Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supplementary Material

Novel oxaliplatin (IV) complexes conjugated with ligands bearing pendant 1,2dithiolane/1,2-diselenolane/cyclopentyl motifs

Xiao Liu^{[a]+}, Dominik Wenisch^{[b]+}, Marie-Christin Barth^[a], Klaudia Cseh^[b], Christian R. Kowol^[b], Michael A. Jakupec^[b],

Dan Gibson^{[c]*}, Bernhard K. Keppler^{[b]*}, Wolfgang Weigand^{[a]*}

 [a] Xiao Liu, Marie-Christin Barth, Prof. Dr. Wolfgang Weigand Institute for Inorganic and Analytical Chemistry, Friedrich Schiller Universität Jena, Humboldt Str. 8, 07743 Jena, Germany. E-mail: wolfgang.weigand@uni-jena.de

[b] Dominik Wenisch, Klaudia Cseh, Assoc. Prof. Dr. Christian R. Kowol, Dr. Michael A. Jakupec, Prof. Dr. Dr. Bernhard K. Keppler
Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna,
Währinger Strasse 42, 1090 Vienna, Austria
Email: <u>bernhard.keppler@univie.ac.at</u>
[c] Prof. Dr. Dan Gibson

Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 91120 (Israel) E-mail: <u>dang@ekmd.huji.ac.il</u>

[+] These authors contributed equally to this work.

Table of Contents

Part 1. Supplementary figures and schemes

Part 2. NMR spectra

Part 3. MS spectra

Part 4. Concentration-effect curves

Scheme S1. The systhesis route of ligands SeA and CpA. Reactants and conditions:(I) a: NaOH/H₂O-EtOH; 50 °C, 1.5 h; b: Na₂Se₂/H₂O-EtOH; 65 °C, 2 h; c: aq. HCl; 0 °C. (II) a: KNSi₂(CH₃)₆/anhydrous THF; reflux, 24h; b: H₂, 10% Pd/C,5% mol/DCM; r.t. 2days.

Figure S 1. The cyclic voltammograms of 1 mM ALA and SeA in 0.1 M DMF- [n-Bu₄N][PF₆] at a scan rate of 0.2 Vs⁻¹

Figure S 2. HPLC Chromatograms of complex 2 (a), 6 (b) and 10 (c) in DMSO-PBS (4:1; v:v) at 37 °C with different incubation times. Gradient: 30-95 % of acetonitrile in water (with 0.1 % formic acid).

(1a) 0h, 10eq AsA

				Pt(IV)							H2	Å Å	S-S	1	
1850	1750	1650	1550	1450	1350	1250	1150	[ppm]			H ₂	O O			
(1b) After 72h, 10eq AsA Pt(IV)							(1c) After 72h, 1	0eq AsA	Pt(II)						
1850	1750	1650	1550	1450	1350	1250	1150		-1500	-1900	-2300	-2700	-3100	-3500	[ppm]
(2a) 0h,	15eq As/	A Pt(IV)									Ha		3−5 8−5	2	
1850 (2b) Afte	1750 er 120h, 1	1650 5eq AsA	1550	1450	1350	1250	1150	[ppm]	(2c) After 120h,	15eq AsA	H ₂	0	\square		
		Pt(IV)	L						mannave	www.www.www	man within	magnaana	g-alphalaphalaphalaphalaphalaphalaphalaph	montene	www.webry
1850	1750	1650	1550	1450	1350	1250	1150	[ppm]	-1500	-1900	-2300	-2700	-3100	-3500	[ppm]
(3a) _{0h,} -	10eq AsA			Pt(IV)							Ha		Se-Se	5	
1850 (3b) Afte	1750 r 72h, 10	1650 eq AsA	1550	1450 Pt(IV)	1350	1250	1150	[ppm]	(3C) After 72h, 1	0eq AsA	n ₂	ы	Pt(I	I)	
1850	1750	1650	1550	1450	1350	1250	1150	[ppm]	-1500	-1900	-2300	-2700	-3100	(ppm]	····
(4a) 0h,	10eq AsA	Pt(IV)									H2		Se-Se	6	
1850 (4b) 72h	1750 , 10eq As	1650 SA Pt(IV)	1550	1450	1350	1250	1150	[ppm]	(4b) 72h, 10eq A	sA	M ₂	000	26-00		
1850	1750	1650	1550	1450	1350	1250	1150	(ppm]	-1500	-1900	-2300	-2700	-3100		- markan

[figure continued]

- [a] The spectra were recorded within two ranges (500 to 2500 ppm, typically for Pt^{IV} complexes) and (-1000 to -4000 ppm, typically for Pt^{II} complexes.
- [b] After addition of 10 eq of ascorbic acid, the pH of reaction solution was shifted from 7.4 to 7.2.

Figure S 4. UV-Vis absorption spectrum of complexes 2, 6 and 10 in octanol phase (pre-saturated with water) before (initial value, blue) and after (final value, red) mixing with water phase (pre-saturated with octanol).

Figure S 5. ¹H NMR (400MHz, 297 K, CDCl₃) spectrum of ALA-NHS.

Figure S 6. ¹³C{¹H} NMR (150MHz, 297 K, CDCl₃) spectrum of ALA-NHS.

Figure S 8. ⁷⁷Se{¹H} NMR (76 MHz, 297 K, CDCl₃) spectrum of SeA. (*J*_{Se-Se}= 190 Hz)

Figure S 9. ¹H NMR (400MHz, 297 K, CDCl₃) spectrum of SeA-NHS.

Figure S 10. ¹³C{¹H} NMR (100MHz, 297 K, CDCl₃) spectrum of SeA-NHS.

Figure S 11. ⁷⁷Se{¹H} NMR (76 MHz, 297 K, CDCl₃) spectrum of SeA-NHS.

Figure S 12. ¹H NMR (400MHz, 297 K, CDCl₃) spectrum of 5-cyclopenylidene-pentanoic acid.

Figure S 14. ¹³C{¹H} NMR (75MHz, 297 K, CDCl₃) spectrum of CpA.

Figure S 16. ¹³C{¹H} NMR (100MHz, 297 K, CDCl₃) spectrum of CpA-NHS.

Figure S 18. ¹³C{¹H} NMR (100MHz, 297 K, DMSO-d₆) spectrum of complex 1.

Figure S 19. ¹⁹⁵Pt{¹H} NMR (86MHz, 297 K, DMSO-d₆) spectrum of complex 1.

Figure S 20. ¹H NMR (400MHz, 297 K, DMSO-d₆) spectrum of complex 2.

- 10

101619133

900

23.

6

DMSO-de

-61 -56. 39.

 $\begin{pmatrix} 181. & 0\\ 180. & 9 \end{pmatrix}$

-163.3

Figure S 22. ¹⁹⁵Pt{¹H} NMR (86MHz, 297 K, DMSO-d₆) spectrum of complex 2.

Figure S 24. ¹³C{¹H} NMR (100MHz, 297 K, CD₂Cl₂) spectrum of complex 3.

Figure S 25. ¹⁹⁵Pt{¹H} NMR (86MHz, 297 K, CD₂Cl₂) spectrum of complex 3.

Figure S 26. ¹H NMR (400MHz, 297 K, DMSO-d₆) spectrum of complex 4.

Figure S 27. ¹³C{¹H} NMR (100MHz, 297 K, DMSO-d₆) spectrum of complex 4.

Figure S 28. ¹⁹⁵Pt{¹H} NMR (86MHz, 297 K, DMSO-d₆) spectrum of complex 4.

Figure S 29. ¹H NMR (400MHz, 297 K, DMSO-d₆) spectrum of complex 5.

Figure S 30. ¹³C{¹H} NMR (100MHz, 297 K, DMSO-d₆) spectrum of complex 5.

Figure S 32. ¹⁹⁵Pt{¹H} NMR (86MHz, 297 K, DMSO-d₆) spectrum of complex 5.

Figure S 31. ⁷⁷Se{¹H} NMR (76MHz, 297 K, DMSO-d₆) spectrum of complex 5.

f1 (ppm)

Figure S 33. ¹H NMR (400MHz, 297 K, DMSO-d₆) spectrum of complex 6.

Figure S 34. ¹³C NMR{¹H} (125MHz, 297 K, DMSO-d₆) spectrum of complex 6.

Figure S 35. ¹⁹⁵Pt{¹H} NMR (86MHz, 297 K, DMSO-d₆) spectrum of complex 6.

Figure S 36. ⁷⁷Se{¹H} NMR (76MHz, 297 K, DMSO-d₆) spectrum of complex 6.

Figure S 37. ¹H NMR (400MHz, 297 K, CD₂Cl₂) spectrum of complex 7.

Figure S 38. ¹³C{¹H} NMR (100MHz, 297 K, CD₂Cl₂) spectrum of complex 7.

Figure S 39. ⁷⁷Se{¹H} NMR (76MHz, 297 K, CD₂Cl₂) spectrum of complex 7.

Figure S 40. ¹⁹⁵Pt{¹H} NMR (86MHz, 297 K, CD₂Cl₂) spectrum of complex 7.

Figure S 42. ¹³C{¹H} NMR (100MHz, 297 K, CD₂Cl₂) spectrum of complex 8.

Figure S 43. ⁷⁷Se{¹H} NMR (76MHz, 297 K, CD₂Cl₂) spectrum of complex 8.

Figure S 44. ¹⁹⁵Pt{¹H} NMR (86MHz, 297 K, CD₂Cl₂) spectrum of complex 8.

Figure S 45. ¹H NMR (400MHz, 297 K, DMSO-d₆) spectrum of complex 9.

Figure S 46. ¹³C{¹H} NMR (100MHz, 297 K, DMSO-d₆) spectrum of complex 9.

Figure S 47. ¹⁹⁵Pt{¹H} NMR (86MHz, 297 K, DMSO-d₆) spectrum of complex 9.

Figure S 48. ¹H NMR (400MHz, 297 K, CDCl₃) spectrum of complex 10.

Figure S 49. ¹³C{¹H} NMR (100MHz, 297 K, CDCl₃) spectrum of complex 10.

Figure S 50. ¹⁹⁵Pt{¹H} NMR (86MHz, 297 K, CDCl₃) spectrum of complex 10.

Figure S 52. ¹³C{¹H} NMR (100MHz, 297 K, CDCl₃) spectrum of complex 11.

Figure S 53. ¹⁹⁵Pt{¹H} NMR (86MHz, 297 K, CDCl₃) spectrum of complex 11.

Figure S 54. ¹H NMR (600MHz, 297 K, CDCl₃) spectrum of complex 12.

Figure S 55. ¹³C{¹H} NMR (150MHz, 297 K, CDCl₃) spectrum of complex 12.

Figure S 56. ¹⁹⁵Pt{¹H} NMR (86MHz, 297 K, CDCl₃) spectrum of complex 12.

Part 3. MS spectra

Retention Time: 1.948

Figure S 57. ESI (+)-MS spectrum of complex 1. The insets show the theoretical isotope patterns [M+H]⁺.

Figure S 58. ESI (+)-MS spectrum of complex 2. The insets show the theoretical isotope patterns (a) [M+H]⁺ and (b) [M+Na]⁺.

Ion Mode: Positive

Figure S 59. ESI (+)-MS spectrum of complex 3. The insets show the theoretical isotope patterns [M+H]⁺.

Retention Time: 1.479

Ion Mode: Positive

Figure S 60. ESI (+)-MS spectrum of complex 4. The insets show the theoretical isotope patterns [M+H]⁺.

 $[M+H]^+$

Figure S 61. ESI (+)-MS spectrum of complex 5. The insets show the theoretical isotope patterns (a) [M+H]⁺ and (b) [M+Na]⁺.

Figure S 62. ESI (-)-MS spectrum of complex 6. The insets show the theoretical isotope patterns [M-H]⁻.

Ion Mode: Positive

Figure S 63. ESI (+)-MS spectrum of complex 7. The insets show the theoretical isotope patterns (a) [M+H]⁺ and (b) [M+NH₄]⁺.

Retention Time: 1.079

Ion Mode: Positive

Figure S 64. ESI (+)-MS spectrum of complex 8. The insets show the theoretical isotope patterns (a) [M+H]⁺ and (b) [M+Na]⁺.

Ion Mode: ESI-

Retention Time: 0.009

Figure S 65. ESI (-)-MS spectrum of complex 9. The insets show the theoretical isotope patterns [M-H]⁻.

Figure S 66. ESI (-)-MS spectrum of complex 10. The insets show the theoretical isotope patterns [M-H]⁻.

Figure S 67. ESI (-)-MS spectrum of complex 11. The insets show the theoretical isotope patterns [M-H]⁻.

Figure S 68. ESI (-)-MS spectrum of complex 12. The insets show the theoretical isotope patterns [M-H]⁻.

Ion Mode: Negative

Figure S 69. ESI (+)-MS spectrum of complex 12. The insets show the theoretical isotope patterns (a) [M+H]⁺ and (b) [M+Na]⁺.

Part 4. Concentration-effect curves

Figure S 70. Concentration–effect curves of oxaPt(ALA)(L) complexes (denoted by the varied ligand L in the legend) in comparison to oxaliplatin in A549 (top), CH1/PA-1 (middle) and SW480 (bottom) cells, based on 96-h MTT assays.

Figure S 71. Concentration–effect curves of oxaPt(SeA)(L) complexes (denoted by the varied ligand L in the legend) in comparison to oxaliplatin in A549 (top), CH1/PA-1 (middle) and SW480 (bottom) cells, based on 96-h MTT assays.

Figure S 72. Concentration–effect curves of oxaPt(CpA)(L) complexes (denoted by the varied ligand L in the legend) in comparison to oxaliplatin in A549 (top), CH1/PA-1 (middle) and SW480 (bottom) cells, based on 96-h MTT assays.