Ultrasensitive detection of mercury (II) in aqueous solution via spontaneous precipitation of CsPbBr$_3$ crystallites

Wenjing Jiang,a,b Yi Xu,a,b Li Wang,*,a,b Li Chen,a,b and Shunbo Li,*,a,b

a. Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China. Email: shunbo.li@cqu.edu.cn (S. Li) and wangliyu@cqu.edu.cn (L. Wang)

b. International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China.

Fig. S1 The UV-vis spectra of the prepared CsPbBr$_3$ crystals with and without presence of mercury ion on the left, and the photoluminescence of CsPbBr$_3$ crystals with and without presence of mercury ion on the right.
Fig. S2 (A) The photoluminescent spectra of CsPbBr$_3$ precipitated from DI water (black curve), solution with interfering ions (red curve) and mixed solution with interfering ions and 0.1 μM Hg$^{2+}$ (blue curve); (B) The fluorescent intensity changes (I/I_0) of CsPbBr$_3$ precipitated from DI water (blank), solution with interfering ions and mixed solution with interfering ions and 0.1 μM Hg$^{2+}$. The interfering ions include Ni$^{2+}$, Mg$^{2+}$, Ca$^{2+}$, Co$^{2+}$, Cu$^{2+}$, Pb$^{2+}$, Cd$^{2+}$, Mn$^{2+}$, Fe$^{2+}$, Al$^{3+}$ and K$^+$ with concentration of 1 μM for each. I_0 is the peak intensity for blank sample. The emission spectra were measured four times for each condition.