Electronic Supplementary Information

Three metal complexes with a pyridyl schiff base: cytotoxicity, migration and mechanism of apoptosis

Feiya Zhou, Fangxin Gao, Qinghua Chang, Xianfeng Yang, Li-Li Liang*

Department of Chemistry, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, P. R. China.

E-mail address: cll2162@163.com

Contents:

- 1. Table S1 Selected Bond Lengths (Å) and Bond Angles (°) in 1-3
- 2. TableS2 IC₅₀ values of different complexes
- 3. FigureS1 Powder XRD patterns of 1-3
- 4. Figure S2 TG-DSC curves of 1-3
- 5. FigureS3 Ultraviolet spectrum of 1-3 in buffer solution
- 6. FigureS4 Infrared spectroscopy of 1-3

		8 ()		. ,	
Cu1-N2	1.942(3)	1 Cu1—N7	1.994(3)	Cu1–O3	2.288(3)
Cu1—O1	1.957(3)	Cu1—N4	2.039(3)	Cu2—N6	1.939(3)
Cu2—O2	1.974(3)	Cu2—N8	2.060(4)		
Cu2—N3	2.014(3)	Cu2—O6	2.236(3)		
N2-Cu1-O1	79.37(12)	N2-Cu1-N7	158.68(13)	O1-Cu1-N7	95.06(12)
N2-Cu1-N4	80.56(13)	O1-Cu1-N4	159.63(13)	N7-Cu1-N4	104.95(13)
N2-Cu1-O3	98.25(12)	O1-Cu1-O3	90.17(11)	N7-Cu1-O3	102.37(12)
N4-Cu1-O3	89.25(11)	N6-Cu2-O2	78.57(12)	N6-Cu2-N3	154.78(14)
O2-Cu2-N3	94.75(12)	N6-Cu2-N8	80.33(13)	O2-Cu2-N8	158.79(11)
N3-Cu2-N8	105.30(13)	N6-Cu2-O6	122.81(12)	O2-Cu2-O6	102.29(11)
N3-Cu2-O6	82.30(11)	N8-Cu2-O6	87.43(12)		
		2	2		
Cd1—N3	2.288(2)	Cd1—O5	2.341(2)	Cd1—N4	2.349(3)
Cd1—O2	2.381(2)	Cd1—N2	2.410(2)	Cd1—O6	2.456(2)
Cd1—O3	2.631(2)				
N3-Cd1-O5	136.28(8)	N3—Cd1—N4	112.47(9)	O5-Cd1-N4	106.16(8)
N3-Cd1-O2	81.55(8)	O5-Cd1-O2	120.63(8)	N4—Cd1—O2	87.40(8)
N3—Cd1—N2	89.61(8)	O5-Cd1-N2	84.96(8)	N4—Cd1—N2	69.85(8)
O2-Cd1-N2	150.32(8)	N3-Cd1-O6	96.22(8)	O5-Cd1-O6	53.94(8)
N4-Cd1-06	148.90(8)	O2-Cd1-O6	85.12(8)	N2-Cd1-06	124.15(8)
N3—Cd1—O3	130.61(8)	O5-Cd1-O3	74.33(7)	N4—Cd1—O3	80.83(8)
O2—Cd1—O3	50.66(7)	N2—Cd1—O3	137.62(8)	O6—Cd1—O3	71.12(7)
		3	3		
Eu1—O1	2.373(3)	Eu1—O9'	2.394(3)	Eu1—O9	2.394(3)
Eu1—O8	2.394(3)	Eu1—O2	2.454(3)	Eu1—O6	2.494(3)
Eu1—N2	2.512(4)	Eu1—O3	2.533(3)	Eu1—O5	2.537(3)
Eu1—N4	2.606(4)	Eu1—N5	2.916(4)	Eu1—N6	2.953(4)
Eu1—H9A	2.8102				
01—Eu1—O9'	87.63(11)	O1—Eu1—O9	87.63(11)	O1—Eu1—O8	150.76(11)
09'—Eu1—08	81.47(11)	09—Eu1—08	81.47(11)	01 - Eu1 - 02	79.42(11)
09' - Eu1 - 02	148.87(11)	09 - Eu1 - 02	148.87(11)	08 - Fu1 - 02	122.11(11)
$01 - E_{\rm H} = 1 - 06$	82.86(10)	$O9' - E_{11} - O6$	126.26(11)	$00 - E_{11} - 06$	126.26(11)
$08 = E_{11} = 06$	81.97(11)	0^{2} Eu1 00	80.33(11)	$01 - E_{11} - N2$	62.80(11)
$OO' = E_{22} 1$	77 48(11)	$O_2 = Eu1 = O0$	77 48(11)	$O_1 = E_{\rm M1} = N_2$	138 47(11)
$O_{9} = Eu_{1} = N_{2}$	138 97(12)	$O_{2} = Eu_{1} = N_{2}$	71 41(12)	$O_0 - E_{\text{UI}} - N_2$	125 84(11)
O8 - Eu1 - N2	136.7/(12)	O_2 —Eu1—N2	1/1.71(12)	O1 - Eu1 - O3	70.75(11)
09'—Eu1—O3	140.21(11)	09—Eu1—O3	140.21(11)	O8-Eu1-O3	111 46(11)
02—Eu1—O3	31.41(11)	06—Eu1—O3	09.32(11)	N2—Eu1—O3	111.40(11)
O1—Eu1—O5	/3./2(10)	O9'—Eu1—O5	/5.43(11)	O9—Eu1—O5	/5.43(11)
O8—Eu1—O5	//.30(11)	O2—Eu1—O5	126.23(11)	O6—Eu1—O5	51.10(10)
N2—Eu1—O5	129.06(11)	O3—Eu1—O5	115.10(11)	O1—Eu1—N4	125.97(11)
O9'—Eu1—N4	83.01(12)	O9—Eu1—N4	83.01(12)	O8—Eu1—N4	79.66(11)
O2—Eu1—N4	82.05(12)	O6—Eu1—N4	142.29(11)	N2—Eu1—N4	63.21(12)
O3—Eu1—N4	73.60(12)	O5—Eu1—N4	150.39(11)	O1—Eu1—N5	103.09(11)
O9'—Eu1—N5	159.30(11)	O9—Eu1—N5	159.30(11)	O8—Eu1—N5	96.25(11)

Table S1 Selected Bond Lengths (Å) and Bond Angles (°) in 1-3

O2—Eu1—N5	25.88(11)	O6—Eu1—N5	73.26(10)	N2—Eu1—N5	91.57(11)
O3—Eu1—N5	25.53(11)	O5-Eu1-N5	124.35(10)	N4—Eu1—N5	76.36(12)
O1—Eu1—N6	77.13(10)	O9'—Eu1—N6	100.45(11)	O9—Eu1—N6	100.45(11)
O8—Eu1—N6	78.30(11)	O2—Eu1—N6	103.99(11)	O6—Eu1—N6	25.95(10)
N2—Eu1—N6	139.90(11)	O3—Eu1—N6	92.54(11)	O5—Eu1—N6	25.15(10)
N4—Eu1—N6	156.88(11)	N5—Eu1—N6	99.20(11)	O1—Eu1—H9A	71.6
O9—Eu1—H9A	16.4	O8—Eu1—H9A	94.2	O2—Eu1—H9A	142.1
O6—Eu1—H9A	118.6	N2—Eu1—H9A	73.8	O3—Eu1—H9A	162.5
O5—Eu1—H9A	68.2	N4—Eu1—H9A	95.5	N5—Eu1—H9A	165.3
N6—Eu1—H9A	93				

Metal	complex	parameter	value	cell line	Ref	
			36.91±0.47,	A549 ,		
	Cd	$IC_{50}~(\mu M)$	$23.01{\pm}1.28$,	MCF-7	1	
			36.96 ± 0.75 ,	HT29		
		$IC_{50}\;(\mu g/\mu L)$	4.55	HT116	2	
	Cu		1.45	HepG-2		
		ID (ug/mL)	12	ADLD	2	
	Ca	ID_{50} (µg/IIIL)	15	HeLa	3	
	$[Cd(L)Cl_2(H_2O)]$	$IC_{50}\;(\mu M)$	410±31	A549	4	
		IC $(\mathbf{u}\mathbf{M})$	0.3485	HepG2	5	
	[Cal(CH3COO)(H2O2)]	$1C_{50}$ (µW)	0.3369	MCF-7		
_	EuL ₂ (H ₂ O)·4H ₂ O	\mathbf{IC} (\mathbf{M})	45.85	HeLa	6	
		$1C_{50}$ (µWI)	44.37	HCT116		
	complex 2	IC_{50} (μM)	27.36±3.02	HeLa	7	
		IC ₅₀ (µM)	50.22±1.00	BEL-7402	8	
Eu			>100	NCL-H460		
	(41.77±2.42	MGC80-3		
	0		>100	Hep-G2		
			61.48±1.94	HeLa		
			>100	T-24		
Cu			18.1±1.78	HCT116	9	
	$Cu(Cl_2-L_1)NO_3$	$IC_{50}\;(\mu M)$	4.2±2.2	A2780		
			29.9±6.86	MCF7		
		IC_{50} (μM)	60.00±0.29	A549	10	
	1		$25.00{\pm}1.17$	MCF-7		
			30.00 ± 0.58	HeLa		
	$[Cu(btoon)]_{(C10)}$	$IC_{\infty}(\mathbf{u}\mathbf{M})$	5.17±0.39	HeLa	11	
		$1 C_{50} (\mu N I)$	2.28 ± 0.44	HepG-2	11	
		IC. (ug/mL)	14.20	HepG-2	12	
	A1KS-Cu	$1C_{50}$ (µg/IIIL)	6.10	HCT116	12	

Table S2 IC50 values of different complexes

1 IC_{50} (μ M) 53.52±6.4 A549 1.	3
--	---

- Ref 1 Ligand: 2,6-bis(2-benzimidazolyl)pyridine
- Ref 2 Ligand: (ahpv), where ahp = 2-amino-3-hydrox-ypyridine and v = 3methoxysalicylaldehyde (o-vanillin)
- Ref 3 Ligand:2,6-bis[1-(4-amino-1,2,3,6-tetra-hydro-1,3-dimethyl-2,6-dioxopyrimidin-5-yl)imino]eth-ylpyridine
- Ref 4 Ligand:(N-[(phenylcarbamothioyl)amino]pyridine-3-carboxamide)
- Ref 5 Ligand:(Z)-(2-((1,3-diphenyl-1H-pyrazol-4-yl)methylene)-hydrazinyl)(pyridin-2ylamino)methanethiol
- Ref 6 Ligand: derived from glycylglycine and 4-nitrobenzaldehyde
- Ref 7 Ligand:1,10(1,4-phenylene-bis [methylene])-bis (pyridine-3-carboxylicaicd)
- Ref 8 Ligand:2-((2-(pyridin-2-yl) hydrazono)methyl)quinolin-8-ol

Ref 9 Ligand:

(R1=R2=CI)

- Ref 10 Ligand: 5-[(pyridin-2-ylmethylene)-amino]-pentan-1-ol)
- Ref 11 Ligand: 1,4,7-triazacyclononane-derivative,4-benzyloxy-benzyl-1,4,7-triazacyclononane
- Ref 12 Ligand: [4-bromo-2-(thiazole-2-yliminomethyl) phenol]

Figure S1 Powder XRD patterns of 1-3

Figure S2 TG-DSC curves of 1-3

FigureS3 Ultraviolet spectrum of 1-3 in buffer solution

Figure S4 Infrared spectroscopy of 1-3

Reference:

- [1] C. Icsel, V. T. Yilmaz, S. Aydinlik and M. Aygun, *Dalton Trans.*, 2020, 49(23), 7842.
- [2] L. H. Abdel-Rahman, A. M. Abu-Dief, R. M. El-Khatib and S. M. Abdel-Fatah, *Bioorg. Chem.*, 2016, 69, 140.

- [3] N. A. Illán-Cabeza, R. A. Vilaplana, Y. Alvarez, K. Akdi, S. Kamah, F. Hueso-Ureña, M. Quirós, F. González-Vílchez and M. N. Moreno-Carretero, J. Biol. Inorg. Chem., 2005, 10, 924.
- [4] B. Rogalewicz, A. Climova, E. Pivovarova, J. Sukiennik, K. Czarnecka, P. Szymański, M. Szczesio, K. Gas, M. Sawicki, M. Pitucha and A. Czylkowska, *Molecules*, 2022, 27(9), 2703.
- [5] T. A. Yousef, G. M. Abu El-Reash, M. Al-Jahdali and e. El-Rakhawy, *Spectrochim. Acta A Mol. Biomol. Spectrosc.*, 2014, **129**, 163–172.
- [6] C. Shiju, D. Arish and S. Kumaresan, Arab. J. Chem., 2013, 48, 1759.
- [7] G. G. Liu, S. Y. Wu, W. Liu, G. X. Gao, Y. Zhang, E. J. Gao and M. C. Zhu, *Appl Organomet Chem*, 2021, 35.
- [8] Q. Y. Yang, Q. Q. Cao, Y. L. Zhang, X. F. Xu, C. X. Deng, R. Kumar, X. M. Zhu,
 X. J. Wang, H. Liang and Z. F. Chen, *J. Inorg. Biochem.*, 2020, 211, 111175.
- [9] N. Kordestani, H. Amiri Rudbari, A. R. Fernandes, L. R. Raposo, A. Luz, P. V. Baptista, G. Bruno, R. Scopelliti, Z. Fateminia, N. Micale, N. Tumanov, J. Wouters, A. Abbasi Kajani and A. K. Bordbar, *Dalton Trans.*, 2021, **50**(11), 3990.
- [10] A. Paul, P. Singh, M. L. Kuznetsov, A. Karmakar, M. Guedes da Silva, B. Koch, and A. Pombeiro, *Dalton Trans.*, 2021, 50(10),3701.
- [11] M. Liu, X. Q. Song, Y. D. Wu, J. Qian and J. Y. Xu, *Dalton Trans.*, 2020, 49(1), 114.
- [12] M. Ismael, L. H. Abdel-Rahman, D. Abou El-Ezz, E. A. Ahmed and A. Nafady, *Arch. Pharm.*, 2021, **354**(4), e2000241.
- [13]Y. Sikdar, R. Modak, D. Bose, S. Banerjee, D. Bieńko, W. Zierkiewicz, A. Bieńko, K. Das Saha and S. Goswami, *Dalton Trans.*, 2015, 44(19), 8876.