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Figure S1. Molecular structure of H2PPDA

Figure S2. The XRD patterns of as-prepared ZIF-67 and H-ZIF-67 samples.
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Figure S3. The SEM image of as-prepared ZIF-67 sample.

Figure S4. FTIR spectras of as-formed ZIF-67 and H-ZIF-67 samples.

The peak at 425 cm−1 is due to the Co-N vibrations. The bands at 693 and 753 cm−1 in 
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the spectral region are associated with out-of-plane bending of the imidazole ring, while 

peaks in the region of between 900 and 1350 cm−1 are assigned as in-plane bending. 

The peaks at 1593 and 1629 cm−1 are attributed to the stretching and bending N–H 

vibration of the imidazole ring, respectively. The intense and convoluted bands at 

1350–1500 cm−1 are associated with the entire ring stretching, whereas two peaks at 

2922 and 3131 cm−1 are attributed to the aliphatic and the aromatic C–H stretch of the 

imidazole, broad peak at 3400 cm−1 corresponds to the N-H stretching vibrations of 2-

methylimidazole.

Figure S5. 13C NMR spectra of ZIF-67 and H-ZIF-67 powders.
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Figure S6. The SEM image of as-prepared H-ZIF-67 sample.

Figure S7. The EDS element mapping of as-prepared H-ZIF-67 sample.
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Figure S8. The selected area electron diffraction (SAED) pattern of a single cage.

Figure S9. XPS survey scan of Co@HNCs (600) catalyst.
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Figure S10. (a) N2 adsorption–desorption isotherms and (b) the corresponding pore 
distribution of ZIF-67 and H-ZIF-67 samples.

Figure S11. The corresponding pore distribution of Co@HNCs (500), Co@HNCs 

(600) and Co@HNCs (700) catalyst.
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Figure S12. Electrochemical impedance spectroscopy (EIS) plots of Co@HNCs (500), 
Co@HNCs (600), Co@HNCs (700) electrodes at 0.87 V (vs. RHE) for ORR and the 
equivalent circuit (Rs: ohm resistance, Rct: charge transfer resistance, Cd: capacity)

Figure S13. (a) LSV at different rotating speed in O2-saturated 0.1 M KOH solution of 
Co@HNCs (600) and (b) The corresponding Koutecky-Levich (K-L) plots of j-1 vs ω-

1/2 at different potentials derived from the LSV data.
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Figure S14. H2O2 yield and electron transfer number for Co@HNCs (600) and Pt/C 
sample.

Figure S15. LSV curves for Co@HNCs (600) sample before and after 20000 cycles.
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Figure S16. (a) XRD pattern, (b)SEM image, (c)and element mapping of Co@HNCs 
(600) after ORR

Figure S17. Methanol crossover resistance test of Co@HNCs (600) and Pt/C catalysts.
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Figure S18. Electrochemical impedance spectroscopy (EIS) plots of Co@HNCs (500), 
Co@HNCs (600), Co@HNCs (700) electrodes at 1.6 V (vs. RHE) for OER and the 
equivalent circuit (Rs: ohm resistance, Rct: charge transfer resistance, Cd: capacity)

Figure S19. Cyclic voltammograms curves for (a) Co@HNCs (500), (b) Co@HNCs 
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(600) and (c) Co@HNCs (700) in the region of 1.223 ~1.323 V vs. RHE at various scan 
rates. (d) The differences in current density variation (Δj= ja-jc) at the potential of 1.273 
V vs. RHE plotted against scan rate fitted to estimate the electrochemical double-layer 
capacitances (Cdl).

Figure S20. OER endurance test of Co@HNCs (600) catalyst in 1 M KOH.

Figure S21. Bifunctional polarization profiles for various catalysts.
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Figure S22. Open-circuit plots of Zn−air batteries using Co@HNCs (600) and 
commercial Pt/C+RuO2 as the cathodic catalysts (insert shows the visual photographic 
image of OCV of Co@HNCs (600)-based Zn−air battery). 

Figure S23. Galvanostatic discharge curves of the primary Zn−air batteries with 
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Co@HNCs (600) as cathode catalysts at different current densities.

Figure S24. Polarization curves of Zn-air batteries based on as-prepared catalysts and 
commercial Pt/C+RuO2 catalyst.

Table S1. The Comparison of ORR performance of non-precious Co@HNCs(600) 
catalysts from the recent literature and this work (0.1 M KOH medium).

Catalysts Half-wave 
potential

Onset 
potential

(V vs. 
RHE)

Electron 
transfer
numbers

Reference

Co@HNCs (600) 0.87 0.98 3.98 This work

Co SA+Co9S8/HCNT 0.855 V 0.90 V 3.99 Small, 2020, 16, 
1906735.

Co-Co3O4@NAC 0.795 0.935 3.8 Appl. Catal. B,  
2020, 260, 118188.

Co-pyridinic N-C 0.87 0.99 3.88-
3.99

Adv. Energy 
Mater., 2020, 10, 

2002592.

Zn/CoN-C 0.861 1.004 3.88
Angew. Chem. Int. 

Ed., 2019,
58, 2622 –2626.

Co-SAs@NC 0.82 0.96 3.9 Angew. Chem. Int. 
Ed., 2019, 58, 
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5359-5364.

Co-N-C‐ 900 0.87 0.928 3.70-
3.93

Adv. Energy 
Mater., 2018, 8, 

1801956.

NC-Co SA 0.87 1.0 4.07 ACS Catal., 2018, 
8, 8961−8969.

Co SAs/PTF 0.808 V 0.89 V 3.92–
3.97

J. Mater. Chem. A, 
2019, 7, 1252–

1259.

CoN4/NG 0.87 V 0.96 V 3.92-4.0 Nano Energy, 
2018, 50, 691–698.

Co@MCM 0.78 V 0.95 V 3.7
Energy Environ. 
Sci., 2018, 11, 

1980–1984.

A-Co@ CMK-3-D 0.835 V 0.946 V 3.9 Small Methods, 
2019, 3, 1800450.

Co-ISAS/p-CN 0.838 V 0.92 V 3.9 Adv. Mater., 2018, 
30, 1706508.

Co-POC 0.83 V 0.90 V 3.6 Adv. Mater., 2019, 
31, 1900592.

Co−N/CNFs 0.82 0.92 3.4 ACS Catal., 2017, 
7, 6864–6871.

N-CNTs-650 0.85 0.94 3.93
J. Am. Chem. Soc., 

2017, 139, 
8212–8221.

Fe-N/P-C-700 0.867 0.941 3.94
J. Am. Chem. Soc., 
2020, 142, 2404–

2412.

Table S2. The Comparison of OER performance of non-precious Co@HNCs (600) 
catalysts from the recent literature and this work (1 M KOH medium).

Catalysts η@10 mA/cm2

(mV)
Tafel slop (mV/ 

dec) Reference

Co@HNCs (600) 344 88 This work

Co-Co3O4@NAC 380 NA
Appl. Catal. B, 

2020, 260, 
118188.

Co-N,B-CSs 430 NA ACS Nano, 2018, 
12, 1894−1901.

Co3O4/HNCP-40 333 69.0
ACS Catal., 2018, 

8, 7879−7888.
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CoCePi 374 75.0
Small, 2018, 14, 

1704403.

CoNiPi 402 87.0
Small, 2018, 14, 

1704403.

NiCo2O4@MnO2-
CNTs 400 92 Nanoscale, 2018, 

10, 13626.

NMC/Co@CNTs 500 79 Langmuir, 2018, 
34, 1992−1998.

FeS/Fe3C@N-S-C-
800 570 81

Adv. Funct. 
Mater., 2018, 28, 

1803973.

FeNi-COP-800 400 91
Appl. Catal. B, 

2019, 243, 
204−211.

η = Overpotential; NA = not attained.


