Non-redox reactivity of V(II) and Fe(II) formamidinates towards CO₂ resulting in the formation of novel M(II) carbamates

Krzesimir Korona,^a Arkadiusz Kornowicz,^b Iwona Justyniak,^b Michał Terlecki,^a Artur Błachowski,^c and Janusz Lewiński^{a,b}*

^a Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland ^b Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

^c AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland

*lewin@ch.pw.edu.pl

Table of contents

1.	Fourier-Transform Infrared attenuated total reflectance (FTIR-ATR) data for 1-6			
2.	¹ H N	IMR spectra for 4-6	6	
3.	X-Ra	ay crystallographic data	9	
3	8.1.	Complex 1	9	
3	8.2.	Complex 2	11	
3	8.3.	Complex 3	13	
3	8.4.	Complex 4	15	
3	8.5.	Complex 5	18	
3	8.6.	Complex 6	21	
4.	Ana	lysis of coordination sphere geometry for 1-6	23	
5.	TGA	measurement and analysis for compound 6.	25	
6.	References25			

1. Fourier-Transform Infrared attenuated total reflectance (FTIR-ATR) data for 1-6

Fig. S1. FTIR spectrum of 1 shown in a range of 2000-400 $\mbox{cm}^{-1}.$

Fig. S2. FTIR spectrum of 2 shown in a range of 2000-400 cm $^{\text{-}1}$.

Fig. S3. FTIR spectrum of 3 shown in a range of 2000-400 cm⁻¹.

Fig. S4. FTIR spectrum of 4 shown in a range of 2000-400 cm⁻¹.

Fig. S5. FTIR spectrum of 5 shown in a range of 2000-400 $\rm cm^{-1}.$

Fig. S6. FTIR spectrum of 6 shown in a range of 2000-400 cm⁻¹.

2. ¹H NMR spectra for 4-6.

Fig. S7. ¹H NMR spectrum of **1** in THF-*d*₈. The signals from solvent residuals are marked by asterisks.

Fig. S8. ¹H NMR spectrum of 2 in THF-*d*₈. The signals from solvent residuals are marked by asterisks.

Fig. S9. ¹H NMR spectrum of **3** in toluene-*d*₈. The signals from solvent residuals are marked by asterisks.

Fig. S10. ¹H NMR spectrum of **4** in THF-*d*₈. The signals from solvent residuals are marked by asterisks.

Fig. S11. ¹H NMR spectrum of 5 in THF-*d*₈. The signals from solvent residuals are marked by asterisks.

Fig. S12. ¹H NMR spectrum of 6 in toluene-d₈. The signals from solvent residuals are marked by asterisks.

3. X-Ray crystallographic data

3.1. Complex 1

 Table S1. Crystal data and structure refinement for 1 (CCDC- 2175762).

Empirical formula	C ₃₈ H ₄₆ N ₄ O ₂ V		
Formula weight	641.73		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.479(5) Å	α = 108.573(5)°.	
	b = 12.620(5) Å	β = 92.537(5)°.	
	c = 15.960(5) Å	γ = 107.338(5)°.	
Volume	1707.0(12) Å ³		
Z	2		
Density (calculated)	1.249 Mg/m ³		
Absorption coefficient	0.329 mm ⁻¹		
F(000)	682		
Crystal size	0.18 x 0.11 x 0.07 mm ³		
Theta range for data collection	2.278 to 26.994°.		
Index ranges	-11<=h<=12, -13<=k<=15, -20<	= <=18	
Reflections collected	13170		
Independent reflections	7355 [R(int) = 0.0220]		
Completeness to theta = 25.242°	99.9 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	7355 / 0 / 412		
Goodness-of-fit on F ²	1.039		
Final R indices [I>2sigma(I)]	$R_1^a = 0.0376, wR_2^b = 0.0867$		
R indices (all data)	R1 = 0.0462, wR2 = 0.0926		
Largest diff. peak and hole	0.436 and -0.303 e.Å ⁻³		

 ${}^{o}R1 = \Sigma ||Fo| - |Fc||/\Sigma |Fo|. \quad {}^{b}wR2 = [\Sigma w (Fo^{2} - Fc^{2})^{2} / \Sigma w (Fo^{2})^{2}]^{1/2}$

Fig. S13. The molecular structure of **1** with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (-x+1, -y+1, -z+2), (x, -y+1, -z+1).

V1-N1	2.1953(13)	N1-V1-N2	61.23(5)
V1-N2	2.1933(14)	N1-V1-O1	87.70(5)
V1-01	2.1352(14)	N2-V1-O1	90.17(5)
N1-C1	1.324(2)	N1-V1-N1'	180.00(7)
N1-C2	1.4013(19)	N1-V1-N2'	118.77(5)
N2-C1	1.322(2)	N2-V1-N2'	180.00(7)
N2-C9	1.4039(19)	N2-V1-N1′	118.77(5)

Table S2. Selected intermolecular bond lengths [Å] and angles [°] for 1.

3.2. Complex 2

Empirical formula	$C_{54}H_{78}N_4OV_2$	
Formula weight	850.19	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	<i>P</i> 2 ₁ /n	
Unit cell dimensions	a = 15.2867(3) Å	α = 90°.
	b = 14.7719(2) Å	β = 107.502(2)°.
	c = 25.4469(4) Å	γ = 90°.
Volume	5480.24(17) Å ³	
Z	4	
Density (calculated)	1.0304 Mg/m ³	
Absorption coefficient	0.218 mm ⁻¹	
F(000)	1846	
Crystal size	0.19 x 0.13 x 0.05 mm	3
Theta range for data collection	2.17 to 26.497°.	
Index ranges	-20<=h<=16, -20<=k<=	=19, -35<=l<=35
Reflections collected	49808	
Independent reflections	11308 [R(int) = 0.0257	']
Completeness to theta = 25.242°	99.9 %	
Data / restraints / parameters	11308 / 0 / 557	
Goodness-of-fit on F ²	0.8625	
Final R indices [I>2sigma(I)]	$R_1 = 0.0388, wR_2 = 0.1$	132
R indices (all data)	$R_1 = 0.0461, wR_2 = 0.1$	218
Largest diff. peak and hole	0.552 and -0.310 e.Å ⁻³	

Table S3. Crystal data and structure refinement for 2 (CCDC-2161489).

Fig. S14. The molecular structure of **2** with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity.

V1-01	2.1242(11)	01-V1-N1	90.10(5)
V1-N1	2.1601(12)	01-V1-N2	126.97(5)
V1-N2	2.1332(12)	01-V1-N3	92.24(5)
V1-N3	2.1638(12)	01-V1-N4	91.36(5)
V1-N4	2.1628(11)	N1-V1-N2	63.36(4)
N1-C5	1.4209(17)	N1-V1-N3	117.06(5)
N1-C17	1.3176(18)	N1-V1-N4	178.45(4)
N2-C17	1.3371(18)	N2-V1-N3	140.26(5)
N2-C18	1.4277(17)	N2-V1-N4	116.03(4)
N3-C30	1.4276(18)	N3-V1-N4	62.37(4)
N3-C42	1.3257(18)		
N4-C42	1.3210(18)		
N4-C43	1.4190(17)		

Fable S4. Selected intermolecular bond lengths [Å] and angles [°] for 2.

3.3. Complex 3

Table S5. Crystal data and structure refinemer	nt for 3 (CCDC-2161490).			
Formula weight	782.95			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P21			
Unit cell dimensions	a = 12.2223(8) Å	α = 90°.		
	b = 16.0549(9) Å	β = 107.628(7)°.		
	c = 12.3894(9) Å	γ = 90°.		
Volume	2317.0(3) Å ³			
Z	2			
Density (calculated)	1.122 Mg/m ³			
Absorption coefficient	0.361 mm ⁻¹			
F(000)	848			
Crystal size	0.14 x 0.09 x 0.03 mm	3		
Theta range for data collection	2.411 to 26.999°.			
Index ranges	-15<=h<=14, -19<=k<=	=19, -15<=l<=15		
Reflections collected	11640			
Independent reflections	7617 [R(int) = 0.0324]			
Completeness to theta = 25.242°	99.8 %			
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²		
Data / restraints / parameters	7617 / 19 / 516			
Goodness-of-fit on F ²	1.034			
Final R indices [I>2sigma(I)]	$R_1^{a} = 0.0674, w R_2^{b} = 0$	$R_1^a = 0.0674, wR_2^b = 0.1686$		
R indices (all data)	$R_1 = 0.0730, wR_2 = 0.$	1759		
Largest diff. peak and hole	1.493 and -0.718 e.Å ^{-;}	3		

 o R1 = $\Sigma ||Fo| - |Fc||/\Sigma |Fo|$. b wR2 = $[\Sigma w(Fo^{2} - Fc^{2})^{2}/\Sigma w(Fo^{2})^{2}]^{1/2}$

Fig. S15. The molecular structure of **3** with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity.

Table S6. Selected	intermolecular	bond lengths	[Å] an	d angles	°] for 3 .
--------------------	----------------	--------------	--------	----------	-------------------

Fe1-N1	2.054(6)	N1-Fe1-N2	66.2(2)
Fe1-N2	2.034(5)	N1-Fe1-N3	117.2(2)
Fe1-N3	2.047(6)	N1-Fe1-N4	159.3(2)
Fe1-N4	2.044(6)	N2-Fe1-N3	158.9(2)
N1-C1	1.426(10)	N2-Fe1-N4	119.0(2)
N1-C13	1.325(9)	N3-Fe1-N4	66.0(2)
N2-C13	1.323(9)		
N2-C14	1.435(8)		
N3-C26	1.426(8)		
N3-C36	1.343(9)		
N4-C36	1.309(9)		
N4-C37	1.424(9)		

3.4. Complex 4

Table 57. Crystal data and structure remiement for	4 (CCDC-2101491).		
Empirical formula	$C_{229}H_{324}N_{16}O_{20}V_4$		
Formula weight	3824.78		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>P</i> 2 ₁ /n		
Unit cell dimensions	a = 15.3254(4) Å	α = 90°.	
	b = 48.4643(15) Å	$\beta = 90.021(2)^{\circ}.$	
	c = 15.4889(2) Å	γ = 90°.	
Volume	11504.1(5) Å ³		
Z	2		
Density (calculated)	1.104 Mg/m ³		
Absorption coefficient	0.219 mm ⁻¹		
F(000)	4124		
Crystal size	0.18 x 0.11 x 0.07 mm ³		
Theta range for data collection	2.479 to 26.499°.		
Index ranges	-12<=h<=16, -60<=k<=36, -1	9<= <=5	
Reflections collected	25402		
Independent reflections	18423 [R(int) = 0.0285]		
Completeness to theta = 25.242°	77.2 %		
Refinement method	Full-matrix least-squares on	F2	
Data / restraints / parameters	18423 / 36 / 1305		
Goodness-of-fit on F ²	1.108		
Final R indices [I>2sigma(I)]	$R_1^{a} = 0.0723, wR_2^{b} = 0.1644$		
R indices (all data)	R ₁ = 0.0930, <i>wR</i> ₂ = 0.1759		
Largest diff. peak and hole	0.621 and -0.452 e.Å ⁻³		

Table S7. Crystal data and structure refinement for 4 (CCDC-2161491).

 ${}^{a}R1 = \Sigma ||Fo| - |Fc||/\Sigma |Fo|. \quad {}^{b}wR2 = [\Sigma w (Fo^{2} - Fc^{2})^{2} / \Sigma w (Fo^{2})^{2}]^{1/2}$

Fig. S16. The molecular structure of **4** with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity.

V1-01	2.168(2)	01-V1-02	61.60(9)
V1-02	2.126(2)	01-V1-O3	86.75(9)
V1-03	2.177(2)	01-V1-O4	114.72(9)
V1-04	2.203(2)	01-V1-O6	94.26(8)
V1-06	2.146(2)	01-V1-O9	157.55(10)
V1-09	2.087(2)	02-V1-03	90.70(10)
V2-O4	2.214(2)	02-V1-O4	176.07(9)
V2-05	2.153(2)	02-V1-06	99.10(9)
V2-08	2.093(2)	O2-V1-O9	96.34(10)
V2-N6	2.102(3)	03-V1-04	90.42(9)
		O3-V1-O6	169.36(10)
		03-V1-09	89.58(9)
		O4-V1-O6	79.53(8)
		O4-V1-O9	87.43(9)

Table S8. Selected intermolecular bond lengths [Å] and angles [°] for 4.

06-V1-09	93.40(9)
04-V2-05	60.90(9)
O4-V2-O8	102.50(9)
04-V2-010	92.64(8)
O4-V2-N6	155.42(9)
05-V2-08	163.01(9)
05-V2-010	89.28(9)
O5-V2-N6	98.82(10)
06-V2-04	81.06(8)
06-V2-05	91.39(9)
06-V2-08	89.25(9)
06-V2-010	172.36(9)
O6-V2-N6	86.07(9)
08-V2-010	87.90(9)
O8-V2-N6	98.16(11)

3.5. Complex 5

Empirical formula	$C_{221}H_{304}Fe_4N_{16}O_{14}$		
Formula weight	3632.18		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>P</i> 2 ₁ /n		
Unit cell dimensions	a = 14.00932(15) Å	α = 90°.	
	b = 64.6462(8) Å	$\beta = 92.0129(11)$ °.	
	c = 25.1469(3) Å	γ = 90°.	
Volume	22760.2(5) Å ³		
Z	4		
Density (calculated)	1.060 Mg/m ³		
Absorption coefficient	0.307 mm ⁻¹		
F(000)	7832		
Crystal size	021 x 0.13 x 0.07 mm ³		
Theta range for data collection	2.350 to 28.249 °.		
Index ranges	-17<=h<=18, -85<=k<=43	, -33<=l<=27	
Reflections collected	96823		
Independent reflections	50059 [R(int) = 0.0405]		
Completeness to theta = 25.242°	99.7 %		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	50059 / 87 / 2387		
Goodness-of-fit on F ²	1.072		
Final R indices [I>2sigma(I)]	$R_1^a = 0.0755, wR_2^b = 0.14$	11	
R indices (all data)	$R_1 = 0.0965, wR_2 = 0.1490$	D	
Largest diff. peak and hole	0.824 and -0.857 e.Å ⁻³		

 Table S9. Crystal data and structure refinement for 5 (CCDC- 2161492).

 ${}^{a}R1 = \Sigma ||Fo| - |Fc||/\Sigma |Fo|. \quad {}^{b}wR2 = [\Sigma w(Fo^{2} - Fc^{2})^{2}/\Sigma w(Fo^{2})^{2}]^{1/2}$

Fig. S17. The molecular structure of **5** with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity.

Fe1-01	2.0463(19)	01-Fe1-O2	61.11(7)
Fe1-O2	2.273(2)	01-Fe1-O3	116.57(8)
Fe1-O3	2.047(2)	01-Fe1-05	89.83(8)
Fe1-O5	2.111(2)	O1-Fe1-N7	125.58(9)
Fe1-N7	2.065(3)	O2-Fe1-O3	89.32(8)
Fe2-O4	1.986(2)	02-Fe1-05	149.79(7)
Fe2-O6	2.0227(19)	O2-Fe1-N7	100.82(8)
Fe2-07	2.090(2)	03-Fe1-05	97.48(8)
Fe2-N8	1.993(2)	O3-Fe1-N7	113.70(8)
		05-Fe1-N7	103.19(9)

 Table S10.
 Selected intermolecular bond lengths [Å] and angles [°] for 5.

04-Fe2-O6	105.59(9)
04-Fe2-07	86.71(8)
O4-Fe2-N8	120.12(9)
06-Fe2-07	101.22(8)
O6-Fe2-N8	128.10(9)
07-Fe2-N8	104.44(9)

3.6. Complex 6

Empirical formula	$C_{141}H_{204}Fe_2N_{10}O_8\\$		
Formula weight	2278.94		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>P</i> 2 ₁ /n		
Unit cell dimensions	a = 21.550(5) Å	$\alpha=90.000(5)^\circ.$	
	b = 29.745(5) Å	$\beta=92.430(5)^\circ.$	
	c = 22.858(5) Å	$\gamma = 90.000(5)^{\circ}.$	
Volume	14639(5) Å ³		
Z	4		
Density (calculated)	1.034 Mg/m ³		
Absorption coefficient	0.251 mm ⁻¹		
F(000)	4944		
Crystal size	0.16 x 0.11 x 0.08 mm ³		
Theta range for data collection	2.410 to 26.500°.		
Index ranges	-27<=h<=19, -27<=k<=37, -1	8<=l<=28	
Reflections collected	256608		
Independent reflections	30281 [R(int) = 0.0577]		
Completeness to theta = 25.242°	99.8 %		
Data / restraints / parameters	30281 / 92 / 1494		
Goodness-of-fit on F ²	1.0676		
Final R indices [I>2sigma(I)]	$R_1 = 0.0516$, $wR_2 = 0.1198$		
R indices (all data)	$R_1 = 0.0736, wR_2 = 0.1356$		
Largest diff. peak and hole	0.5997and - 0.6588 e.Å ⁻³		

Fig. S18. The molecular structure of **6** with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity.

Fe1-02	2.0069(15)	02-Fe1-O4	99.72(6)
Fe1-O4	2.0242(15)	O2-Fe1-O6	92.94(6)
Fe1-O6	2.0555(15)	02-Fe1-07	100.42(6)
Fe1-07	2.1708(16)	O2-Fe1-O8	131.32(6)
Fe1-08	2.0721(15)	O4-Fe1-O6	96.76(6)
Fe2-01	1.9964(15)	04-Fe1-07	97.93(6)
Fe2-O3	1.9916(15)	O4-Fe1-O8	126.47(6)
Fe2-O5	2.0055(15)	06-Fe1-07	158.14(6)
Fe2-N1	2.0691(17)	06-Fe1-08	95.64(6)
		07-Fe1-08	62.55(6)
		01-Fe2-O3	104.05(6)
		01-Fe2-05	122.80(6)

 Table S12.
 Selected intermolecular bond lengths [Å] and angles [°] for 6.

O1-Fe2-N1	93.48(6)
03-Fe2-05	106.97(6)
O3-Fe2-N1	119.67(7)
O5-Fe2-N1	110.32(6)

4. Analysis of coordination sphere geometry for 1-6

Table S13. Analysis of the coordination sphere geometry of V(II) centre in **1** using the continuous shape measurement (CShM).

		SHAPE (CShM)*					
N C(∕letal entre	Hexagon (D _{6h})	Pentagonal pyramid (C _{5v})	Octahedron (O _h)	Trigonal prism (D _{3h})	Johnson pentagonal pyramid J2 (C _{5v})	
	V1	23.080	26.938	4.223	16.668	29.107	
	V2	23.158	26.734	4.074	16.815	28.814	

* lower values indicate better fit to given geometry 1-3

Table S14. Analysis of the coordination sphere geometry of V(II) centre in **2** using the continuous shape measurement (CShM).

	SHAPE (CShM)*					
Metal centre	Pentagon (D _{5h})	Vacant octahedron (C _{4v})	Trigonal bipyramid (D _{3h})	Spherical square pyramid (C _{4v})	Johnson trigonal bipyramid J12 (D _{3h})	
V1	22.954	8.813	6.640	8.164	8.808	

* lower values indicate better fit to given geometry 1-3

Table S15. Analysis of the coordination sphere geometry of Fe(II) centre in **3** using the continuous shape measurement (CShM).

	SHAPE (CShM)*				
Metal centre	Square (D _{4h})	Tetrahedron (T _d)	Seesaw (C _{2v})	Vacant trigonal bipyramid (C₃v)	
Fe1	8.524	21.609	13.665	23.868	

* lower values indicate better fit to given geometry₁₋₃

Table S16. Analysis of the coordination sphere geometry of V(II) centres in **4** using the continuous shape measurement (CShM).

	SHAPE (CShM)*					
Metal centre	Hexagon (D _{6h})	Pentagonal pyramid (C _{5v})	Octahedron (O _h)	Trigonal prism (D _{3h})	Johnson pentagonal pyramid J2 (C _{5v})	
V1	27.386	21.592	2.860	12.613	24.988	
V2	30.275	21.362	2.310	13.081	25.677	

* lower values indicate better fit to given geometry₁₋₃

Table S17. Analysis of the coordination sphere geometry of Fe(II) centres in **5** using the continuous shape measurement (CShM).

	SHAPE (CShM)*				
Metal centre	Pentagon (D _{5h})	Vacant octahedron (C4v)	Trigonal bipyramid (D _{3h})	Spherical square pyramid (C _{4v})	Johnson trigonal bipyramid J12 (D _{3h})
Fe1	31.151	7.552	3.112	4.531	5.322
Fe3	30.067	7.081	3.550	3.728	5.877
	Square (D _{4h})	Tetrahedron (T _d)	Seesaw (C _{2v})	Vacant trigonal bipyramid (C _{3v})	
Fe2	31.258	1.868	6.826	1.554	
Fe4	32.995	1.575	6.228	1.254	

* lower values indicate better fit to given geometry₁₋₃

Table S18. Analysis of the coordination sphere geometry of Fe(II) centres in **6** using the continuous shape measurement (CShM).

	SHAPE (CShM)*				
Metal centre	Pentagon (D _{5h})	Vacant octahedron (C _{4v})	Trigonal bipyramid (D _{3h})	Spherical square pyramid (C _{4v})	Johnson trigonal bipyramid J12 (D _{3h})
Fe1	27.815	6.303	3.683	4.602	5.964
	Square (D _{4h})	Tetrahedron (T _d)	Seesaw (C _{2v})	Vacant trigonal bipyramid (C₃v)	
Fe2	24.047	1.439	6.591	3.677	

* lower values indicate better fit to given geometry₁₋₃

5. TGA measurement and analysis for compound 6.

Fig. S19. TGA measurement data and analysis for 6.

6. References

- 1 H. Zabrodsky, S. Peleg and D. Avnir, J. Am. Chem. Soc., 1992, 114, 7843–7851.
- 2 M. Pinsky and D. Avnir, *Inorg. Chem.*, 1998, **37**, 5575–5582.
- 3 M. LLunell, D. Casanova, J. Cierera, P. Alemany and S. Alvarez, SHAPE, v. 2.1.