Supporting Information

Improved photo-redox activity of 2D Bi₄Ti₃O₁₂-BiVO₄-Bi₄V₂O₁₀

heterostructure via piezoelectric-enhanced charge transfer effect

- Wuyou Wang ‡^{a,*}, Kai Zhu ‡^{a,e}, Beibei Zhang ^a, Xiaowei Chen ^b, Dongqi Ma ^a, Xuewen Wang ^d, Rongbin Zhang ^d, Yin Liu ^e, Jinxin Shen ^a, Pengyu Dong ^{c,*}, Xinguo Xi ^{b,c,*}
- a. School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
- b. School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
- c. Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
- d. Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the College of Chemistry, Nanchang University, Nanchang 330031, PR China
- e. School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, PR China

*Corresponding author Email: <u>wangwuyou@ycit.edu.cn</u>; <u>dongpy11@gmail.com</u>; <u>xxg@ycit.cn</u>

Characterization

The crystal structures of BTO, BVO, and BTO/BVO heterostructures were identified via an X-ray diffractometer (XRD, X'Pert3Powder) with Cu K_{α} irradiation. Raman spectroscopy (LEICA DM 2700 M) was carried out to elucidate the local structure and bonding states from the vibrational spectra. Scanning electron microscopy (SEM) images and EDX-Mapping were carried out on Nova NanoSEM 450 equipped with an energy-dispersive X-ray Spectrometer (AZtec X-MaxN80) to study the surface morphology and element distribution. Transmission electron microscopy (TEM, JEM-1400plus) was used to further explore the micromorphology and lattice planes. X-ray photoelectron spectroscopic (XPS) analysis was performed over an ESCALAB 250Xi spectrometer to manifest elements chemical status. UV-vis diffuse reflection spectroscopy was characterized by a Shimadzu UV-vis 3600 spectrometer to evaluate the optical absorption performance. The separation efficiency of photoexcited carriers was analyzed by steady-state photoluminescence (PL) emission spectra (JASCO FP-6500) and time-resolved PL decay spectra (FL1000). The light intensity was measured by a power meter (Newport, model: 843-R). The electron spin resonance (ESR) measurements were depicted on a Bruker ER200-SRC under UV–vis illumination to detect radical $\bullet O_2^-$ and radical $\bullet OH$.

Fig. S1 XRD images of BTO/BVO-20 heterostructures.

Fig. S2 Raman spectra of BTO/BVO-20 heterostructures.

Fig. S3 SEM images of samples: (a, b) BTO, (c, d) BVO, (e, f) BTO/BVO-0.5, and (g, h) BTO/BVO-8.

Fig. S4 XPS survey spectrum of BVO and the BTO/BVO-3 heterostructure.

Fig. S5 Tauc plots (b) of BiVO₄, BVO, BTO, and the BTO/BVO-3 heterostructures.

Fig. S6 The removal ratio of Cr(VI) using BTO, BVO, and BTO/BVO heterostructures under piezo-catalysis.

Fig. S7 The photo-reducing reaction kinetics of Cr(VI) solution: (a) under simulated solar light irradiation and (b) under both ultrasonic vibrations and simulated solar light irradiation using BTO, BVO, and BTO/BVO heterostructures.

Fig. S8 The cycling performance for piezo-photocatalytic Cr(VI) reduction using the BTO/BVO-3 heterostructure.

Fig. S9 ESR spectra of (a) DMPO- \bullet O₂⁻ and (b) DMPO- \bullet OH signals at dark over BiVO₄, BVO, and the BTO/BVO-3 heterostructure.