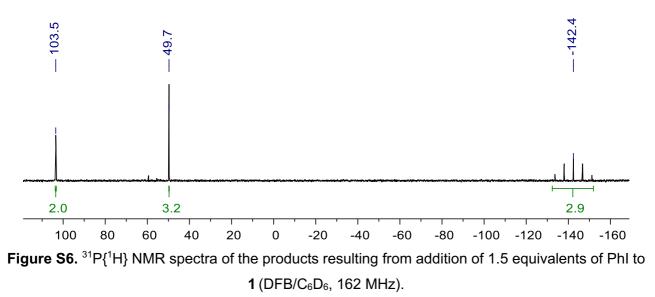
Following the general procedure using PhI (1.7 μ L, 15 μ mol). Complete consumption of **1** was observed by ¹H NMR spectroscopy within 3 h at RT. At this point, a 1:3:1 mixture of [Pd(PtBu₃)(μ -I)]₂ **2**, [PtBu₃Ph]⁺ **3a**, and a species assigned to [Pd(PtBu₃)₂(Ph)]⁺ **4a** was observed by ³¹P NMR spectroscopy, along with a trace amount of [PtBu₃I]⁺. After a further 2 h, decomposition of **4a** into **3a** gave a 1:4 mixture of **2** and **3a**, with trace amounts of [PtBu₃H]⁺.

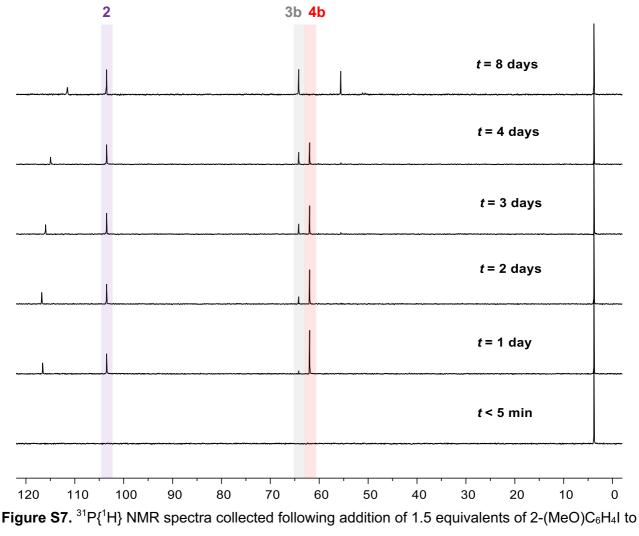
2.2.3. 1.5 equivalents in presence of excess phosphine monitored by NMR spectroscopy Following the general procedure using PhI (1.7 µL, 15 µmol) and PtBu₃ (70 µL of a 0.72 M solution in hexane, 50 µmol). Complete consumption of **1** was observed by ¹H NMR spectroscopy within 6 h at RT. At this point, a 1:3:3 mixture of $[Pd(PtBu_3)(\mu-I)]_2$ **2**, $[PtBu_3Ph]^+$ **3a**, and $[Pd(PtBu_3)_2(Ph)]^+$ **4a** was observed by ³¹P NMR spectroscopy, with the signal for PtBu₃ shifted to higher frequency and broadened. After a further 3 h, decomposition of **4a** into **3a** gave a 1:5 mixture of **2** and **3a**, with trace amounts of $[PtBu_3H]^+$.

presence of excess PtBu₃ (DFB/C₆D₆, 162 MHz; O=P(OMe)₃ internal reference at δ 3.8).

2.2.4. 1.5 equivalents monitored by UV/vis spectroscopy

To a 6 mL glass screw top vial charged with **1** (26.2 mg, 40 µmol) and a magnetic stirrer bar in an inert atmosphere glove box was added a solution of PhI (2 mL, 0.03 mol L⁻¹, 60 µmol) in DFB. The vial was sealed and the solution stirred at RT for 6 h. The reaction was monitored every 30 minutes by taking 40 µL aliquots, which were diluted to 3 mL and analysed immediately by UV/vis spectroscopy. Concentrations of **1** and **2** were determined by least squares fitting of spectra recorded of isolated samples between 475 and 800 nm, whilst the concentration of **4a** was <u>estimated</u> using the background corrected absorption at 305 nm (maximum from residue, *cf.* **4b/4c**) and $\varepsilon = 7000$ L⁻¹ mol⁻¹ cm⁻¹. After 6 h, 0.5 mL of the solution was transferred into a J. Young valve NMR tube and analysed by ³¹P NMR spectroscopy, which indicated formation of a 1:3 mixture of **2** and **3a**, with trace amounts of [P*t*Bu₃H]⁺.


Figure S5. UV/vis spectra collected following addition of 1.5 equivalents of PhI to 1, reference spectra of 1 (blue) and 2 (purple), and time course data for 1 (blue), 2 (purple) and 4a (red).

6

2.3. 2-methoxyphenyl iodide

Following the general procedure using 2-(MeO)C₆H₄I (2.0 µL, 15 µmol). Complete consumption of **1** was observed by ¹H NMR spectroscopy within 24 h at RT. At this point, a 1:2:2 mixture of $[Pd(PtBu_3)(\mu-I)]_2$ **2**, $[Pd(PtBu_3)_2(2-(MeO)C_6H_4)]^+$ **4b**, and $[PtBu_3I]^+$ was observed by ³¹P NMR spectroscopy, along with a trace amount of $[PtBu_3(2-(MeO)C_6H_4)]^+$ **3b**. After a further 7 days, decomposition of **4b** into **3b** and $[PtBu_3H]^+$ was observed. Spectroscopic data of **3b** is consistent with that reported for the corresponding $[B{3,5-(CF_3)_2C_6H_3}_4]^-$ salt in this solvent and the assignment is supported by determination of the solid-state structure.⁶

1 (DFB/C₆D₆, 162 MHz; O=P(OMe)₃ internal reference at δ 3.8).

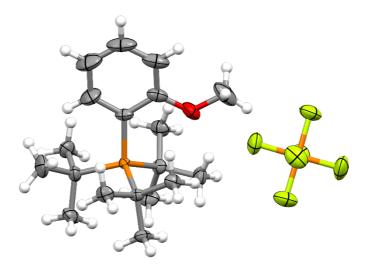
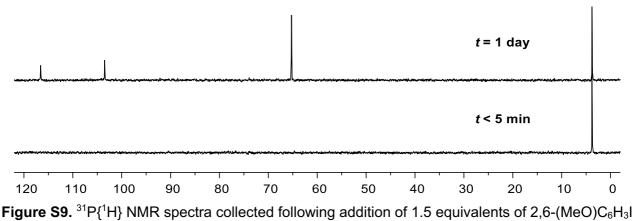
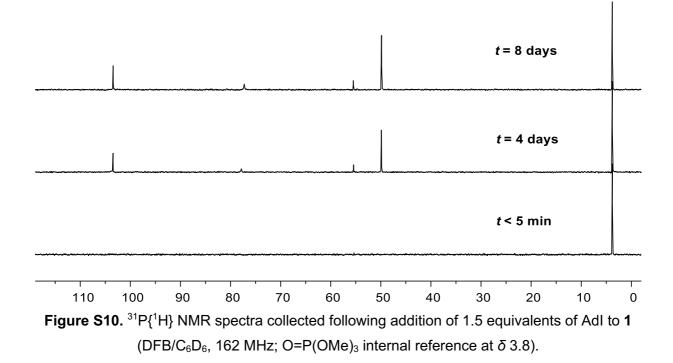
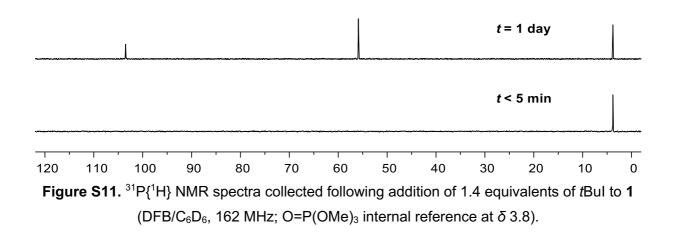



Figure S8. Solid-state structure of 3b. Thermal ellipsoids at 50% probability.

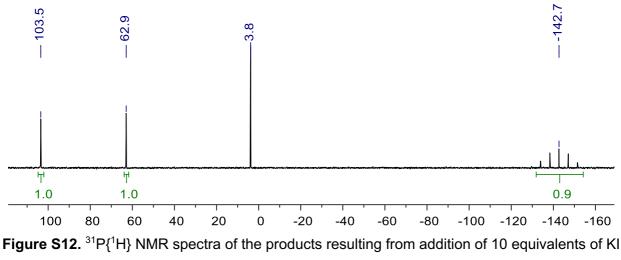
2.4. 2,6-dimethoxyophenyl iodide


Following the general procedure using 2,6-(MeO)C₆H₃I (4.1 mg, 16 µmol). Complete consumption of **1** was observed by ¹H NMR spectroscopy within 24 h at RT. At this point a 1:3:2 mixture of $[Pd(PtBu_3)(\mu-I)]_2$ **2**, $[Pd(PtBu_3)_2(2,6-(MeO)_2C_6H_4)]^+$ **4c**, and $[PtBu_3I]^+$ was observed by ³¹P NMR spectroscopy.

to **1** (DFB/C₆D₆, 162 MHz; O=P(OMe)₃ internal reference at δ 3.8).


2.5. Adamantyl iodide

Following the general procedure using AdI (3.9 mg, 15 µmol). Complete consumption of **1** was observed by ¹H NMR spectroscopy within 8 days at RT. At this point a mixture containing $[Pd(PtBu_3)(\mu-I)]_2$ **2** and $[PtBu_3Ad]^+$ **3d** in a 1:2 ratio was observed by ³¹P NMR spectroscopy along with trace amounts of $[PtBu_3H]^+$ and an unknown species at δ 77.3. Spectroscopic data of **3d** is consistent with that reported for the corresponding $[B(C_6F_5)_3F]^-$ salt and the assignment is supported by ESI-MS (observed, 337.3025; calcd 337.3019 *m/z*).⁷

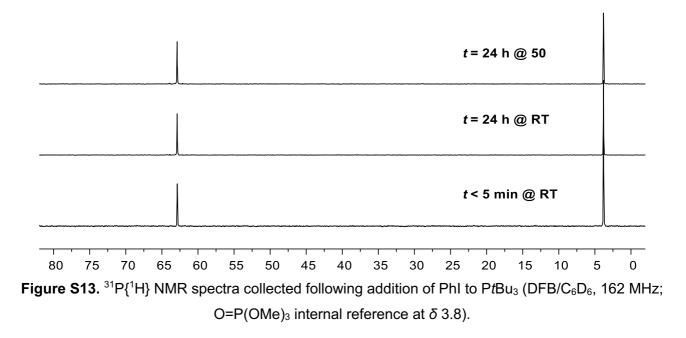

2.6. tert-Butyl iodide

Following the general procedure using *t*Bul (1.7 µL, 14 µmol). Complete consumption of **1** was observed by ¹H NMR spectroscopy within 24 h at RT. At this point a 1:2 mixture of $[Pd(PtBu_3)(\mu-I)]_2$ **2** and $[PtBu_3H]^+$ was observed by ³¹P NMR spectroscopy. Generation of 2-methylpropene was apparent from the ¹H NMR spectrum, with resonances at δ 4.56 (2H) and 1.54 (6H).⁸

2.7. Potassium iodide / 18-crown-6

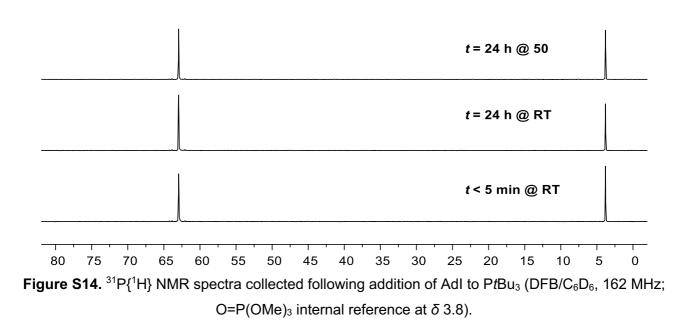
Following the general procedure using KI (16.8 mg, 101 μ mol) and 18-crown-6 (26.3 mg, 99.5 μ mol). Complete consumption of **1** and conversion to $[Pd(PtBu_3)(\mu-I)]_2$ **2** and $PtBu_3$ was observed within 5 min at RT.

and 18-crown-6 to **1** (DFB/C₆D₆, 162 MHz, O=P(OMe)₃ internal reference at δ 3.8).

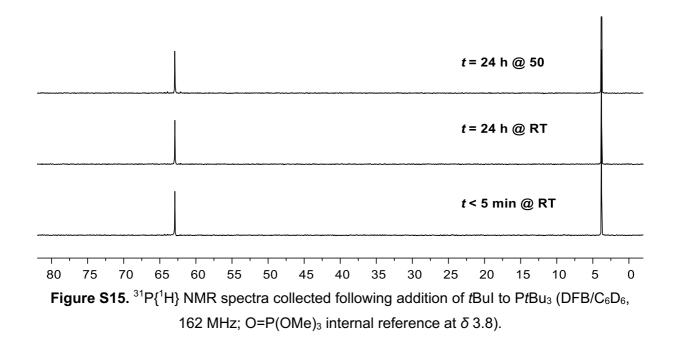

3. Control reactions with tri-tert-butylphosphine

3.1. General procedure

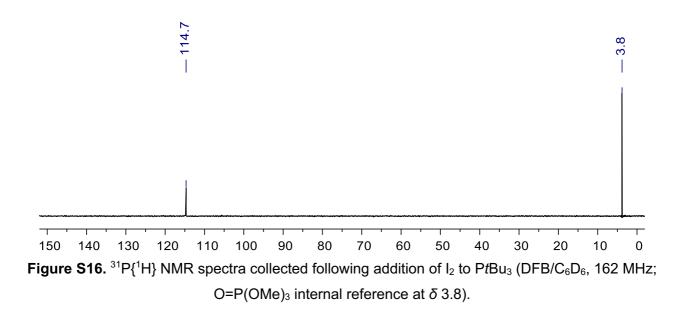
To a solution of P*t*Bu₃ (10 μ mol) in DFB (0.5 mL) within a J. Young valve NMR tube was added 10 equivalents of substrate at RT. The resulting solution was monitored using ¹H and ³¹P NMR spectroscopy, with constant mixing when not in the spectrometer.


3.2. Phenyl iodide

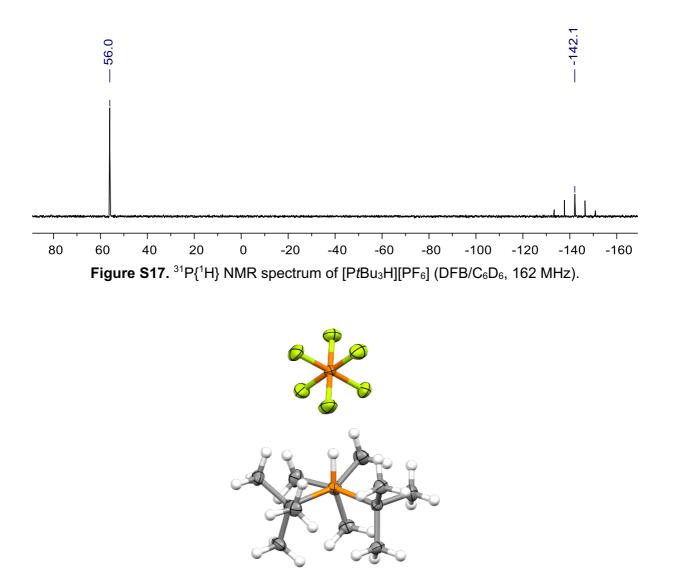
Following the general procedure using PhI (11.2 μ L, 100 μ mol). No reaction was apparent after 24 h at RT, nor after subsequent heating at 50 °C for 24 h.


3.3. Adamantyl iodide

Following the general procedure using AdI (26.2 mg, 100 μ mol). No reaction was apparent after 24 h at RT, nor after subsequent heating at 50 °C for 24 h.


3.4. tert-Butyl iodide

Following the general procedure using *t*Bul (11.9 μ L, 100 μ mol). No reaction was apparent after 24 hours at RT, nor after subsequent heating at 50 °C for 24 h.


3.5. lodine

To a solution of I₂ (13.0 mg, 51 µmol) in DFB (0.5 mL) within a J. Young valve NMR tube was added a solution of P*t*Bu₃ in hexane (15 µL, 0.69 M, 10 µmol) at RT. Analysis within 5 min using ¹H and ³¹P NMR spectroscopy indicated complete conversion to [P*t*Bu₃I]I. Spectroscopic data of **3d** is consistent with that reported for the corresponding $[B(C_6F_5)_3F]^-$ salt.⁹

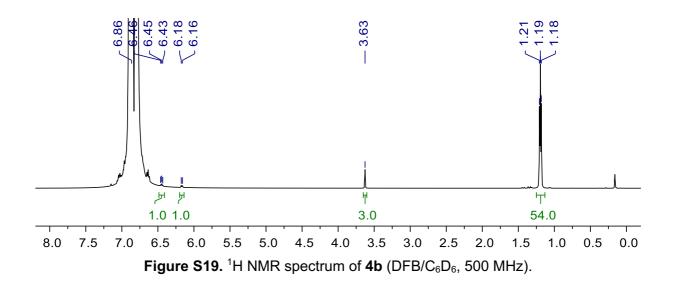
3.6. Preparation of [PtBu₃H][PF₆]

To a solution of P*t*Bu₃ in pentane (1.25 mL, 0.87 M, 1.1 mmol) was added a solution of HCl in diethyl ether (1.44 mL, 1 M, 1.4 mmol) dropwise at RT. The resulting solution was stirred at RT for 30 min and volatiles removed *in vacuo*. The white residue was extracted with degassed acetone (10 mL) and a solution of Na[PF₆] (241.0 mg, 1.4 mmol) in degassed acetone (10 mL) was added to the filtrate. The resulting solution was stirred for 30 min and volatiles removed *in vacuo*. The product was thereafter extracted from the residual salts using CH_2Cl_2 (3×5 mL) and dried in *in vacuo*. Yield: 280.1 mg (804 µmol, 73%). Spectroscopic data are in agreement with the literature and the assignment is supported by determination of the solid-state structure.⁶

Figure S18. Solid-state structure of [P*t*Bu₃H][PF₆]. Thermal ellipsoids at 50% probability.

4. Isolation, characterisation, and stability of [Pd(PtBu₃)₂(2-(MeO)C₆H₄)][PF₆] 4b

4.1. Preparation of 4b


To a solution of $[Pd(PtBu_3)_2][PF_6]$ **1** (75.1 mg, 114 µmol) in DFB (5 mL) was added 2-methoxyphenyl iodide (14.9 µL, 115 µmol) and the resulting solution stirred for 18 h at RT. The solvent was removed *in vacuo* and the residue purified by column chromatography (silica, CH₂Cl₂) to afford the product, which was subsequently recrystallised from DFB/hexane at -40 °C and obtained as red blocks. Yield: 28.0 mg (36.7 µmol, 32%).

¹**H NMR** (500 MHz, DFB/C₆D₆, selected data): δ 6.64 (t, ³*J*_{HH} = 7.9, 5-Ar), 6.17 (d, ³*J*_{HH} = 6.2, 3-Ar), 3.63 (s, 3H, OMe), 1.19 (vt, *J*_{PH} = 12.7, 54H, *t*Bu).

¹³C{¹H} NMR (126 MHz, DFB/C₆D₆): δ 159.0 (vt, J_{PC} = 11, 1-Ar), 157.5 (s, 2-Ar), 135.9 (s, 6-Ar), 127.0 (s, 4-Ar), 120.6 (s, 5-Ar), 110.5 (s, 3-Ar), 53.6 (s, OMe), 40.2 (vt, J_{PC} = 7, $tBu\{C\}$), 31.9 (vt, J_{PC} = 4, $tBu\{CH_3\}$).

³¹P{¹H} NMR (162 MHz, DFB/C₆D₆): δ 62.0 (s, 2P, P*t*Bu₃), -142.3 (sept, ¹*J*_{PF} = 710, 1P, PF₆). HR ESI-MS (positive ion, 4 kV): 617.3233 ([*M*]⁺, calcd 617.3239) *m/z*.

UV/Vis (DFB): $\lambda_{max}/nm = 310 \ (\epsilon = 8300 \ L^{-1} \ mol^{-1} \ cm^{-1}), \ 435 \ (\epsilon = 1900 \ L^{-1} \ mol^{-1} \ cm^{-1}).$

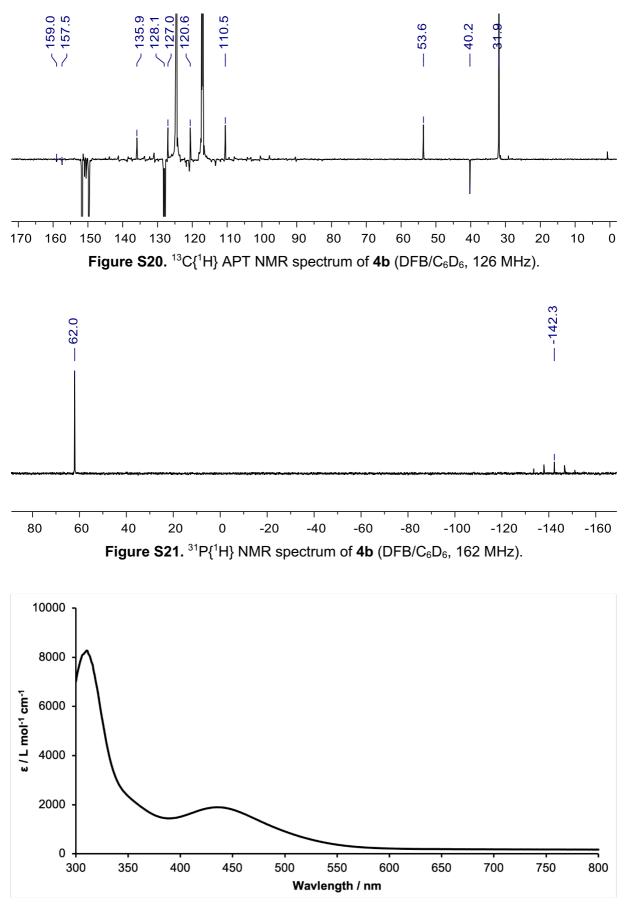
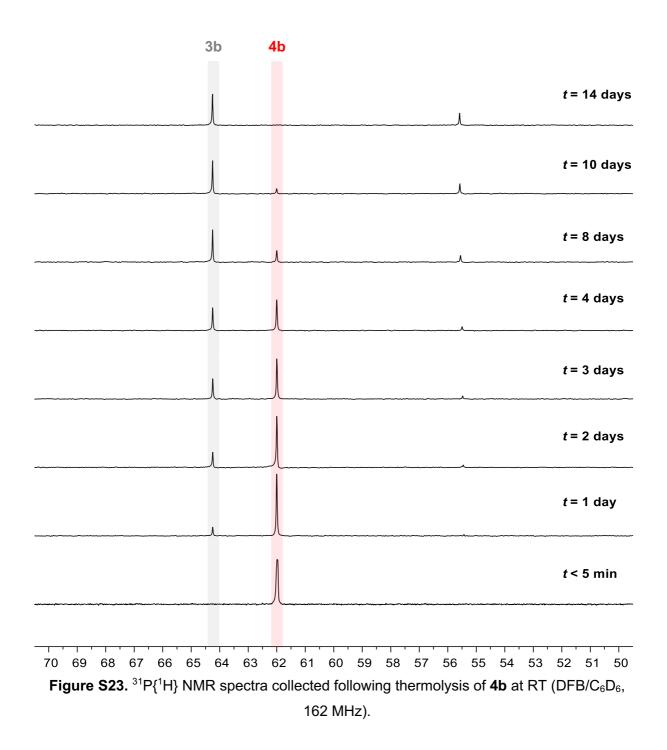
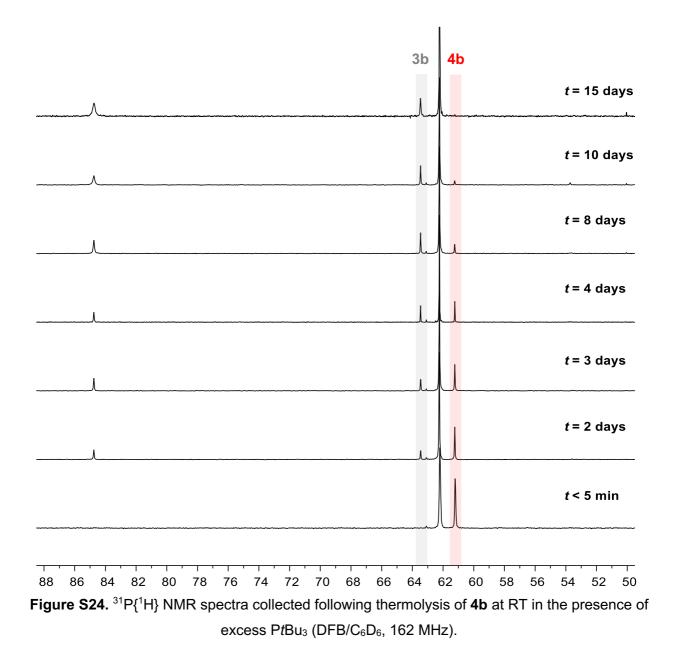



Figure S22. UV/vis spectrum of 4b (DFB).


4.2. Stability of 4b

A solution of **4b** (7.4 mg, 9.7 μ mol) in DFB (0.5 mL) within a J. Young valve NMR tube was monitored over 14 days at RT using ¹H and ³¹P NMR spectroscopy, with constant mixing when not in the spectrometer. Onward reactivity of **4b** was observed with an approximate $t_{1/2}$ of 3 days, concomitant with formation of [P*t*Bu₃(2-(MeO)C₆H₄)]⁺ **3b**, [P*t*Bu₃H]⁺, and precipitation of palladium black.

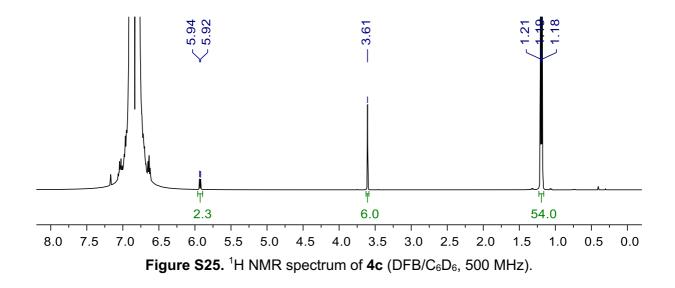
4.3. Stability of 4b in the presence of excess PtBu₃

A solution of **4b** (7.6 mg, 10 µmol) and P*t*Bu₃ (64 µL of a 0.72 M solution in hexane, 46 µmol) in DFB (0.5 mL) within a J. Young valve NMR tube was monitored over 15 days at RT using ¹H and ³¹P NMR spectroscopy, with constant mixing when not in the spectrometer. Onward reactivity of **4b** was observed with an approximate $t_{1/2}$ of 3 days, concomitant with formation of [Pd(P*t*Bu₃)₂] and [P*t*Bu₃(2-(MeO)C₆H₄)]⁺ **3b**.

5. Isolation, characterisation, and stability of [Pd(PtBu₃)₂(2,6-(MeO)₂C₆H₃)][PF₆] 4c

5.1. Preparation of 4c

A solution of $[Pd(PtBu_3)_2][PF_6]$ (100 mg, 152 µmol) and 2,6-bis(methoxy)phenyl iodide (40.3 mg, 153 µmol) in DFB (5 mL) was stirred at RT for 1 day. The solvent was removed *in vacuo* and the residue purified by column chromatography (silica, CH₂Cl₂) to afford the product, which was subsequently recrystallised from DFB/hexane at –40 °C and obtained as red blocks. Yield: 45.4 mg (57.2 µmol, 38%).

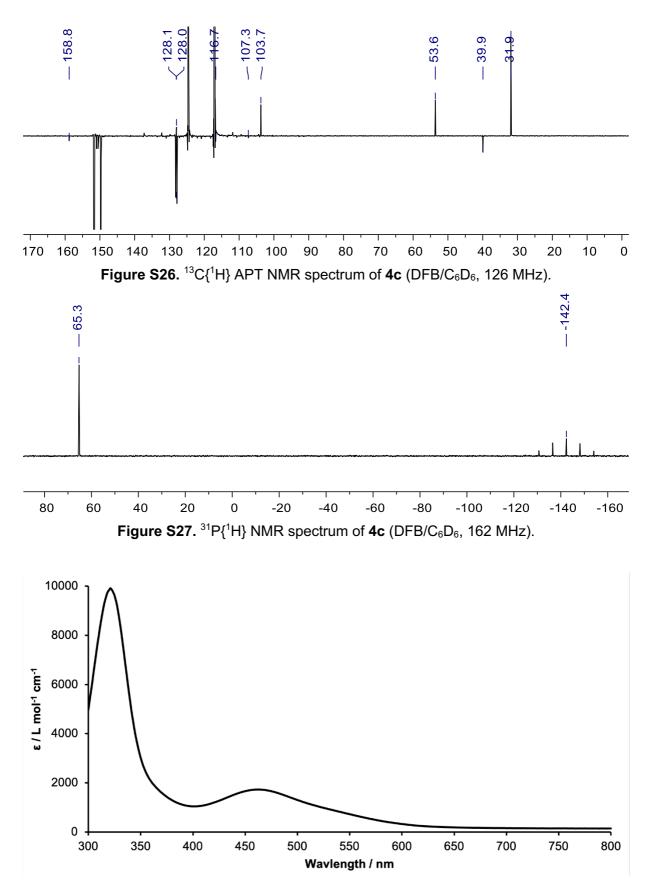

¹**H NMR** (500 MHz, DFB/C₆D₆, selected data): δ 5.93 (d, ³*J*_{HH} = 6.4, 2H, Ar), 3.61 (s, 6H, OMe), 1.20 (vt, *J*_{PH} = 12.8, 54H, P*t*Bu₃).

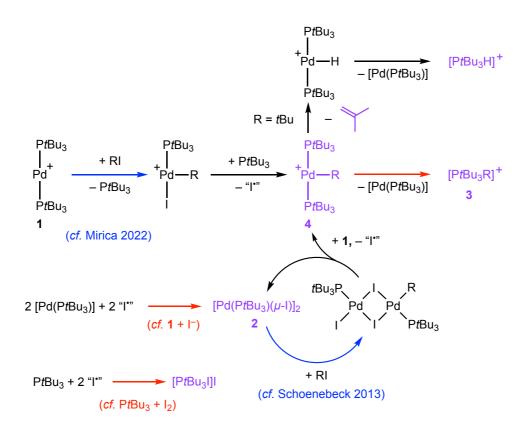
¹³C{¹H} NMR (126 MHz, DFB/C₆D₆): δ 158.8 (vt, J_{PC} = 3, 2-Ar), 128.0 (s, 4-Ar), 107.3 (s, 1-Ar), 103.7 (s, 3-Ar), 53.6 (s, OMe), 39.9 (vt, J_{PC} = 7, $tBu\{C\}$), 31.9 (vt, J_{PC} = 5, $tBu\{CH_3\}$).

³¹P{¹H} NMR (162 MHz, DFB/C₆D₆): δ 65.3 (s, 2P, P*t*Bu₃), -142.4 (sept, ¹*J*_{PF} = 710, 1P, PF₆).

HR ESI-MS (positive ion, 4 kV): 647.3441 ([*M*]⁺, calcd 647.3345) *m*/*z*.

UV/Vis (DFB): $\lambda_{max}/nm = 321$ ($\epsilon = 9900 L^{-1} mol^{-1} cm^{-1}$), 463 ($\epsilon = 1700 L^{-1} mol^{-1} cm^{-1}$).





Figure S28. UV/vis spectrum of 4c (DFB).

5.2. Stability of 4c

A solution of **4c** (7.8 mg, 9.8 µmol) in DFB (0.5 mL) within a J. Young valve NMR tube was monitored over 14 days at RT using ¹H and ³¹P NMR spectroscopy, with constant mixing when not in the spectrometer. No onward reactivity was apparent.

6. Mechanistic sketch

Figure S30. Overview of proposed mechanism: observed products in purple, reactions with experimental evidence in red, reactions with literature precedents in blue.

7. References

- ¹ S. D. Pike, M. R. Crimmin and A. B. Chaplin, *Chem. Commun.* 2017, **53**, 3615–3636.
- ² T. Troadec, S.-y. Tan, C. J. Wedge, J. P. Rourke, P. R. Unwin and A. B. Chaplin, *Angew. Chem. Int. Ed.* 2016, **55**, 3754–3757.
- ³ M. Aufiero, T. Sperger, A. S. K. Tsang and F. Schoenebeck, *Angew. Chem. Int. Ed.*, 2015, **54**, 10322–10326.
- ⁴ P. S. Pregosin, *NMR in Organometallic Chemistry*, Wiley-VCH, 2012, pp 251–254.
- ⁵ E. Rémond, A. Tessier, F. R. Leroux, J. Bayardon and Sylvain Jugé, Org. Lett. 2010, **12**, 1568– 1571.
- ⁶ Q. Simpson, M. J. G. Sinclair, D. W. Lupton, A. B. Chaplin and J. F. Hooper. *Org. Lett.* 2018, **20**, 5537–5540.
- ⁷ C. B. Caputo and D. W. Stephan, *Organometallics*, 2012, **31**, 27–30.
- ⁸ A. Y. Jordan and T. Y. Meyer, *J. Organomet. Chem.*, 1999, **591**, 104–113
- ⁹ I. Behrends, S. Bähr and C. Czekelius, *Chem.–Eur. J.*, 2016, **22**, 17177–17181