Supplementary Information for

Gold(I) Complexes Bearing a PNP-Type Pincer Ligand: Photophysical Properties and Catalytic Investigations

Martina Casciotti,^a Guillermo Romo-Islas,^{b,c} María Álvarez,^a Francisco Molina,^a José María Muñoz-Molina,^{*,a} Tomás R. Belderrain^{*,a} and Laura Rodríguez^{*,b,c}

^aLaboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible, Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain

^bDepartament de Química Inorgànica i Orgànica. Secció de Química Inorgànica. Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain

^cInstitut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain

I	General methods	S2
II	Synthesis of gold(I) complexes	S2
111	General procedure for catalyst screening	S6
IV	Emission spectra	S8
V	Test for Gold Nanoparticles Catalysis	S15
VI	³¹ P NMR studies of stoichiometric reactions	S17
VII	NMR spectra	S18
VIII	X-RAY data	S25

I. General methods

General Information: All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen atmosphere or in a glovebox (MBRAUN UNILAB). Solvents were purchased from commercial sources, dried by distillation under nitrogen atmosphere using the suitable drying agent and deoxygenated immediately before their use. Reagents were acquired from suppliers and used without any further purification. The DPPMPY ligand,¹ [AuCl(tht)],² and (Dppm)Au₂Br₂³ were synthesized according to literature procedures. NMR spectra were recorded on the Bruker Avance 400 and 500 MHz spectrometers as solutions at 298 K and referenced to residual solvent peaks. High-Resolution Mass Spectroscopy (HRMS) experiments were carried out on a Fisons VG Quatro spectrometer.

General procedure for emission catalyst: Vinyl benzoic acid (4.90 mg, 33.07 μ mol, 1 eq), PhB(OH)₂ (8.1 mg, 66.40 μ mol, 2 eq) and Selectfluor[®] (17.7 mg, 50 μ mol, 1.5 eq) were dissolved in CH₃CN (10 mL). After stirring for 5 minutes, the relative gold catalyst (0.992 μ mol, 0.03 eq) was added and the mixture was heated at 70°C for 24 hrs. One aliquot was taken every hour during the first 8 hours and emission spectra were measured in a Horiba spectrometer with a temperature control fixed at 70°C with a λ_{ex} =350 nm. The last measure was taken after 24 hours of reaction with the same conditions as the previous experiments.

II. Synthesis of gold(I) complexes

DPPMPY(AuCl)₂, 1

A solution of the DPPMPY ligand (404 mg, 0.85 mmol) in CH_2CI_2 (20 mL) was added to a solution of [AuCl(tht)] (576 mg, 1.77 mmol) in CH_2CI_2 (20 mL) at room temperature. The reaction mixture was stirred for 1 h. The insoluble colourless precipitate formed was collected by vacuum filtration, washed with CH_2CI_2 (10 mL) and vacuum dried to afford the product as a colourless solid (560.0 mg, 70%). ¹H (500 MHz, CD_2CI_2): δ 7.78 (dd, ³J_{HP} = 12.9, ³J_{HH} = 7.7, 8H, $CH_{Phphosphane}$), 7.51 (m, 13H, $CH_{Phphosphane} + CH_{py}$), 7.03 (d, ³J_{HH} = 7.7, 2H, CH_{py}), 4.04 (d, ²J_{HP} = 12.7, 4H, CH_2P). ¹³C{¹H} (125 MHz, CD_2CI_2): δ 153.4 (br s), 137.6 (br s), 133.5 (d, ²J_{CP} = 14 Hz), 131.8 (br s), 129.4 (s), 129.0 (d, ²J_{CP} = 12)

¹ Cochran, B. M.; Michael, F. E. J. Am. Chem. Soc. 2008, 130, 2786-2792.

² Uson, R.; Laguna, A.; Laguna, M. Inorg. Synth. **1989**, 26, 85–91.

³ Schneider, D.; Schier, A.; Schmidbaur, H. Dalton Trans. 2004, 1995–2005.

Hz), 128.9 (br s), 122.9 (t, ${}^{3}J_{CP}$ = 4 Hz), 37.1 (d, ${}^{1}J_{CP}$ = 36 Hz). ${}^{31}P{}^{1}H{}$ (202 MHz, CD₂Cl₂): δ 33.4 (s). HRMS *m/z*: 939.133 [M+ H]⁺, 904.060 [M- Cl]⁺, 672.128 [M- Au - 2 Cl]⁺, 1816.194 [2M- 2 Cl]⁺.

DPPMPY(AuBr)₂, 2

A solution of KBr (131 mg, 1.1 mmol) in H₂O (15 ml) was added to a suspension of complex **1** (100 mg, 0.110 mmol) in CH₂Cl₂ (20 ml). The reaction mixture was stirred for 3 h. The aqueous phase was then separated from the organic phase and extracted three times with 5 ml portions of CH₂Cl₂. The combined organic phases were washed three times with 5 ml portions of water and dried over MgSO₄. The solvent was reduced under vacuum to approximately 2 ml. A colourless precipitate was formed by the addition of 50 ml of pentane. After filtration, the solid was dried under vacuum. The product was recrystallized using a mixture of dichloromethane and pentane to give a colourless solid (90.0 mg, 82 %).¹H NMR (500 MHz, CD₂Cl₂): δ 7.78 (dd, ³J_{HP} = 12.8, ³J_{HH} = 7.9, 8H, CH_{Phphosphane}), 7.51 (m, 13H, CH_{Phphosphane} + CH_{py}), 7.00 (d, ³J_{HH} = 7.2, 2H, CH_{py}), 4.09 (d, ²J_{HP} = 12.7, 4H, CH₂P). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂): δ 153.4 (br s), 137.5 (br s), 133.5 (d, ²J_{CP} = 14 Hz), 131.8 (br s), 129.6 (s), 129.1 (s), 129.0 (d, ²J_{CP} = 12 Hz), 122.8 (br t, ³J_{CP} = 4 Hz), 37.1 (d, ¹J_{CP} = 36 Hz). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂): δ 35.1 (s). HRMS *m/z*: 1236.21 [M + Au + H], 944.09 [M - Br], 672.12 [M - 2 Br - Au].

$(DPPMPY_2Au_4Cl_2)(SbF_6)_2, 3$

A solution of AgSbF₆ (18.2 mg, 0.053 mmol) in CH₂Cl₂ (2 mL) was added via syringe to a suspension of complex **1** (50 mg, 0.053 mmol) in CH₂Cl₂ (4 mL). The resulting mixture was stirred overnight at room temperature. The solution was filtered through Celite to give a yellowish solution. The solvent was reduced under vacuum to approximately 2 ml. Then hexane (10 ml) was added to cause the precipitation of a yellowish solid, which was filtered and dried under high vacuum (65 mg, 55 %). ¹H NMR (500 MHz, CD₂Cl₂): δ 7.94-7.0 (br signals, 42H, CH_{Phphosphane} + CH_{py}), 6.87(br d, 2H, CH_{py}), 6.62 (br d, 2H, CH_{py}), 4.62 (br s, 4H, CH₂P), 4.25 (br s, 4H, CH₂P). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂): δ 156.0 (br s), 153.2 (br s), 141.6 (br s), 134.2-132.3 (br signals), 130.2-129.5 (br signals), 127.8 (br s), 127.1 (br s), 126.5 (br signal), 123.7 (br signal), 40.8 (br d, ¹J_{CP} = 35 Hz), 40.2 (br d, ¹J_{CP} = 35 Hz). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂): δ 35.0 (s), 28.0 (s). HR-MS (APCI-TOF) *m/z*: 1816.194 [M + H]⁺, 1579.144 [M- AuCl]⁺, 1396.254 [M- 2Au – Cl]⁺, 944.038 [M- 2 AuPhosphane]⁺.

[DPPMPY₂Au₄(MeCN)₂](SbF₆)₄, 4

A solution of AgSbF₆ (30.8 mg, 0.089 mmol) in CH₃CN (2 mL) was added via syringe to a suspension of complex **1** (42.2 mg, 0.132 mmol) in CH₂Cl₂ (4 mL). The resulting mixture was stirred overnight at room temperature. The solution was filtered through Celite to give a yello wish solution. The solvent was reduced under vacuum to approximately 2 ml. Then hexane (10 ml) was added to cause the precipitation of a yellowish solid, w hich was filtered and dried under high vacuum (150 mg, 41%). ¹H NMR (500 MHz, CD₂Cl₂): δ 7.86-7.16 (br signals, 42H, *CH*_{Phphosphane} + *CH*_{py}), 6.74 (br signal, 2H, *CH*_{py}), 6.61 (br signal, 2H, *CH*_{py}), 4.98-4.74 (br signal, 4H, *CH*₂P), 4.48-4.18 (br signal, 4H, *CH*₂P), 2.4 (s, 3H, *CH*₃, acetonitrile). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂): δ 154.6 (br s), 154.0 (br s), 141.4 (br s), 134.2-131.9 (br signals), 130.5-130.0 (br signals), 129.9 (d, ²J_{CP} = 12 Hz), 128.4 (br s), 127.1 (br s), 124.8-123.8 (br signals), 121.0 (br s), 40.1 (d, ¹J_{CP} = 38 Hz), 39.2 (br d, ¹J_{CP} = 34 Hz), 2.3 (br s) (+ acetone peaks). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂): δ 30.4 (br s), 25.6 (br s). HRMS *m/z*: 1073.17 [M - AuPhosphane]⁺, 895.039 [M- Au₂Phosphane + Na]⁺.

$(DPPMPY_2Au_4Cl_2)(BF_4)_2, 5$

A mixture of complex **1** (100 mg, 0.110 mmol) and AgBF₄ (22 mg, 0.110 mmol) in CHCl₃ (5 ml) was stirred overnight at 80 °C. The volatiles were removed under high vacuum. The residue was dissolved in CH₂Cl₂ and filtered through a pad of Celite to give a yellowish solution. The solution was concentrated to 2 ml volume and then hexane (20 ml) was added to cause the precipitation of a yellowish solid, which was filtered off and dried under high vacuum (60 mg, 79%). ¹H NMR (500 MHz, CD₂Cl₂): δ 8.09-7.25 (br signals, 40H, CH_{Phphosphane} + CH_{py}), 7.00-6.85 (br signal, 6H, CH_{py}), 6.78 (br d, 2H, CH_{py}), 4.85-4.18 (br signals, 8H, CH₂P). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 156.0 (br s), 153.6 (br s), 141.5 (br s), 134.5-132.5 (br signals), 129.4-130.4 (br signals), 127.9 (br s), 127.4

(br s), 126.9 (br s), 126.3 (br s), 124.5 (br s), 124.0 (br s), 123.4 (br s), 123.0 (br s), (d, ${}^{2}J_{CP} = 12$ Hz), 41.1 (d, ${}^{1}J_{CP} = 36$ Hz), 40.0 (d, ${}^{1}J_{CP} = 35$ Hz). ${}^{31}P{}^{1}H$ NMR (202 MHz, CD₂Cl₂): δ 33.8 (br s), 29.1 (br s). HRMS *m/z*: 1816.194 [M + H]⁺, 1796.58 [M - Cl + Na]⁺, 1593.226 [M - AuCl + NH₄]⁺, 944.038 [M-2 AuPhosphane]⁺.

(DPPMPY₂Au₄(MeCN)₂)(BF₄)₄, 6

To a suspension of complex 1 (65 mg, 0.069 mmol) in CH₂Cl₂ (4 mL) was added a solution of AgBF₄ (26.9 mg, 0.138 mmol) in CH₃CN (2 mL) via syringe and the resulting mixture was stirred overnight at room temperature. The solution was filtered through a pad of Celite to give a yellowish solution. The volatiles were removed under high vacuum. The solution was concentrated to 2 ml volume and then hexane (10 ml) was added to cause the precipitation of a yellowish solid, which was filtered off and dried under high vacuum (100 mg, 67 %). ¹H NMR (500 MHz, CD₂Cl₂): δ 7.78-7.23 (br signals, 42H, CH_{Phphosphane} + CH_{py}), 6.79 (br d, ³J_{HH} = 8 Hz, 2H, CH_{py}), 6.56 (br d, ³J_{HH} = 8 Hz, 2H, CH_{py}), 5.26 (br dd, 2H, CH₂P), 5.13 (br dd, 2H, CH₂P), 4.35 (br t, ²J_{HP} = 13 Hz, ²J_{HH} = 12 Hz, 2H, CH₂P), 4.23 (br t, ²J_{HP} = 13 Hz, ²J_{HH} = 12 Hz, 2H, CH₂P), 4.23 (br t, ²J_{HP} = 13 Hz, ²J_{HH} = 12 Hz, 2H, CH₂P), 4.23 (br d, ²J_{CP} = 12 Hz), 130.2 (br d, ²J_{CP} = 12 Hz), 129.9 (br d, ²J_{CP} = 12 Hz), 128.1 (br s), 127.2 (br s), 126.7 (br s), 126.5 (br s), 125.1 (br s), 124.6 (br s), 124.3 (br s), 123.7 (br s), 120.6 (br s), 40.0 (d, ¹J_{CP} = 40 Hz), 38.6 (br d, ¹J_{CP} = 33 Hz), 2.5 (br s). Datos ³¹P{¹H} NMR (202 MHz, CD₂Cl₂): δ 30.9 (br s), 26.0 (br s). HR-MS (APCI-TOF) *m*/*z*: 1816.193 [M + Na + NH₄]⁺, 1564.206 [M – Au + Na]⁺, 1186.221 [M – 3 Au + Na + NH₄]⁺, 895.095 [M – 2AuPhosphane + Na]⁺.

0

(DPPMPY₂Au₄Br₂)(BF₄)₂, 7

A solution of $AgBF_4$ (18.9 mg, 0.097 mmol) in CH_3CN (2 ml) was added to a suspension of complex **2** (100 mg, 0.097 mmol) in CH_2Cl_2 (4 ml) and the mixture was stirred overnight. The residue was filtered through a pad of Celite to give a yellowish solution. The solution was concentrated to 2 ml

volume and then hexane (20 ml) was added to cause the precipitation of a yellowish solid, which was filtered off and dried under high vacuum (207 mg, 48%). ¹H NMR (500 MHz, CD₂Cl₂): δ 8.0-7.30 (br signals, 38H, CH_{Phphosphane} + CH_{py}), 6.99 (br signal, 4H, CH_{py}), 6.90 (br d, 2H, CH_{py}), 6.75 (br d, 2H, CH_{py}), 4.87-4.53 (br signals, 4H, CH₂P), 4.43-4.21 (br signal, 4H, CH₂P) (+signals corresponding to acetonitrile and hexane). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂): δ 156.2 (br s), 153.2 (br s), 141.4 (br s), 133.7-132.3 (br signals), 130.5-129.4 (br signals, CH_{Ph}), 129.3 (br s), 127.9 (br s), 127.1 (br s), 126.5 (br s), 40.9 (br d, ¹J_{CP} = 34 Hz), 40.5 (br d, ¹J_{CP} = 35 Hz) (+signals corresponding to acetonitrile and hexane). Datos ³¹P{¹H} NMR (202 MHz, CD₂Cl₂): δ 34.9 (br s), 30.2 (br s). HR-MS (APCI-TOF) m/z: 1816.195 [M - Br]⁺, 672.127 (Z=2) [M - 2Au - 2Br]²⁺, 1279.21 [M - 3Au- Br + 2Na]⁺, 944.09 [PNPAu₂Br]⁺.

III. General procedure for catalyst screening

Vinyl benzoic acid (10.0 mg, 67.5 μ mol) was dissolved in CH₃CN (1.3 mL) with PhB(OH)₂ (16.46 mg, 145 μ mol) and the relative gold catalyst (3.3 μ mol, see table below). After stirring for 5 minutes, Selectfluor[®] (35.86 mg, 101 μ mol) was added and the mixture was heated at 70°C. After 18 hours, the solution was cooled at room temperature. The volatiles were removed under high vacuum and the solution filtered through neutral alumina. The residue was dried under high vacuum. Then 16.5 mg (67.5 μ mol) of triphenylmethane were added. The reaction was monitored by ¹H NMR for product formation versus the peak at 5.73 ppm (relative to methinic *CH* of the lactone) and 5.59 ppm (relative to the benzylic *CH* of the internal standard).

Table S1. Catalyst screening.

4

5

7

8

55

61

2+ 2BF4⁻

∙<mark>h</mark>₂ Cl

٩u

Ph₂F

Au

| Cl

'Ph₂

 $\begin{bmatrix} & & & \\ Ph_2P & & PPh_2 CI \\ Au & Au & Au \\ CI & PPh_2 & PPh_2 \\ & & & & \\ \end{array} \end{bmatrix}^{2+} 2BF_4$

^aYields were determined via ¹H NMR analysis versus triphenylmethane as an internal standard.

IV. Absorption and Emission spectra

Figure S1. Absorption spectra of $1 \cdot 10^{-5}$ M dichloromethane solutions of dinuclear compounds **1** and **2**.

Figure S2. Absorption spectra of $1 \cdot 10^{-5}$ M dichloromethane solutions of tetranuclear compounds **3**-**7**.

Figure S3. Emission spectra of compound **1** in $1 \cdot 10^{-5}$ M dichloromethane solutions in air-equilibrated and N₂-saturated samples. λ_{exc} = 320 nm.

Figure S4. Normalized emission spectra of compounds **3-7** in $1 \cdot 10^{-5}$ M dichloromethane solutions in air-equilibrated (left) and N₂-saturated (right) samples. λ_{exc} = 350 nm.

Figure S5. Emission spectra of compounds lactone 10⁻⁵ M in acetonitrile at 70 °C λ_{exc} = 350 nm.

Figure S6. Emission spectra of the reaction of the catalytic reaction using **1** as catalyst at different times. Experimental conditions: 70 °C, acetonitrile, SelectF (1.5 eq) and 1 (3%)

Figure S7. Emission spectra of the reaction of the catalytic reaction using **2** as catalyst at different times. Experimental conditions: 70 °C, acetonitrile, SelectF (1.5 eq) and 2 (3%)

Figure S8. Emission spectra of the reaction of the catalytic reaction using **4** as catalyst at different times. Experimental conditions: 70 °C, acetonitrile, SelectF (1.5 eq) and 4 (3%)

Figure S9. Emission spectra of the reaction of the catalytic reaction using **5** as catalyst at different times. Experimental conditions: 70 °C, acetonitrile, SelectF (1.5 eq) and 5 (3%)

Figure S10. Emission spectra of the reaction of the catalytic reaction using **6** as catalyst at different times. Experimental conditions: 70 °C, acetonitrile, SelectF (1.5 eq) and 6 (3%)

Figure S11. Emission spectra of the reaction of the catalytic reaction using **7** as catalyst at different times. Experimental conditions: 70 °C, acetonitrile, SelectF (1.5 eq) and 6 (3%)

Figure S12. Emission spectra of the reaction of the catalytic reaction using dppm(AuCl)₂ as catalyst at different times. Experimental conditions: 70 °C, acetonitrile, SelectF (1.5 eq) and dppm(AuCl)₂ (3%)

Figure S13. Emission spectra of the reaction of the catalytic reaction using dppm(AuBr)₂ as catalyst at different times. Experimental conditions: 70 °C, acetonitrile, SelectF (1.5 eq) and dppm(AuBr)₂ (3%)

V. Mercury test for Gold Nanoparticles

Catalytic reaction

To the left – Reaction mixture of complex **7** in the absence of mercury.; To the right– Reaction mixture of complex **7** in the presence of mercury.

Table S2. Mercury test.

	Yield %	
	With Mercury	Without Mercury
DPPMPyAu ₄ Br ₂ (BF ₄) ₂	53	60

Without mercury.

With Mercury.

Figure S14. ¹H NMR spectra of the reaction mixtures

VI. ³¹P NMR studies

In two different NMR tubes, Gold catalyst **1** and **7** (1 eq) were dissolved in 0.6 ml of CD_3CN with Selectfluor (10 eq). After one hour at room temperature the mixtures were analized by ³¹P{¹H} NMR.

Figure S15. ³¹P{¹H} NMR spectra of the reaction mixtures

In both cases two peaks with ratio 1:1 were detected. The chemical shift moved to higher frequencies compared to those observed for complexes **1** and **7**. (Section VII)

VII. NMR spectra

Figure S16. NMR spectra of DPPMPY(AuCl)₂, 1

Figure S17. NMR spectra of DPPMPY(AuBr)₂, 2

Figure S18. NMR spectra of $(DPPMPY_2Au_4Cl_2)(SbF_6)_{2,}$ 3

¹H NMR

Figure S19. NMR spectra of (DPPMPY₂Au₄(MeCN)₂)(SbF₆)₄, 4

 $^{13}C{^1H} NMR$

 $^{13}C\{^{1}H\}$ NMR

Figure S21. NMR spectra of (DPPMPY₂Au4(MeCN)₂)(BF₄)₄, 6

¹H NMR

 $^{13}C{^{1}H} NMR$

Figure S22. NMR spectra of $(DPPMPY_2Au_4Br_2)(BF_4)_2$, 7

Complex 1

	- F			
Identification code	Complex 1			
Empirical formula	C31.50 H28 Au2 Cl3 N I	C31.50 H28 Au2 Cl3 N P2		
Formula weight	982.77			
Temperature	100.0 K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	a = 8.9762(4) Å	$\alpha = 90.049(2)^{\circ}.$		
	b = 12.4423(5) Å	$\beta = 95.592(2)^{\circ}.$		
	c = 14.4881(7) Å	$\gamma = 107.456(2)^{\circ}.$		
Volume	1535.46(12) Å ³			
Ζ	2			
Density (calculated)	2.126 Mg/m ³			
Absorption coefficient	9.932 mm ⁻¹			
F(000)	926			
Crystal size	0.13 x 0.105 x 0.085 mm	3		
Theta range for data collection	2.258 to 30.034°.			
Index ranges -12<=h<=12, -17<=k<=17, -20<=l<=20		17, -20<=1<=20		
Reflections collected 148921				
Independent reflections	8988 [R(int) = 0.0721]			
Completeness to theta = 25.242°	99.9 %			
Absorption correction	Semi-empirical from equ	Semi-empirical from equivalents		
Max. and min. transmission	0.7465 and 0.5249			
Refinement method	Full-matrix least-squares	on F ²		
Data / restraints / parameters	8988 / 24 / 370			
Goodness-of-fit on F ²	1.094			
Final R indices [I>2sigma(I)]	R1 = 0.0177, wR2 = 0.03	355		
R indices (all data)	R indices (all data) $R1 = 0.0239, wR2 = 0.0369$			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.717 and -0.953 e.Å ⁻³			

 Table 1. Crystal data and structure refinement for Complex 1.

	Х	у	Z	U(eq)
Au(1)	6395(1)	7911(1)	1696(1)	11(1)
Au(2)	7439(1)	5900(1)	2897(1)	11(1)
Cl(1)	7848(1)	7165(1)	794(1)	15(1)
Cl(2)	9245(1)	7474(1)	3621(1)	15(1)
P(1)	4831(1)	8582(1)	2488(1)	11(1)
P(2)	5765(1)	4326(1)	2226(1)	11(1)
N(1)	3789(2)	5906(2)	2132(1)	12(1)
C(1)	3281(3)	5056(2)	1497(2)	12(1)
C(2)	1731(3)	4691(2)	1097(2)	17(1)
C(3)	693(3)	5242(2)	1352(2)	22(1)
C(4)	1223(3)	6133(2)	1999(2)	18(1)
C(5)	2777(3)	6434(2)	2377(2)	13(1)
C(6)	3490(3)	7420(2)	3054(2)	14(1)
C(7)	3613(3)	9256(2)	1777(2)	12(1)
C(8)	2023(3)	9076(2)	1869(2)	15(1)
C(9)	1183(3)	9664(2)	1328(2)	17(1)
C(10)	1914(3)	10435(2)	701(2)	18(1)
C(11)	3505(3)	10622(2)	613(2)	17(1)
C(12)	4347(3)	10035(2)	1144(2)	15(1)
C(13)	5808(3)	9626(2)	3398(2)	12(1)
C(14)	5111(3)	10416(2)	3676(2)	16(1)
C(15)	5898(3)	11237(2)	4347(2)	18(1)
C(16)	7373(3)	11272(2)	4748(2)	18(1)
C(17)	8049(3)	10470(2)	4493(2)	21(1)
C(18)	7286(3)	9650(2)	3809(2)	18(1)
C(19)	4492(3)	4545(2)	1224(2)	12(1)
C(20)	3323(2)	2489(2)	2706(2)	10(1)
C(21)	2260(3)	1869(2)	3265(2)	18(1)
C(22)	2264(3)	2280(2)	4152(2)	21(1)
C(23)	3338(3)	3294(2)	4467(2)	22(1)
C(24)	4411(3)	3906(2)	3889(2)	18(1)
C(25)	4414(3)	3498(2)	2992(2)	12(1)
C(26)	6752(3)	3390(2)	1778(2)	14(1)
C(27)	7574(3)	2878(2)	2418(2)	22(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³)for **Complex 1.** U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(28)	8419(3)	2202(3)	2116(2)	28(1)
C(29)	8467(3)	2039(2)	1175(2)	27(1)
C(30)	7660(3)	2536(2)	534(2)	24(1)
C(31)	6799(3)	3205(2)	832(2)	17(1)
Cl(3)	1806(5)	5650(3)	4921(3)	33(1)
Cl(4)	-1435(5)	4578(4)	5266(4)	70(1)
C(32)	68(6)	4593(5)	4562(5)	36(1)

Table 3. Bond lengths [Å] and angles $[\circ]$ for Complex 1.

Au(1)-Cl(1)	2.3078(6)
Au(1)-P(1)	2.2365(6)
Au(2)-Cl(2)	2.3078(6)
Au(2)-P(2)	2.2320(6)
P(1)-C(6)	1.833(2)
P(1)-C(7)	1.815(2)
P(1)-C(13)	1.811(2)
P(2)-C(19)	1.830(2)
P(2)-C(25)	1.810(2)
P(2)-C(26)	1.815(2)
N(1)-C(1)	1.341(3)
N(1)-C(5)	1.343(3)
C(1)-C(2)	1.393(3)
C(1)-C(19)	1.498(3)
C(2)-H(2)	0.9500
C(2)-C(3)	1.388(4)
C(3)-H(3)	0.9500
C(3)-C(4)	1.389(4)
C(4)-H(4)	0.9500
C(4)-C(5)	1.387(3)
C(5)-C(6)	1.511(3)
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(7)-C(8)	1.397(3)
C(7)-C(12)	1.397(3)
C(8)-H(8)	0.9500
C(8)-C(9)	1.392(3)

C(9)-H(9)	0.9500
C(9)-C(10)	1.384(4)
C(10)-H(10)	0.9500
C(10)-C(11)	1.394(4)
С(11)-Н(11)	0.9500
C(11)-C(12)	1.385(3)
С(12)-Н(12)	0.9500
C(13)-C(14)	1.392(3)
C(13)-C(18)	1.392(3)
C(14)-H(14)	0.9500
C(14)-C(15)	1.385(3)
C(15)-H(15)	0.9500
C(15)-C(16)	1.381(4)
C(16)-H(16)	0.9500
C(16)-C(17)	1.381(4)
C(17)-H(17)	0.9500
C(17)-C(18)	1.392(4)
C(18)-H(18)	0.9500
C(19)-H(19A)	0.9900
C(19)-H(19B)	0.9900
C(20)-H(20)	0.9500
C(20)-C(21)	1.369(3)
C(20)-C(25)	1.375(3)
C(21)-H(21)	0.9500
C(21)-C(22)	1.382(4)
С(22)-Н(22)	0.9500
C(22)-C(23)	1.383(4)
С(23)-Н(23)	0.9500
C(23)-C(24)	1.389(3)
C(24)-H(24)	0.9500
C(24)-C(25)	1.395(3)
C(26)-C(27)	1.399(4)
C(26)-C(31)	1.396(3)
C(27)-H(27)	0.9500
C(27)-C(28)	1.386(4)
C(28)-H(28)	0.9500
C(28)-C(29)	1.386(4)
C(29)-H(29)	0.9500
C(29)-C(30)	1.381(4)

C(30)-H(30)	0.9500
C(30)-C(31)	1.389(4)
С(31)-Н(31)	0.9500
Cl(3)-C(32)	1.745(6)
Cl(4)-C(32)	1.765(7)
C(32)-H(32A)	0.9900
C(32)-H(32B)	0.9900
P(1)-Au(1)-Cl(1)	175.59(2)
P(2)-Au(2)-Cl(2)	177.17(2)
C(6)-P(1)-Au(1)	109.46(8)
C(7)-P(1)-Au(1)	114.16(8)
C(7)-P(1)-C(6)	106.56(11)
C(13)-P(1)-Au(1)	115.94(8)
C(13)-P(1)-C(6)	106.05(11)
C(13)-P(1)-C(7)	103.95(11)
C(19)-P(2)-Au(2)	114.95(8)
C(25)-P(2)-Au(2)	113.83(8)
C(25)-P(2)-C(19)	104.12(11)
C(25)-P(2)-C(26)	106.21(11)
C(26)-P(2)-Au(2)	112.70(8)
C(26)-P(2)-C(19)	104.04(11)
C(1)-N(1)-C(5)	118.8(2)
N(1)-C(1)-C(2)	122.2(2)
N(1)-C(1)-C(19)	115.9(2)
C(2)-C(1)-C(19)	121.9(2)
C(1)-C(2)-H(2)	120.7
C(3)-C(2)-C(1)	118.6(2)
C(3)-C(2)-H(2)	120.7
C(2)-C(3)-H(3)	120.3
C(2)-C(3)-C(4)	119.3(2)
C(4)-C(3)-H(3)	120.3
C(3)-C(4)-H(4)	120.7
C(5)-C(4)-C(3)	118.6(2)
C(5)-C(4)-H(4)	120.7
N(1)-C(5)-C(4)	122.5(2)
N(1)-C(5)-C(6)	114.6(2)
C(4)-C(5)-C(6)	122.8(2)
P(1)-C(6)-H(6A)	109.6

P(1)-C(6)-H(6B)	109.6
C(5)-C(6)-P(1)	110.15(16)
C(5)-C(6)-H(6A)	109.6
C(5)-C(6)-H(6B)	109.6
H(6A)-C(6)-H(6B)	108.1
C(8)-C(7)-P(1)	123.25(18)
C(12)-C(7)-P(1)	117.25(18)
C(12)-C(7)-C(8)	119.4(2)
C(7)-C(8)-H(8)	120.0
C(9)-C(8)-C(7)	119.9(2)
C(9)-C(8)-H(8)	120.0
C(8)-C(9)-H(9)	119.8
C(10)-C(9)-C(8)	120.5(2)
C(10)-C(9)-H(9)	119.8
C(9)-C(10)-H(10)	120.2
C(9)-C(10)-C(11)	119.6(2)
С(11)-С(10)-Н(10)	120.2
С(10)-С(11)-Н(11)	119.9
C(12)-C(11)-C(10)	120.3(2)
С(12)-С(11)-Н(11)	119.9
С(7)-С(12)-Н(12)	119.9
C(11)-C(12)-C(7)	120.2(2)
С(11)-С(12)-Н(12)	119.9
C(14)-C(13)-P(1)	120.74(18)
C(18)-C(13)-P(1)	119.49(18)
C(18)-C(13)-C(14)	119.8(2)
C(13)-C(14)-H(14)	119.9
C(15)-C(14)-C(13)	120.1(2)
C(15)-C(14)-H(14)	119.9
C(14)-C(15)-H(15)	119.9
C(16)-C(15)-C(14)	120.2(2)
C(16)-C(15)-H(15)	119.9
C(15)-C(16)-H(16)	120.1
C(17)-C(16)-C(15)	119.8(2)
C(17)-C(16)-H(16)	120.1
С(16)-С(17)-Н(17)	119.7
C(16)-C(17)-C(18)	120.7(2)
С(18)-С(17)-Н(17)	119.7
C(13)-C(18)-C(17)	119.3(2)

C(13)-C(18)-H(18)	120.3
C(17)-C(18)-H(18)	120.3
P(2)-C(19)-H(19A)	109.1
P(2)-C(19)-H(19B)	109.1
C(1)-C(19)-P(2)	112.28(16)
C(1)-C(19)-H(19A)	109.1
C(1)-C(19)-H(19B)	109.1
H(19A)-C(19)-H(19B)	107.9
С(21)-С(20)-Н(20)	118.6
C(21)-C(20)-C(25)	122.9(2)
C(25)-C(20)-H(20)	118.6
C(20)-C(21)-H(21)	120.6
C(20)-C(21)-C(22)	118.7(2)
C(22)-C(21)-H(21)	120.6
С(21)-С(22)-Н(22)	119.8
C(21)-C(22)-C(23)	120.3(2)
С(23)-С(22)-Н(22)	119.8
C(22)-C(23)-H(23)	120.0
C(22)-C(23)-C(24)	119.9(2)
C(24)-C(23)-H(23)	120.0
C(23)-C(24)-H(24)	119.9
C(23)-C(24)-C(25)	120.1(2)
C(25)-C(24)-H(24)	119.9
C(20)-C(25)-P(2)	122.04(18)
C(20)-C(25)-C(24)	118.0(2)
C(24)-C(25)-P(2)	119.91(18)
C(27)-C(26)-P(2)	117.86(19)
C(31)-C(26)-P(2)	123.26(19)
C(31)-C(26)-C(27)	118.8(2)
C(26)-C(27)-H(27)	119.7
C(28)-C(27)-C(26)	120.5(3)
C(28)-C(27)-H(27)	119.7
C(27)-C(28)-H(28)	120.1
C(29)-C(28)-C(27)	119.9(3)
C(29)-C(28)-H(28)	120.1
C(28)-C(29)-H(29)	119.8
C(30)-C(29)-C(28)	120.3(3)
C(30)-C(29)-H(29)	119.8
C(29)-C(30)-H(30)	120.0

C(29)-C(30)-C(31)	120.0(3)
C(31)-C(30)-H(30)	120.0
C(26)-C(31)-H(31)	119.8
C(30)-C(31)-C(26)	120.4(2)
C(30)-C(31)-H(31)	119.8
Cl(3)-C(32)-Cl(4)	111.8(4)
Cl(3)-C(32)-H(32A)	109.3
Cl(3)-C(32)-H(32B)	109.3
Cl(4)-C(32)-H(32A)	109.3
Cl(4)-C(32)-H(32B)	109.3
H(32A)-C(32)-H(32B)	107.9

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for **Complex 1**. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
	12(1)	11(1)	11(1)	1(1)	2(1)	4(1)
Au(1)	13(1)	11(1)	11(1)	-1(1)	2(1)	4(1) 2(1)
Au(2)	11(1)	12(1)	10(1)	-1(1)	1(1)	2(1)
Cl(1)	18(1)	16(1)	13(1)	-1(1)	5(1)	6(1)
Cl(2)	12(1)	15(1)	17(1)	-4(1)	1(1)	2(1)
P(1)	12(1)	10(1)	10(1)	-1(1)	1(1)	4(1)
P(2)	12(1)	12(1)	9(1)	-1(1)	1(1)	3(1)
N(1)	14(1)	9(1)	11(1)	-1(1)	2(1)	3(1)
C(1)	14(1)	10(1)	11(1)	2(1)	4(1)	3(1)
C(2)	15(1)	16(1)	18(1)	-6(1)	2(1)	0(1)
C(3)	11(1)	24(1)	29(2)	-8(1)	1(1)	1(1)
C(4)	14(1)	16(1)	25(1)	-4(1)	6(1)	3(1)
C(5)	16(1)	10(1)	11(1)	2(1)	6(1)	2(1)
C(6)	16(1)	11(1)	14(1)	0(1)	3(1)	4(1)
C(7)	13(1)	12(1)	11(1)	-3(1)	-1(1)	3(1)
C(8)	13(1)	15(1)	16(1)	0(1)	2(1)	1(1)
C(9)	11(1)	18(1)	21(1)	-1(1)	-1(1)	2(1)
C(10)	19(1)	17(1)	16(1)	-1(1)	-5(1)	5(1)
C(11)	21(1)	16(1)	13(1)	1(1)	1(1)	4(1)
C(12)	13(1)	17(1)	14(1)	-2(1)	2(1)	2(1)
C(13)	14(1)	10(1)	11(1)	0(1)	1(1)	2(1)

C(14)	16(1)	17(1)	16(1)	-3(1)	-2(1)	8(1)
C(15)	24(1)	15(1)	17(1)	-3(1)	2(1)	9(1)
C(16)	22(1)	16(1)	14(1)	-2(1)	-2(1)	2(1)
C(17)	16(1)	24(1)	23(1)	-3(1)	-6(1)	6(1)
C(18)	17(1)	17(1)	22(1)	-4(1)	-2(1)	9(1)
C(19)	15(1)	13(1)	9(1)	-2(1)	1(1)	4(1)
C(20)	6(1)	9(1)	12(1)	3(1)	-1(1)	1(1)
C(21)	15(1)	15(1)	25(1)	1(1)	4(1)	2(1)
C(22)	21(1)	20(1)	24(1)	6(1)	13(1)	7(1)
C(23)	28(1)	22(1)	17(1)	-1(1)	11(1)	5(1)
C(24)	21(1)	15(1)	16(1)	-2(1)	4(1)	2(1)
C(25)	11(1)	12(1)	14(1)	1(1)	4(1)	4(1)
C(26)	13(1)	11(1)	17(1)	0(1)	4(1)	2(1)
C(27)	22(1)	29(1)	22(1)	5(1)	5(1)	13(1)
C(28)	25(1)	29(2)	36(2)	9(1)	6(1)	17(1)
C(29)	20(1)	21(1)	43(2)	-3(1)	9(1)	9(1)
C(30)	22(1)	23(1)	25(1)	-9(1)	8(1)	3(1)
C(31)	17(1)	17(1)	17(1)	-3(1)	1(1)	4(1)
Cl(3)	40(2)	22(1)	34(1)	5(1)	-4(1)	8(1)
Cl(4)	55(3)	78(3)	100(4)	54(2)	43(2)	43(2)
C(32)	24(3)	32(3)	46(4)	4(3)	-3(3)	4(2)

	x	у	Z	U(eq)
H(2)	1392	4077	658	21
H(3)	-369	5012	1088	27
H(4)	535	6528	2179	22
H(6A)	4070	7183	3593	16
H(6B)	2646	7677	3284	16
H(8)	1515	8551	2301	18
H(9)	100	9536	1389	20
H(10)	1336	10834	332	21
H(11)	4012	11155	187	20
H(12)	5429	10163	1078	18
H(14)	4093	10392	3406	19
H(15)	5422	11778	4532	22
H(16)	7921	11846	5198	22
H(17)	9046	10478	4787	25
H(18)	7768	9112	3625	22
H(19A)	5144	5045	790	15
H(19B)	3960	3812	895	15
H(20)	3306	2210	2093	12
H(21)	1533	1168	3048	22
H(22)	1527	1865	4547	25
H(23)	3341	3572	5078	27
H(24)	5146	4605	4104	21
H(27)	7553	2995	3064	27
H(28)	8964	1850	2555	33
H(29)	9057	1583	969	32
H(30)	7695	2420	-111	29
H(31)	6237	3540	389	21
H(32A)	267	3852	4584	43
H(32B)	-280	4713	3911	43

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for Complex 1.

 Table 6. Torsion angles [°] for Complex 1.

Au(1)-P(1)-C(6)-C(5)	-46.53(18)
Au(1)-P(1)-C(7)-C(8)	135.85(18)
Au(1)-P(1)-C(7)-C(12)	-47.6(2)
Au(1)-P(1)-C(13)-C(14)	153.89(17)
Au(1)-P(1)-C(13)-C(18)	-24.9(2)
Au(2)-P(2)-C(19)-C(1)	-70.69(17)
Au(2)-P(2)-C(25)-C(20)	-178.45(17)
Au(2)-P(2)-C(25)-C(24)	4.6(2)
Au(2)-P(2)-C(26)-C(27)	67.5(2)
Au(2)-P(2)-C(26)-C(31)	-109.0(2)
P(1)-C(7)-C(8)-C(9)	176.99(19)
P(1)-C(7)-C(12)-C(11)	-176.78(19)
P(1)-C(13)-C(14)-C(15)	-177.45(19)
P(1)-C(13)-C(18)-C(17)	178.5(2)
P(2)-C(26)-C(27)-C(28)	-176.6(2)
P(2)-C(26)-C(31)-C(30)	175.8(2)
N(1)-C(1)-C(2)-C(3)	1.3(4)
N(1)-C(1)-C(19)-P(2)	43.5(3)
N(1)-C(5)-C(6)-P(1)	69.2(2)
C(1)-N(1)-C(5)-C(4)	0.2(3)
C(1)-N(1)-C(5)-C(6)	-176.6(2)
C(1)-C(2)-C(3)-C(4)	-0.3(4)
C(2)-C(1)-C(19)-P(2)	-138.2(2)
C(2)-C(3)-C(4)-C(5)	-0.7(4)
C(3)-C(4)-C(5)-N(1)	0.8(4)
C(3)-C(4)-C(5)-C(6)	177.3(2)
C(4)-C(5)-C(6)-P(1)	-107.5(2)
C(5)-N(1)-C(1)-C(2)	-1.3(3)
C(5)-N(1)-C(1)-C(19)	177.1(2)
C(6)-P(1)-C(7)-C(8)	14.9(2)
C(6)-P(1)-C(7)-C(12)	-168.51(18)
C(6)-P(1)-C(13)-C(14)	-84.4(2)
C(6)-P(1)-C(13)-C(18)	96.8(2)
C(7)-P(1)-C(6)-C(5)	77.38(18)
C(7)-P(1)-C(13)-C(14)	27.7(2)
C(7)-P(1)-C(13)-C(18)	-151.0(2)
C(7)-C(8)-C(9)-C(10)	-0.4(4)
C(8)-C(7)-C(12)-C(11)	0.0(4)
-------------------------	-------------
C(8)-C(9)-C(10)-C(11)	-0.1(4)
C(9)-C(10)-C(11)-C(12)	0.5(4)
C(10)-C(11)-C(12)-C(7)	-0.4(4)
C(12)-C(7)-C(8)-C(9)	0.5(4)
C(13)-P(1)-C(6)-C(5)	-172.30(16)
C(13)-P(1)-C(7)-C(8)	-96.9(2)
C(13)-P(1)-C(7)-C(12)	79.7(2)
C(13)-C(14)-C(15)-C(16)	-0.5(4)
C(14)-C(13)-C(18)-C(17)	-0.3(4)
C(14)-C(15)-C(16)-C(17)	-1.4(4)
C(15)-C(16)-C(17)-C(18)	2.5(4)
C(16)-C(17)-C(18)-C(13)	-1.6(4)
C(18)-C(13)-C(14)-C(15)	1.3(4)
C(19)-P(2)-C(25)-C(20)	55.6(2)
C(19)-P(2)-C(25)-C(24)	-121.3(2)
C(19)-P(2)-C(26)-C(27)	-167.3(2)
C(19)-P(2)-C(26)-C(31)	16.2(2)
C(19)-C(1)-C(2)-C(3)	-176.9(2)
C(20)-C(21)-C(22)-C(23)	-0.7(4)
C(21)-C(20)-C(25)-P(2)	-177.92(19)
C(21)-C(20)-C(25)-C(24)	-0.9(4)
C(21)-C(22)-C(23)-C(24)	0.4(4)
C(22)-C(23)-C(24)-C(25)	-0.3(4)
C(23)-C(24)-C(25)-P(2)	177.6(2)
C(23)-C(24)-C(25)-C(20)	0.5(4)
C(25)-P(2)-C(19)-C(1)	54.52(19)
C(25)-P(2)-C(26)-C(27)	-57.7(2)
C(25)-P(2)-C(26)-C(31)	125.7(2)
C(25)-C(20)-C(21)-C(22)	1.0(4)
C(26)-P(2)-C(19)-C(1)	165.60(16)
C(26)-P(2)-C(25)-C(20)	-53.9(2)
C(26)-P(2)-C(25)-C(24)	129.2(2)
C(26)-C(27)-C(28)-C(29)	0.7(4)
C(27)-C(26)-C(31)-C(30)	-0.7(4)
C(27)-C(28)-C(29)-C(30)	-0.8(4)
C(28)-C(29)-C(30)-C(31)	0.1(4)
C(29)-C(30)-C(31)-C(26)	0.6(4)
C(31)-C(26)-C(27)-C(28)	0.1(4)

Symmetry transformations used to generate equivalent atoms:

Complex 2

Identification code	Complex 2	
Empirical formula	C32 H29 Au2 Br2 Cl2 N	N P2
Formula weight	1114.15	
Temperature	150.0 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 15.7361(4) Å	α=90°.
	b = 12.8876(3) Å	β= 90.4110(10)°.
	c = 16.5348(4) Å	$\gamma = 90^{\circ}$.
Volume	3353.18(14) Å ³	
Ζ	4	
Density (calculated)	2.207 Mg/m ³	
Absorption coefficient	11.402 mm ⁻¹	
F(000)	2080	
Crystal size	0.45 x 0.09 x 0.035 mm ³	3
Theta range for data collection	2.381 to 30.080°.	
Index ranges	-22<=h<=22, -18<=k<=	18, -23<=l<=23
Reflections collected	91509	
Independent reflections	9836 [R(int) = 0.0579]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equ	uivalents
Max. and min. transmission	0.0990 and 0.0403	
Refinement method	Full-matrix least-squares	s on F ²
Data / restraints / parameters	9836 / 0 / 370	
Goodness-of-fit on F ²	1.051	
Final R indices [I>2sigma(I)]	R1 = 0.0289, wR2 = 0.00	691
R indices (all data)	$R1 = 0.0382, wR2 = 0.0^{\circ}$	732
Extinction coefficient	n/a	
Largest diff. peak and hole	1.755 and -1.748 e.Å ⁻³	

 Table 1. Crystal data and structure refinement for Complex 2

	Х	У	Z	U(eq)
Au(1)	1562(1)	7697(1)	5555(1)	24(1)
Au(2)	2781(1)	5219(1)	5951(1)	28(1)
Br(1)	713(1)	6614(1)	6423(1)	32(1)
Br(2)	3674(1)	6232(1)	6835(1)	50(1)
P(1)	2285(1)	8689(1)	4688(1)	23(1)
P(2)	2004(1)	4196(1)	5145(1)	22(1)
N(1)	1991(2)	6349(3)	4208(2)	23(1)
C(1)	1488(3)	5564(3)	3968(2)	23(1)
C(2)	1295(3)	5390(4)	3155(3)	30(1)
C(3)	1639(3)	6043(4)	2587(3)	34(1)
C(4)	2151(3)	6863(4)	2829(3)	28(1)
C(5)	2311(3)	6987(3)	3647(3)	23(1)
C(6)	2851(3)	7864(3)	3974(3)	24(1)
C(7)	3098(3)	9532(4)	5115(3)	28(1)
C(8)	3386(3)	10391(4)	4687(4)	39(1)
C(9)	4024(4)	11012(5)	5013(4)	48(1)
C(10)	4370(4)	10804(5)	5759(4)	52(2)
C(11)	4081(5)	9949(6)	6184(4)	59(2)
C(12)	3449(4)	9312(5)	5864(3)	46(1)
C(13)	1610(3)	9547(3)	4096(3)	24(1)
C(14)	1655(3)	9641(4)	3261(3)	29(1)
C(15)	1143(3)	10357(4)	2857(3)	32(1)
C(16)	585(3)	10976(4)	3278(3)	34(1)
C(17)	532(3)	10878(4)	4122(3)	33(1)
C(18)	1036(3)	10174(4)	4524(3)	29(1)
C(19)	1141(3)	4876(3)	4621(3)	24(1)
C(20)	2588(3)	3602(3)	4322(3)	26(1)
C(21)	2204(4)	2836(4)	3848(3)	36(1)
C(22)	2615(4)	2454(4)	3177(3)	42(1)
C(23)	3415(4)	2811(5)	2987(4)	51(2)
C(24)	3791(4)	3569(7)	3449(4)	64(2)
C(25)	3382(3)	3975(5)	4120(3)	46(1)
C(26)	1481(3)	3148(3)	5679(2)	24(1)
C(27)	623(3)	3189(4)	5858(3)	35(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for **Complex 2**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(28)	238(3)	2397(4)	6290(3)	37(1)
C(29)	710(4)	1567(4)	6550(3)	36(1)
C(30)	1573(4)	1518(4)	6384(3)	41(1)
C(31)	1960(3)	2318(4)	5957(3)	36(1)
Cl(1)	5346(1)	3605(1)	5143(1)	51(1)
Cl(2)	5342(1)	3295(2)	6900(1)	59(1)
C(32)	4806(4)	3809(6)	6051(5)	60(2)

Au(1)-Br(1)	2.4127(5)
Au(1)-P(1)	2.2387(11)
Au(2)-Br(2)	2.4058(6)
Au(2)-P(2)	2.2323(11)
P(1)-C(6)	1.824(4)
P(1)-C(7)	1.818(5)
P(1)-C(13)	1.815(4)
P(2)-C(19)	1.828(4)
P(2)-C(20)	1.817(4)
P(2)-C(26)	1.814(4)
N(1)-C(1)	1.342(6)
N(1)-C(5)	1.340(5)
C(1)-C(2)	1.395(6)
C(1)-C(19)	1.503(6)
C(2)-H(2)	0.9500
C(2)-C(3)	1.375(7)
C(3)-H(3)	0.9500
C(3)-C(4)	1.386(7)
C(4)-H(4)	0.9500
C(4)-C(5)	1.383(6)
C(5)-C(6)	1.513(6)
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(7)-C(8)	1.391(7)
C(7)-C(12)	1.382(7)
C(8)-H(8)	0.9500
C(8)-C(9)	1.389(8)
C(9)-H(9)	0.9500
C(9)-C(10)	1.372(9)
С(10)-Н(10)	0.9500
C(10)-C(11)	1.384(10)
C(11)-H(11)	0.9500
C(11)-C(12)	1.391(8)
С(12)-Н(12)	0.9500
C(13)-C(14)	1.388(6)
C(13)-C(18)	1.407(6)
C(14)-H(14)	0.9500

Table 3. Bond lengths $[\text{\AA}]$ and angles $[^\circ]$ for Complex 2

C(14)-C(15)	1.393(7)
C(15)-H(15)	0.9500
C(15)-C(16)	1.378(7)
C(16)-H(16)	0.9500
C(16)-C(17)	1.404(7)
С(17)-Н(17)	0.9500
C(17)-C(18)	1.373(7)
C(18)-H(18)	0.9500
C(19)-H(19A)	0.9900
C(19)-H(19B)	0.9900
C(20)-C(21)	1.395(7)
C(20)-C(25)	1.383(7)
C(21)-H(21)	0.9500
C(21)-C(22)	1.380(7)
C(22)-H(22)	0.9500
C(22)-C(23)	1.379(8)
C(23)-H(23)	0.9500
C(23)-C(24)	1.372(9)
C(24)-H(24)	0.9500
C(24)-C(25)	1.389(8)
C(25)-H(25)	0.9500
C(26)-C(27)	1.385(6)
C(26)-C(31)	1.385(7)
C(27)-H(27)	0.9500
C(27)-C(28)	1.388(7)
C(28)-H(28)	0.9500
C(28)-C(29)	1.370(7)
C(29)-H(29)	0.9500
C(29)-C(30)	1.389(8)
C(30)-H(30)	0.9500
C(30)-C(31)	1.392(7)
C(31)-H(31)	0.9500
Cl(1)-C(32)	1.749(7)
Cl(2)-C(32)	1.763(7)
C(32)-H(32A)	0.9900
C(32)-H(32B)	0.9900
P(1)-Au(1)-Br(1)	176.30(3)
P(2)-Au(2)-Br(2)	176.50(3)

C(6)-P(1)-Au(1)	109.49(14)
C(7)-P(1)-Au(1)	116.87(16)
C(7)-P(1)-C(6)	104.8(2)
C(13)-P(1)-Au(1)	113.26(15)
C(13)-P(1)-C(6)	107.0(2)
C(13)-P(1)-C(7)	104.7(2)
C(19)-P(2)-Au(2)	113.69(15)
C(20)-P(2)-Au(2)	114.72(15)
C(20)-P(2)-C(19)	103.0(2)
C(26)-P(2)-Au(2)	113.39(14)
C(26)-P(2)-C(19)	104.4(2)
C(26)-P(2)-C(20)	106.5(2)
C(5)-N(1)-C(1)	118.8(4)
N(1)-C(1)-C(2)	122.0(4)
N(1)-C(1)-C(19)	116.7(4)
C(2)-C(1)-C(19)	121.3(4)
C(1)-C(2)-H(2)	120.8
C(3)-C(2)-C(1)	118.4(4)
C(3)-C(2)-H(2)	120.8
C(2)-C(3)-H(3)	120.0
C(2)-C(3)-C(4)	120.1(4)
C(4)-C(3)-H(3)	120.0
C(3)-C(4)-H(4)	120.9
C(5)-C(4)-C(3)	118.1(4)
C(5)-C(4)-H(4)	120.9
N(1)-C(5)-C(4)	122.7(4)
N(1)-C(5)-C(6)	115.1(4)
C(4)-C(5)-C(6)	122.3(4)
P(1)-C(6)-H(6A)	109.0
P(1)-C(6)-H(6B)	109.0
C(5)-C(6)-P(1)	113.1(3)
C(5)-C(6)-H(6A)	109.0
C(5)-C(6)-H(6B)	109.0
H(6A)-C(6)-H(6B)	107.8
C(8)-C(7)-P(1)	120.6(4)
C(12)-C(7)-P(1)	120.1(4)
C(12)-C(7)-C(8)	119.3(5)
C(7)-C(8)-H(8)	120.1
C(9)-C(8)-C(7)	119.9(5)

C(9)-C(8)-H(8)	120.1
C(8)-C(9)-H(9)	119.4
C(10)-C(9)-C(8)	121.1(6)
С(10)-С(9)-Н(9)	119.4
C(9)-C(10)-H(10)	120.6
C(9)-C(10)-C(11)	118.8(5)
С(11)-С(10)-Н(10)	120.6
С(10)-С(11)-Н(11)	119.5
C(10)-C(11)-C(12)	120.9(6)
С(12)-С(11)-Н(11)	119.5
C(7)-C(12)-C(11)	119.9(6)
С(7)-С(12)-Н(12)	120.0
С(11)-С(12)-Н(12)	120.0
C(14)-C(13)-P(1)	123.7(3)
C(14)-C(13)-C(18)	119.2(4)
C(18)-C(13)-P(1)	117.0(3)
C(13)-C(14)-H(14)	120.0
C(13)-C(14)-C(15)	120.1(4)
C(15)-C(14)-H(14)	120.0
C(14)-C(15)-H(15)	119.7
C(16)-C(15)-C(14)	120.6(4)
C(16)-C(15)-H(15)	119.7
C(15)-C(16)-H(16)	120.2
C(15)-C(16)-C(17)	119.5(4)
C(17)-C(16)-H(16)	120.2
C(16)-C(17)-H(17)	119.9
C(18)-C(17)-C(16)	120.1(4)
C(18)-C(17)-H(17)	119.9
C(13)-C(18)-H(18)	119.8
C(17)-C(18)-C(13)	120.4(4)
C(17)-C(18)-H(18)	119.8
P(2)-C(19)-H(19A)	109.5
P(2)-C(19)-H(19B)	109.5
C(1)-C(19)-P(2)	110.6(3)
C(1)-C(19)-H(19A)	109.5
C(1)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	108.1
C(21)-C(20)-P(2)	120.0(3)
C(25)-C(20)-P(2)	119.8(4)

C(25)-C(20)-C(21)	119.9(4)
С(20)-С(21)-Н(21)	119.9
C(22)-C(21)-C(20)	120.1(5)
С(22)-С(21)-Н(21)	119.9
С(21)-С(22)-Н(22)	120.1
C(23)-C(22)-C(21)	119.8(5)
С(23)-С(22)-Н(22)	120.1
С(22)-С(23)-Н(23)	119.9
C(24)-C(23)-C(22)	120.2(5)
С(24)-С(23)-Н(23)	119.9
C(23)-C(24)-H(24)	119.6
C(23)-C(24)-C(25)	120.8(6)
C(25)-C(24)-H(24)	119.6
C(20)-C(25)-C(24)	119.1(5)
C(20)-C(25)-H(25)	120.4
C(24)-C(25)-H(25)	120.4
C(27)-C(26)-P(2)	121.5(3)
C(31)-C(26)-P(2)	119.3(4)
C(31)-C(26)-C(27)	119.1(4)
C(26)-C(27)-H(27)	119.6
C(26)-C(27)-C(28)	120.8(5)
C(28)-C(27)-H(27)	119.6
C(27)-C(28)-H(28)	120.1
C(29)-C(28)-C(27)	119.9(5)
C(29)-C(28)-H(28)	120.1
C(28)-C(29)-H(29)	119.9
C(28)-C(29)-C(30)	120.2(5)
C(30)-C(29)-H(29)	119.9
C(29)-C(30)-H(30)	120.1
C(29)-C(30)-C(31)	119.9(5)
C(31)-C(30)-H(30)	120.1
C(26)-C(31)-C(30)	120.1(5)
C(26)-C(31)-H(31)	119.9
C(30)-C(31)-H(31)	119.9
Cl(1)-C(32)-Cl(2)	113.2(3)
Cl(1)-C(32)-H(32A)	108.9
Cl(1)-C(32)-H(32B)	108.9
Cl(2)-C(32)-H(32A)	108.9
Cl(2)-C(32)-H(32B)	108.9

H(32A)-C(32)-H(32B) 107.7

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(1)	28(1)	24(1)	21(1)	1(1)	3(1)	-2(1)
Au(2)	25(1)	31(1)	29(1)	-6(1)	1(1)	-3(1)
Br(1)	39(1)	30(1)	28(1)	2(1)	6(1)	-3(1)
Br(2)	33(1)	65(1)	53(1)	-31(1)	3(1)	-5(1)
P(1)	25(1)	21(1)	23(1)	1(1)	2(1)	-1(1)
P(2)	22(1)	22(1)	23(1)	1(1)	2(1)	-1(1)
N(1)	26(2)	21(2)	22(2)	0(1)	2(1)	2(1)
C(1)	25(2)	21(2)	24(2)	0(2)	1(2)	2(2)
C(2)	41(3)	23(2)	25(2)	-1(2)	-2(2)	-2(2)
C(3)	46(3)	32(2)	22(2)	0(2)	1(2)	-5(2)
C(4)	32(2)	25(2)	26(2)	1(2)	7(2)	-1(2)
C(5)	24(2)	19(2)	26(2)	2(2)	4(2)	2(2)
C(6)	24(2)	22(2)	27(2)	0(2)	4(2)	0(2)
C(7)	28(2)	23(2)	34(2)	-4(2)	-3(2)	-4(2)
C(8)	38(3)	31(3)	48(3)	6(2)	-5(2)	-6(2)
C(9)	35(3)	36(3)	72(4)	3(3)	-3(3)	-7(2)
C(10)	45(3)	43(3)	68(4)	-19(3)	-8(3)	-12(3)
C(11)	57(4)	72(5)	48(3)	-3(3)	-16(3)	-22(3)
C(12)	51(3)	49(3)	39(3)	3(2)	-9(2)	-14(3)
C(13)	25(2)	21(2)	26(2)	-2(2)	0(2)	-2(2)
C(14)	34(2)	24(2)	28(2)	-2(2)	1(2)	4(2)
C(15)	43(3)	27(2)	26(2)	-1(2)	-4(2)	1(2)
C(16)	31(2)	26(2)	46(3)	1(2)	-8(2)	0(2)
C(17)	27(2)	28(2)	43(3)	-4(2)	6(2)	2(2)
C(18)	28(2)	29(2)	30(2)	-2(2)	5(2)	1(2)
C(19)	24(2)	23(2)	24(2)	0(2)	2(2)	-1(2)
C(20)	25(2)	25(2)	26(2)	2(2)	3(2)	1(2)
C(21)	44(3)	28(2)	38(3)	-6(2)	13(2)	-10(2)
C(22)	52(3)	33(3)	41(3)	-9(2)	12(2)	-4(2)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **Complex 2** The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(23)	45(3)	66(4)	42(3)	-14(3)	14(2)	8(3)
C(24)	34(3)	113(6)	46(3)	-29(4)	13(3)	-17(3)
C(25)	30(3)	71(4)	37(3)	-16(3)	5(2)	-10(3)
C(26)	31(2)	21(2)	20(2)	2(2)	-1(2)	-6(2)
C(27)	33(2)	32(3)	41(3)	11(2)	6(2)	1(2)
C(28)	34(3)	37(3)	41(3)	10(2)	4(2)	-8(2)
C(29)	50(3)	27(2)	30(2)	10(2)	1(2)	-10(2)
C(30)	49(3)	31(3)	43(3)	16(2)	1(2)	4(2)
C(31)	38(3)	32(2)	37(2)	10(2)	3(2)	3(2)
Cl(1)	43(1)	49(1)	60(1)	11(1)	-3(1)	7(1)
Cl(2)	49(1)	73(1)	55(1)	-6(1)	9(1)	7(1)
C(32)	41(3)	59(4)	81(5)	11(4)	16(3)	19(3)

Table 5.	Hydrogen coordinates (x 10^4) and isotropic	displacement parameters (Å	$^{2}x 10^{3}$)
for Comp	lex 2			

	х	у	Z	U(eq)
H(2)	936	4832	2997	36
H(3)	1526	5933	2029	40
H(4)	2386	7326	2444	33
H(6A)	3049	8295	3517	29
H(6B)	3358	7569	4247	29
H(8)	3148	10552	4173	47
H(9)	4224	11591	4714	57
H(10)	4800	11238	5981	62
H(11)	4318	9796	6700	71
H(12)	3259	8726	6161	55
H(14)	2037	9217	2965	34
H(15)	1178	10419	2286	39
H(16)	239	11464	3000	41
H(17)	148	11301	4416	39
H(18)	996	10110	5095	35
H(19A)	746	4363	4380	29
H(19B)	820	5300	5014	29
H(21)	1659	2578	3987	44
H(22)	2347	1946	2846	50
H(23)	3707	2532	2536	61
H(24)	4339	3820	3309	77
H(25)	3645	4503	4436	55
H(27)	294	3766	5682	42
H(28)	-352	2430	6406	45
H(29)	446	1024	6844	43
H(30)	1899	940	6563	49
H(31)	2553	2294	5855	43
H(32A)	4236	3487	6010	73
H(32B)	4725	4564	6130	73

Table 6. Torsion angles [°] for Complex 2

Au(1)-P(1)-C(6)-C(5)	44.8(3)
Au(1)-P(1)-C(7)-C(8)	-159.5(4)
Au(1)-P(1)-C(7)-C(12)	21.9(5)
Au(1)-P(1)-C(13)-C(14)	-130.6(4)
Au(1)-P(1)-C(13)-C(18)	51.9(4)
Au(2)-P(2)-C(19)-C(1)	72.3(3)
Au(2)-P(2)-C(20)-C(21)	171.0(4)
Au(2)-P(2)-C(20)-C(25)	-15.0(5)
Au(2)-P(2)-C(26)-C(27)	102.8(4)
Au(2)-P(2)-C(26)-C(31)	-73.3(4)
P(1)-C(7)-C(8)-C(9)	-178.3(4)
P(1)-C(7)-C(12)-C(11)	178.9(5)
P(1)-C(13)-C(14)-C(15)	-176.8(4)
P(1)-C(13)-C(18)-C(17)	176.9(4)
P(2)-C(20)-C(21)-C(22)	173.9(4)
P(2)-C(20)-C(25)-C(24)	-174.8(5)
P(2)-C(26)-C(27)-C(28)	-177.8(4)
P(2)-C(26)-C(31)-C(30)	178.5(4)
N(1)-C(1)-C(2)-C(3)	0.3(7)
N(1)-C(1)-C(19)-P(2)	-63.6(4)
N(1)-C(5)-C(6)-P(1)	-57.9(5)
C(1)-N(1)-C(5)-C(4)	-0.8(6)
C(1)-N(1)-C(5)-C(6)	178.4(4)
C(1)-C(2)-C(3)-C(4)	-1.1(8)
C(2)-C(1)-C(19)-P(2)	116.1(4)
C(2)-C(3)-C(4)-C(5)	0.9(7)
C(3)-C(4)-C(5)-N(1)	0.0(7)
C(3)-C(4)-C(5)-C(6)	-179.1(4)
C(4)-C(5)-C(6)-P(1)	121.3(4)
C(5)-N(1)-C(1)-C(2)	0.7(6)
C(5)-N(1)-C(1)-C(19)	-179.6(4)
C(6)-P(1)-C(7)-C(8)	79.1(5)
C(6)-P(1)-C(7)-C(12)	-99.5(5)
C(6)-P(1)-C(13)-C(14)	-9.9(4)
C(6)-P(1)-C(13)-C(18)	172.7(3)
C(7)-P(1)-C(6)-C(5)	170.9(3)
C(7)-P(1)-C(13)-C(14)	101.0(4)

C(7)-P(1)-C(13)-C(18)	-76.5(4)
C(7)-C(8)-C(9)-C(10)	-0.9(9)
C(8)-C(7)-C(12)-C(11)	0.3(9)
C(8)-C(9)-C(10)-C(11)	0.9(10)
C(9)-C(10)-C(11)-C(12)	-0.2(11)
C(10)-C(11)-C(12)-C(7)	-0.4(11)
C(12)-C(7)-C(8)-C(9)	0.3(8)
C(13)-P(1)-C(6)-C(5)	-78.4(3)
C(13)-P(1)-C(7)-C(8)	-33.4(5)
C(13)-P(1)-C(7)-C(12)	148.0(4)
C(13)-C(14)-C(15)-C(16)	-0.2(7)
C(14)-C(13)-C(18)-C(17)	-0.7(7)
C(14)-C(15)-C(16)-C(17)	-0.3(7)
C(15)-C(16)-C(17)-C(18)	0.2(7)
C(16)-C(17)-C(18)-C(13)	0.2(7)
C(18)-C(13)-C(14)-C(15)	0.7(7)
C(19)-P(2)-C(20)-C(21)	-65.0(4)
C(19)-P(2)-C(20)-C(25)	109.1(5)
C(19)-P(2)-C(26)-C(27)	-21.5(4)
C(19)-P(2)-C(26)-C(31)	162.4(4)
C(19)-C(1)-C(2)-C(3)	-179.4(4)
C(20)-P(2)-C(19)-C(1)	-52.4(3)
C(20)-P(2)-C(26)-C(27)	-130.1(4)
C(20)-P(2)-C(26)-C(31)	53.8(4)
C(20)-C(21)-C(22)-C(23)	1.6(9)
C(21)-C(20)-C(25)-C(24)	-0.8(9)
C(21)-C(22)-C(23)-C(24)	-2.1(10)
C(22)-C(23)-C(24)-C(25)	1.1(12)
C(23)-C(24)-C(25)-C(20)	0.3(11)
C(25)-C(20)-C(21)-C(22)	-0.2(8)
C(26)-P(2)-C(19)-C(1)	-163.6(3)
C(26)-P(2)-C(20)-C(21)	44.6(4)
C(26)-P(2)-C(20)-C(25)	-141.3(4)
C(26)-C(27)-C(28)-C(29)	0.5(8)
C(27)-C(26)-C(31)-C(30)	2.3(8)
C(27)-C(28)-C(29)-C(30)	0.2(8)
C(28)-C(29)-C(30)-C(31)	0.3(8)
C(29)-C(30)-C(31)-C(26)	-1.6(8)
C(31)-C(26)-C(27)-C(28)	-1.7(8)

Symmetry transformations used to generate equivalent atoms:

o-H) d(H	HA) d(I	DA) <(DHA	.)
)	D-H) d(H	D-H) d(HA) d(I	D-H) d(HA) d(DA) <(DHA

Table 7. Hydrogen bonds for Complex 2 [Å and °].

Complex 3

 Table 1. Crystal data and structure refinement for Complex 3.

Identification code	Complex 3	
Empirical formula	C62 H54 Au4 Cl2 F12 I	N2 P4 Sb2
Formula weight	2281.21	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 24.072(5)Å	$\alpha = 90^{\circ}$.
	b = 31.964(6)Å	$\beta = 97.06(3)^{\circ}.$
	c = 20.304(4)Å	$\gamma = 90^{\circ}.$
Volume	15504(5) Å ³	
Ζ	8	
Density (calculated)	1.955 Mg/m ³	
Absorption coefficient	8.444 mm ⁻¹	
F(000)	8480	
Crystal size	0.100 x 0.050 x 0.005 r	nm ³
Theta range for data collection	1.195 to 24.713°.	
Index ranges	-27<=h<=28,-37<=k<=3	37,-23<=l<=23
Reflections collected	238149	
Independent reflections	26029[R(int) = 0.2414]	
Completeness to theta = 24.713°	98.4%	
Absorption correction	Multi-scan	
Max. and min. transmission	0.74 and 0.43	
Refinement method	Full-matrix least-square	es on F ²
Data / restraints / parameters	26029/ 2558/ 1675	
Goodness-of-fit on F ²	1.588	
Final R indices [I>2sigma(I)]	R1 = 0.1273, wR2 = 0.3	3091
R indices (all data)	R1 = 0.1927, wR2 = 0.2	3367
Largest diff. peak and hole	5.675 and -3.959 e.Å ⁻³	

Bond lengths
Au1A P1A 2.211(7)
Au1A Cl1A 2.278(7)
Au1A Au2A 3.0185(18)
Au2A N1A 2.16(2)
Au2A P3A 2.243(8)
Au2A Au3A 2.9518(18)
Au3A N2A 2.17(2)
Au3A P2A 2.254(8)
Au3A Au4A 2.9688(19)
Au4A P4A 2.222(8)
Au4A Cl2A 2.268(8)
C1A N1A 1.29(3)
C1A C2A 1.38(4)
C1A C6A 1.61(3)
C2A C3A 1.43(4)
C2A H2A 0.9500
C3A C4A 1.42(4)
C3A H3A 0.9500
C4A C5A 1.40(4)
C4A H4A 0.9500
C14A C19A 1.388(5)
C14A C15A 1.389(4)
C14A P1A 1.803(19)
C15A C16A 1.389(4)
C15A H15A 0.9500
C16A C17A 1.389(4)
C16A H16A 0.9500
C17A C18A 1.389(4)
C17A H17A 0.9500
C18A C19A 1.388(4)
C18A H18A 0.9500
C19A H19A 0.9500
C20A C25A 1.389(5)
C20A C21A 1.389(4)
C20A P2A 1.81(3)
C21A C22A 1.390(4)

Table 2. Bond lengths [Å] and angles $[^{\circ}]$ for Complex 3.

C21A	H21A	0.9500
C22A	C23A	1.390(4)
C22A	H22A	0.9500
C23A	C24A	1.388(4)
C23A	H23A	0.9500
C24A	C25A	1.390(4)
C24A	H24A	0.9500
C25A	H25A	0.9500
C20'	C25' 1	.389(5)
C20'	C21' 1	.389(4)
C20'	P2A 1	.95(3)
C21'	C22' 1	.390(4)
C21'	H21' 0	.9500
C22'	C23' 1	.390(4)
C22'	H22' 0	.9500
C23'	C24' 1	.390(4)
C23'	H23' 0	.9500
C24'	C25' 1	.390(4)
C24'	H24' 0	.9500
C25'	H25' 0	.9500
C26A	C27A	1.3900
C26A	C31A	1.3900
C26A	P2A	1.81(2)
C27A	C28A	1.3900
C27A	H27A	0.9500
C28A	C29A	1.3900
C28A	H28A	0.9500
C29A	C30A	1.3900
C29A	H29A	0.9500
C30A	C31A	1.3900
C30A	H30A	0.9500
C31A	H31A	0.9500
N2A	C32A	1.26(3)
N2A	C36A	1.34(3)
C32A	C33A	1.42(4)
C32A	C37A	1.495(10)
C33A	C34A	1.36(4)
C33A	H33A	0.9500
C34A	C35A	1.32(3)

C34A	H34A	0.9500
C35A	C36A	1.46(4)
C35A	H35A	0.9500
C36A	C38A	1.42(4)
C37A	P3A	1.84(3)
C37A	H37A	0.9900
C37A	H37B	0.9900
C38A	P4A	1.86(3)
C38A	H38A	0.9900
C38A	H38B	0.9900
C39A	C44A	1.388(5)
C39A	C40A	1.389(4)
C39A	P3A	1.801(19)
C40A	C41A	1.389(4)
C40A	H40A	0.9500
C41A	C42A	1.389(4)
C41A	H41A	0.9500
C42A	C43A	1.389(4)
C42A	H42A	0.9500
C43A	C44A	1.389(4)
C43A	H43A	0.9500
C44A	H44A	0.9500
C46A	C45A	1.39(3)
C46A	C47A	1.46(3)
C46A	H46A	0.9500
C47A	C48A	1.41(4)
C47A	H47A	0.9500
C48A	C49A	1.32(3)
C48A	H48A	0.9500
C49A	C50A	1.38(3)
C49A	H49A	0.9500
C50A	C45A	1.44(3)
C50A	H50A	0.9500
C51A	C52A	1.3900
C51A	C56A	1.3900
C51A	P4A	1.804(19)
C52A	C53A	1.3900
C52A	H52A	0.9500
C53A	C54A	1.3900

C53A	H53A	0.9500
C54A	C55A	1.3900
C54A	H54A	0.9500
C55A	C56A	1.3900
C55A	H55A	0.9500
C56A	H56A	0.9500
C57A	C58A	1.3900
C57A	C63A	1.3900
C57A	P4A	1.802(19)
C58A	C59A	1.3900
C58A	H58A	0.9500
C59A	C60A	1.3900
C59A	H59A	0.9500
C60A	C62A	1.3900
C60A	H60A	0.9500
C62A	C63A	1.3900
C62A	H62A	0.9500
C63A	H63A	0.9500
N1A	C5A	1.41(3)
Au1B	P1B	2.250(7)
Au1B	Cl1B	2.279(7)
Au1B	Au2B	3.0132(18)
Au2B	N1B	2.12(2)
Au2B	P3B	2.237(9)
Au2B	Au3B	2.9813(18)
Au3B	N2B	2.175(18)
Au3B	P2B	2.261(8)
Au3B	Au4B	2.9605(18)
Au4B	P4B	2.230(8)
Au4B	Cl2B	2.289(7)
C4B	C5B	1.385(10)
C4B	C3B	1.39(4)
C4B	H4B	0.9500
C3B	C2B	1.27(4)
C3B	H3B	0.9500
C2B	C1B	1.30(4)
C2B	H2B	0.9500
C1B	N1B	1.46(3)
C1B	C6B	1.47(4)

C8B	C13B	1.388(5)
C8B	C9B	1.390(4)
C8B	P1B	1.81(2)
C9B	C10B	1.389(4)
C9B	H9B	0.9500
C10B	C11B	1.389(4)
C10B	H10B	0.9500
C11B	C12B	1.389(4)
C11B	H11B	0.9500
C12B	C13B	1.389(4)
C12B	H12B	0.9500
C13B	H13B	0.9500
C14B	C19B	1.3900
C14B	C15B	1.3900
C14B	P1B	1.823(16)
C19B	C18B	1.3900
C19B	H19B	0.9500
C18B	C17B	1.3900
C18B	H18B	0.9500
C17B	C16B	1.3900
C17B	H17B	0.9500
C16B	C15B	1.3900
C16B	H16B	0.9500
C15B	H15B	0.9500
C33B	C32B	1.37(4)
C33B	C34B	1.45(4)
C33B	H33B	0.9500
C34B	C35B	1.37(4)
C34B	H34B	0.9500
C35B	C36B	1.35(4)
C35B	H35B	0.9500
C39B	C44B	1.388(5)
C39B	C40B	1.389(4)
C39B	P3B	1.83(2)
C40B	C41B	1.389(4)
C40B	H40B	0.9500
C41B	C42B	1.389(4)
C41B	H41B	0.9500
C42B	C43B	1.389(4)

C42B	H42B	0.9500
C43B	C44B	1.389(4)
C43B	H43B	0.9500
C44B	H44B	0.9500
C45B	C50B	1.388(5)
C45B	C46B	1.388(4)
C45B	P3B	1.832(18)
C46B	C47B	1.388(4)
C46B	H46B	0.9500
C47B	C48B	1.389(4)
C47B	H47B	0.9500
C48B	C49B	1.389(4)
C48B	H48B	0.9500
C49B	C50B	1.390(4)
C49B	H49B	0.9500
C50B	H50B	0.9500
C51B	C56B	1.388(5)
C51B	C52B	1.388(4)
C51B	P4B	1.81(2)
C52B	C53B	1.389(4)
C52B	H52B	0.9500
C53B	C54B	1.388(4)
C53B	H53B	0.9500
C54B	C55B	1.389(4)
C54B	H54B	0.9500
C55B	C56B	1.388(4)
C55B	H55B	0.9500
C56B	H56B	0.9500
C57B	C62B	1.388(5)
C57B	C58B	1.389(4)
C57B	P4B	1.82(2)
C58B	C59B	1.389(4)
C58B	H58B	0.9500
C59B	C60B	1.389(4)
C59B	H59B	0.9500
C60B	C61B	1.389(4)
C60B	H60B	0.9500
C61B	C62B	1.389(4)
C61B	H61B	0.9500

C62B	H62B	0.9500
N1B	C5B	1.28(3)
N2B	C36B	1.30(3)
N2B	C32B	1.33(3)
P1A	C6A	1.78(3)
P1A	C8A	1.825(15)
P2A	C7A	1.85(3)
P3A	C45A	1.82(3)
C5A	C7A	1.46(4)
C6A	H6AA	0.9900
C6A	H6AB	0.9900
C7A	H7AA	0.9900
C7A	H7AB	0.9900
C8A	C9A	1.3900
C8A	C13A	1.3900
C9A	C10A	1.3900
C9A	H9A	0.9500
C10A	C11A	1.3900
C10A	H10A	0.9500
C11A	C12A	1.3900
C11A	H11A	0.9500
C12A	C13A	1.3900
C12A	H12A	0.9500
C13A	H13A	0.9500
P1B	C6B	1.89(3)
P2B	C20B	1.77(2)
P2B	C26B	1.81(2)
P2B	C7B	1.85(3)
P3B	C37B	1.82(3)
P4B	C38B	1.84(3)
C5B	C7B	1.50(4)
C6B	H6BA	0.9900
C6B	H6BB	0.9900
C7B	H7BA	0.9900
C7B	H7BB	0.9900
C32B	C37B	1.52(3)
C36B	C38B	1.47(4)
C37B	H37C	0.9900
C37B	H37D	0.9900

C38B	H38C	0.9900
C38B	H38D	0.9900
C20B	C21B	1.3900
C20B	C25B	1.3900
C21B	C22B	1.3900
C21B	H21B	0.9500
C22B	C23B	1.3900
C22B	H22B	0.9500
C23B	C24B	1.3900
C23B	H23B	0.9500
C24B	C25B	1.3900
C24B	H24B	0.9500
C25B	H25B	0.9500
C26B	C27B	1.3900
C26B	C31B	1.3900
C27B	C28B	1.3900
C27B	H27B	0.9500
C28B	C29B	1.3900
C28B	H28B	0.9500
C29B	C30B	1.3900
C29B	H29B	0.9500
C30B	C31B	1.3900
C30B	H30B	0.9500
C31B	H31B	0.9500
Sb1C	F1C	1.836(16)
Sb1C	F4C	1.869(18)
Sb1C	F3C	1.869(18)
Sb1C	F6C	1.875(14)
Sb1C	F5C	1.880(16)
Sb1C	F2C	1.895(17)
Sb1D	F6D	1.828(19)
Sb1D	F2D	1.85(2)
Sb1D	F3D	1.865(19)
Sb1D	F1D	1.873(18)
Sb1D	F4D	1.893(18)
Sb1D	F5D	1.921(19)
Sb1E	F4E	1.82(4)
Sb1E	F2E	1.82(4)
Sb1E	F1E	1.84(3)

Sb1E	F3E	1.85(4)	
Sb1E	F5E	1.86(4)	
Sb1E	F6E	2.01(5)	
Sb2E	F5E'	1.80(3)	
Sb2E	F6E'	1.82(5)	
Sb2E	F1E'	1.83(3)	
Sb2E	F2E'	1.85(4)	
Sb2E	F3E'	1.86(4)	
Sb2E	F4E'	1.93(3)	
Sb1F	F2F	1.840(17	7)
Sb1F	F4F	1.857(1	6)
Sb1F	F1F	1.858(14	4)
Sb1F	F6F	1.860(1	6)
Sb1F	F5F	1.869(1	6)
Sb1F	F3F	1.889(1	6)
Sb2F	F2F'	1.836(18	8)
Sb2F	F4F'	1.856(18	8)
Sb2F	F1F'	1.858(10	6)
Sb2F	F6F'	1.862(17	7)
Sb2F	F5F'	1.872(17	7)
Sb2F	F3F'	1.893(18	8)
Angles	s		
P1A	AulA	Cl1A	173.4(3)
P1A	AulA	Au2A	86.0(2)
Cl1A	Au1A	Au2A	99.60(19)
N1A	Au2A	P3A	167.8(6)
N1A	Au2A	Au3A	79.0(6)
P3A	Au2A	Au3A	89.8(2)
N1A	Au2A	Au1A	84.0(6)
P3A	Au2A	Au1A	106.9(2)
Au3A	Au2A	A AulA	162.86(6)
N2A	Au3A	P2A	167.5(7)
N2A	Au3A	Au2A	78.9(6)
P2A	Au3A	Au2A	88.6(3)
N2A	Au3A	Au4A	86.2(6)
P2A	Au3A	Au4A	106.2(3)
Au2A	Au3A	A Au4A	160.88(5)
P4A	Au4A	Cl2A	176.5(4)

P4A	Au4A	Au3A	88.0(2)
Cl2A	Au4A	Au3A	92.8(3)
N1A	C1A	C2A	123(3)
N1A	C1A	C6A	124(2)
C2A	C1A	C6A	113(2)
C1A	C2A	C3A	116(3)
C1A	C2A	H2A	121.9
C3A	C2A	H2A	121.9
C4A	C3A	C2A	122(3)
C4A	C3A	H3A	119.2
C2A	C3A	H3A	119.2
C5A	C4A	C3A	118(3)
C5A	C4A	H4A	121.1
C3A	C4A	H4A	121.1
C19A	C14A	C15A	118.9(14)
C19A	C14A	P1A	118.8(13)
C15A	C14A	P1A	122.0(13)
C16A	C15A	C14A	120.9(15)
C16A	C15A	H15A	119.6
C14A	C15A	H15A	119.6
C15A	C16A	C17A	120.2(16)
C15A	C16A	H16A	119.9
C17A	C16A	H16A	119.9
C18A	C17A	C16A	118.6(15)
C18A	C17A	H17A	120.7
C16A	C17A	H17A	120.7
C19A	C18A	C17A	121.2(15)
C19A	C18A	H18A	119.4
C17A	C18A	H18A	119.4
C14A	C19A	C18A	119.9(15)
C14A	C19A	H19A	120.1
C18A	C19A	H19A	120.1
C25A	C20A	C21A	119.0(17)
C25A	C20A	P2A	118.4(18)
C21A	C20A	P2A	120.4(19)
C20A	C21A	C22A	120.7(17)
C20A	C21A	H21A	119.6
C22A	C21A	H21A	119.6
C23A	C22A	C21A	117.1(17)

C23A C22A H22A 121.5 C21A C22A H22A 121.5 C24A C23A C22A 116.6(18) C24A C23A H23A 121.7 C22A C23A H23A 121.7 C23A C24A C25A 119.5(17) C23A C24A H24A 120.2 C25A C24A H24A 120.2 C20A C25A C24A 117.8(16) C20A C25A H25A 121.1 C24A C25A H25A 121.1 C25' C20' C21' 119.8(18) C25' C20' P2A 122(3) C21' C20' P2A 118(3) C20' C21' C22' 119.2(18) C20' C21' H21' 120.4 C22' C21' H21' 120.4 C21' C22' C23' 117(2) C21' C22' H22' 121.4 C23' C22' H22' 121.4 C24' C23' C22' 117(2) C24' C23' H23' 121.3 C22' C23' H23' 121.3 C23' C24' C25' 117(2) C23' C24' H24' 121.5 C25' C24' H24' 121.5 C20' C25' C24' 119.7(18) C20' C25' H25' 120.1 C24' C25' H25' 120.1 C27A C26A C31A 120.0 C27A C26A P2A 118.2(18) C31A C26A P2A 121.6(17) C26A C27A C28A 120.0 C26A C27A H27A 120.0 C28A C27A H27A 120.0 C29A C28A C27A 120.0 C29A C28A H28A 120.0 C27A C28A H28A 120.0 C28A C29A C30A 120.0

C28A	C29A	H29A	120.0
C30A	C29A	H29A	120.0
C29A	C30A	C31A	120.0
C29A	C30A	H30A	120.0
C31A	C30A	H30A	120.0
C30A	C31A	C26A	120.0
C30A	C31A	H31A	120.0
C26A	C31A	H31A	120.0
C32A	N2A	C36A	123(2)
C32A	N2A	Au3A	119.1(17)
C36A	N2A	Au3A	118.0(19)
N2A	C32A	C33A	124(2)
N2A	C32A	C37A	120(2)
C33A	C32A	C37A	115(2)
C34A	C33A	C32A	114(3)
C34A	C33A	H33A	123.1
C32A	C33A	H33A	123.1
C35A	C34A	C33A	125(3)
C35A	C34A	H34A	117.5
C33A	C34A	H34A	117.5
C34A	C35A	C36A	118(3)
C34A	C35A	H35A	121.2
C36A	C35A	H35A	121.2
N2A	C36A	C38A	122(3)
N2A	C36A	C35A	117(3)
C38A	C36A	C35A	121(3)
C32A	C37A	P3A	114(2)
C32A	C37A	H37A	108.7
P3A	C37A	H37A	108.7
C32A	C37A	H37B	108.7
P3A	C37A	H37B	108.7
H37A	C37A	H37B	107.6
C36A	C38A	P4A	112(2)
C36A	C38A	H38A	109.2
P4A	C38A	H38A	109.2
C36A	C38A	H38B	109.2
P4A	C38A	H38B	109.2
H38A	C38A	H38B	107.9
C44A	C39A	C40A	120.2(15)

C44A	C39A	P3A	122.5(14)
C40A	C39A	P3A	117.3(15)
C41A	C40A	C39A	119.8(16)
C41A	C40A	H40A	120.1
C39A	C40A	H40A	120.1
C40A	C41A	C42A	120.2(16)
C40A	C41A	H41A	119.9
C42A	C41A	H41A	119.9
C43A	C42A	C41A	119.6(15)
C43A	C42A	H42A	120.2
C41A	C42A	H42A	120.2
C42A	C43A	C44A	120.5(15)
C42A	C43A	H43A	119.8
C44A	C43A	H43A	119.8
C39A	C44A	C43A	119.5(15)
C39A	C44A	H44A	120.2
C43A	C44A	H44A	120.2
C45A	C46A	C47A	115(2)
C45A	C46A	H46A	122.3
C47A	C46A	H46A	122.3
C48A	C47A	C46A	120(2)
C48A	C47A	H47A	120.0
C46A	C47A	H47A	120.0
C49A	C48A	C47A	122(3)
C49A	C48A	H48A	119.0
C47A	C48A	H48A	119.0
C48A	C49A	C50A	122(2)
C48A	C49A	H49A	119.2
C50A	C49A	H49A	119.2
C49A	C50A	C45A	119(2)
C49A	C50A	H50A	120.6
C45A	C50A	H50A	120.6
C52A	C51A	C56A	120.0
C52A	C51A	P4A	122.0(15)
C56A	C51A	P4A	118.0(15)
C51A	C52A	C53A	120.0
C51A	C52A	H52A	120.0
C53A	C52A	H52A	120.0
C54A	C53A	C52A	120.0

C54A	C53A	H53A	120.0
C52A	C53A	H53A	120.0
C53A	C54A	C55A	120.0
C53A	C54A	H54A	120.0
C55A	C54A	H54A	120.0
C56A	C55A	C54A	120.0
C56A	C55A	H55A	120.0
C54A	C55A	H55A	120.0
C55A	C56A	C51A	120.0
C55A	C56A	H56A	120.0
C51A	C56A	H56A	120.0
C58A	C57A	C63A	120.0
C58A	C57A	P4A	121.8(15)
C63A	C57A	P4A	118.0(15)
C59A	C58A	C57A	120.0
C59A	C58A	H58A	120.0
C57A	C58A	H58A	120.0
C60A	C59A	C58A	120.0
C60A	C59A	H59A	120.0
C58A	C59A	H59A	120.0
C59A	C60A	C62A	120.0
C59A	C60A	H60A	120.0
C62A	C60A	H60A	120.0
C63A	C62A	C60A	120.0
C63A	C62A	H62A	120.0
C60A	C62A	H62A	120.0
C62A	C63A	C57A	120.0
C62A	C63A	H63A	120.0
C57A	C63A	H63A	120.0
C1A	N1A	C5A	124(2)
C1A	N1A	Au2A	117.0(18)
C5A	N1A	Au2A	118.4(15)
P1B	Au1B	Cl1B	174.3(3)
P1B	Au1B	Au2B	88.2(2)
Cl1B	Au1B	Au2B	97.07(19)
N1B	Au2B	P3B	166.5(7)
N1B	Au2B	Au3B	77.8(6)
P3B	Au2B	Au3B	89.4(2)
N1B	Au2B	Au1B	83.1(6)

P3B	Au2B Au1B 109.6(2)	
Au3B	Au2B Au1B 160.97(6)	
N2B	Au3B P2B 167.2(6)	
N2B	Au3B Au4B 84.2(5)	
P2B	Au3B Au4B 108.4(3)	
N2B	Au3B Au2B 78.3(5)	
P2B	Au3B Au2B 88.9(3)	
Au4B	Au3B Au2B 158.63(5)	
P4B	Au4B Cl2B 176.9(3)	
P4B	Au4B Au3B 88.6(2)	
Cl2B	Au4B Au3B 90.8(2)	
C5B	C4B C3B 121(3)	
C5B	C4B H4B 119.3	
C3B	C4B H4B 119.3	
C2B	C3B C4B 115(3)	
C2B	C3B H3B 122.3	
C4B	C3B H3B 122.3	
C3B	C2B C1B 127(3)	
C3B	C2B H2B 116.7	
C1B	C2B H2B 116.7	
C2B	C1B N1B 118(3)	
C2B	C1B C6B 131(3)	
N1B	C1B C6B 111(2)	
C13B	C8B C9B 120.5(15)	
C13B	C8B P1B 120.3(13)	
C9B	C8B P1B 119.2(13)	
C10B	C9B C8B 119.0(15)	
C10B	C9B H9B 120.5	
C8B	C9B H9B 120.5	
C11B	C10B C9B 119.1(15)	
C11B	C10B H10B 120.4	
C9B	C10B H10B 120.4	
C12B	C11B C10B 123.0(15)	
C12B	C11B H11B 118.5	
C10B	C11B H11B 118.5	
C11B	C12B C13B 116.6(14)	
C11B	C12B H12B 121.7	
C13B	C12B H12B 121.7	
C8B	C13B C12B 121.5(14)	

C8B	C13B	H13B	119.2
C12B	C13B	H13B	119.2
C19B	C14B	C15B	120.0
C19B	C14B	P1B	120.1(11)
C15B	C14B	P1B	119.8(11)
C14B	C19B	C18B	120.0
C14B	C19B	H19B	120.0
C18B	C19B	H19B	120.0
C17B	C18B	C19B	120.0
C17B	C18B	H18B	120.0
C19B	C18B	H18B	120.0
C16B	C17B	C18B	120.0
C16B	C17B	H17B	120.0
C18B	C17B	H17B	120.0
C17B	C16B	C15B	120.0
C17B	C16B	H16B	120.0
C15B	C16B	H16B	120.0
C16B	C15B	C14B	120.0
C16B	C15B	H15B	120.0
C14B	C15B	H15B	120.0
C32B	C33B	C34B	116(3)
C32B	C33B	H33B	122.2
C34B	C33B	H33B	122.2
C35B	C34B	C33B	118(3)
C35B	C34B	H34B	121.0
C33B	C34B	H34B	121.0
C36B	C35B	C34B	122(3)
C36B	C35B	H35B	119.1
C34B	C35B	H35B	119.1
C44B	C39B	C40B	119.2(15)
C44B	C39B	P3B	122.0(15)
C40B	C39B	P3B	118.0(15)
C39B	C40B	C41B	119.5(16)
C39B	C40B	H40B	120.2
C41B	C40B	H40B	120.2
C42B	C41B	C40B	119.5(17)
C42B	C41B	H41B	120.2
C40B	C41B	H41B	120.2
C43B	C42B	C41B	119.0(16)

C43B	C42B	H42B 120.5
C41B	C42B	H42B 120.5
C44B	C43B	C42B 119.8(15)
C44B	C43B	H43B 120.1
C42B	C43B	H43B 120.1
C39B	C44B	C43B 120.0(15)
C39B	C44B	H44B 120.0
C43B	C44B	H44B 120.0
C50B	C45B	C46B 120.3(14)
C50B	C45B	P3B 118.6(13)
C46B	C45B	P3B 121.1(13)
C45B	C46B	C47B 120.4(15)
C45B	C46B	H46B 119.8
C47B	C46B	H46B 119.8
C46B	C47B	C48B 118.5(16)
C46B	C47B	H47B 120.7
C48B	C47B	H47B 120.7
C47B	C48B	C49B 122.0(16)
C47B	C48B	H48B 119.0
C49B	C48B	H48B 119.0
C48B	C49B	C50B 118.6(15)
C48B	C49B	H49B 120.7
C50B	C49B	H49B 120.7
C45B	C50B	C49B 120.2(14)
C45B	C50B	H50B 119.9
C49B	C50B	H50B 119.9
C56B	C51B	C52B 121.3(16)
C56B	C51B	P4B 115.7(16)
C52B	C51B	P4B 123.0(16)
C51B	C52B	C53B 118.7(16)
C51B	C52B	H52B 120.6
C53B	C52B	H52B 120.6
C54B	C53B	C52B 119.8(16)
C54B	C53B	H53B 120.1
C52B	C53B	H53B 120.1
C53B	C54B	C55B 120.8(16)
C53B	C54B	H54B 119.6
C55B	C54B	H54B 119.6
C56B	C55B	C54B 118.9(16)

C56B	C55B	H55B 120.6
C54B	C55B	H55B 120.6
C55B	C56B	C51B 118.7(16)
C55B	C56B	H56B 120.7
C51B	C56B	H56B 120.7
C62B	C57B	C58B 118.3(15)
C62B	C57B	P4B 118.2(14)
C58B	C57B	P4B 123.6(14)
C59B	C58B	C57B 120.4(15)
C59B	C58B	H58B 119.8
C57B	C58B	H58B 119.8
C60B	C59B	C58B 120.3(16)
C60B	C59B	H59B 119.9
C58B	C59B	H59B 119.9
C59B	C60B	C61B 119.7(16)
C59B	C60B	H60B 120.1
C61B	C60B	H60B 120.1
C62B	C61B	C60B 118.6(15)
C62B	C61B	H61B 120.7
C60B	C61B	H61B 120.7
C57B	C62B	C61B 121.9(15)
C57B	C62B	H62B 119.0
C61B	C62B	H62B 119.0
C5B	N1B	C1B 118(2)
C5B	N1B	Au2B 121.0(17)
C1B	N1B	Au2B 120.0(17)
C36B	N2B	C32B 122(2)
C36B	N2B	Au3B 120.2(17)
C32B	N2B	Au3B 118.2(16)
C6A	P1A	C14A 104.3(12)
C6A	P1A	C8A 100.2(10)
C14A	P1A	C8A 105.9(9)
C6A	P1A	Au1A 118.4(8)
C14A	P1A	Au1A 111.0(7)
C8A	P1A	Au1A 115.5(7)
C20A	P2A	C26A 106.4(18)
C20A	P2A	C7A 108.7(14)
C26A	P2A	C7A 106.0(14)
C26A	P2A	C20' 106.4(17)

C7A	P2A	C20' 9	99(2)
C20A	P2A	Au3A	110.1(12)
C26A	P2A	Au3A	117.1(11)
C7A	P2A	Au3A	108.2(10)
C20'	P2A	Au3A	118(2)
C39A	P3A	C45A	106.3(12)
C39A	P3A	C37A	107.7(10)
C45A	P3A	C37A	102.4(12)
C39A	P3A	Au2A	116.9(8)
C45A	P3A	Au2A	114.3(9)
C37A	P3A	Au2A	108.1(9)
C57A	P4A	C51A	110.1(12)
C57A	P4A	C38A	101.3(13)
C51A	P4A	C38A	106.1(13)
C57A	P4A	Au4A	113.7(9)
C51A	P4A	Au4A	111.7(9)
C38A	P4A	Au4A	113.1(9)
C4A	C5A	N1A	117(2)
C4A	C5A	C7A	125(3)
N1A	C5A	C7A	118(2)
C1A	C6A	P1A	109.2(17)
C1A	C6A	H6AA	109.9
P1A	C6A	H6AA	109.9
C1A	C6A	H6AB	109.9
P1A	C6A	H6AB	109.9
H6AA	C6A	H6AI	3 108.3
C5A	C7A	P2A	112(2)
C5A	C7A	H7AA	109.2
P2A	C7A	H7AA	109.2
C5A	C7A	H7AB	109.2
P2A	C7A	H7AB	109.2
H7AA	C7A	H7AI	3 107.9
C9A	C8A	C13A	120.0
C9A	C8A	P1A	123.4(11)
C13A	C8A	P1A	116.4(11)
C8A	C9A	C10A	120.0
C8A	C9A	H9A	120.0
C10A	C9A	H9A	120.0
C11A	C10A	C9A	120.0
CIIA	C10A	H10A	A 120.0
------	------	------	-----------
C9A	C10A	H10A	120.0
C10A	C11A	C12A	120.0
C10A	C11A	H11A	A 120.0
C12A	C11A	H11A	A 120.0
C11A	C12A	C13A	120.0
C11A	C12A	H12A	A 120.0
C13A	C12A	H12A	A 120.0
C12A	C13A	C8A	120.0
C12A	C13A	H13A	A 120.0
C8A	C13A	H13A	120.0
C46A	C45A	C50A	122(2)
C46A	C45A	P3A	119.1(19)
C50A	C45A	P3A	117.7(19)
C8B	P1B	C14B	107.8(10)
C8B	P1B	C6B	107.5(14)
C14B	P1B	C6B	107.4(12)
C8B	P1B	Au1B	108.5(8)
C14B	P1B	Au1B	115.9(8)
C6B	P1B	Au1B	109.4(10)
C20B	P2B	C26B	106.9(16)
C20B	P2B	C7B	97.8(15)
C26B	P2B	C7B	104.9(15)
C20B	P2B	Au3B	123.4(12)
C26B	P2B	Au3B	114.2(12)
C7B	P2B	Au3B	107.0(10)
C37B	P3B	C39B	105.7(12)
C37B	P3B	C45B	101.0(12)
C39B	P3B	C45B	109.0(12)
C37B	P3B	Au2B	109.1(9)
C39B	P3B	Au2B	115.9(8)
C45B	P3B	Au2B	114.7(7)
C51B	P4B	C57B	108.5(14)
C51B	P4B	C38B	104.8(13)
C57B	P4B	C38B	102.1(13)
C51B	P4B	Au4B	113.0(9)
C57B	P4B	Au4B	115.5(7)
C38B	P4B	Au4B	111.9(9)
N1B	C5B	C4B	120(3)

N1B	C5B	C7B 122(2)
C4B	C5B	C7B 118(3)
C1B	C6B	P1B 116(2)
C1B	C6B	H6BA 108.4
P1B	C6B	H6BA 108.4
C1B	C6B	H6BB 108.4
P1B	C6B	H6BB 108.4
H6BA	C6B	H6BB 107.4
C5B	C7B	P2B 110(2)
C5B	C7B	H7BA 109.6
P2B	C7B	H7BA 109.6
C5B	C7B	H7BB 109.6
P2B	C7B	H7BB 109.6
H7BA	C7B	H7BB 108.1
N2B	C32B	C33B 123(2)
N2B	C32B	C37B 119(2)
C33B	C32B	C37B 118(2)
N2B	C36B	C35B 120(3)
N2B	C36B	C38B 121(2)
C35B	C36B	C38B 119(3)
C32B	C37B	P3B 112(2)
C32B	C37B	H37C 109.2
P3B	C37B	H37C 109.2
C32B	C37B	H37D 109.2
P3B	C37B	H37D 109.2
H37C	C37B	H37D 107.9
C36B	C38B	P4B 114(2)
C36B	C38B	H38C 108.7
P4B	C38B	H38C 108.7
C36B	C38B	H38D 108.7
P4B	C38B	H38D 108.7
H38C	C38B	H38D 107.6
C21B	C20B	C25B 120.0
C21B	C20B	P2B 119(2)
C25B	C20B	P2B 121(2)
C22B	C21B	C20B 120.0
C22B	C21B	H21B 120.0
C20B	C21B	H21B 120.0
C21B	C22B	C23B 120.0

C21B	C22B	H22B	120.0
C23B	C22B	H22B	120.0
C24B	C23B	C22B	120.0
C24B	C23B	H23B	120.0
C22B	C23B	H23B	120.0
C23B	C24B	C25B	120.0
C23B	C24B	H24B	120.0
C25B	C24B	H24B	120.0
C24B	C25B	C20B	120.0
C24B	C25B	H25B	120.0
C20B	C25B	H25B	120.0
C27B	C26B	C31B	120.0
C27B	C26B	P2B	120(2)
C31B	C26B	P2B	119(2)
C26B	C27B	C28B	120.0
C26B	C27B	H27B	120.0
C28B	C27B	H27B	120.0
C29B	C28B	C27B	120.0
C29B	C28B	H28B	120.0
C27B	C28B	H28B	120.0
C28B	C29B	C30B	120.0
C28B	C29B	H29B	120.0
C30B	C29B	H29B	120.0
C31B	C30B	C29B	120.0
C31B	C30B	H30B	120.0
C29B	C30B	H30B	120.0
C30B	C31B	C26B	120.0
C30B	C31B	H31B	120.0
C26B	C31B	H31B	120.0
F1C	Sb1C	F4C	90.6(8)
F1C	Sb1C	F3C	86.7(8)
F4C	Sb1C	F3C	89.1(8)
F1C	Sb1C	F6C	179.7(8)
F4C	Sb1C	F6C	89.1(8)
F3C	Sb1C	F6C	93.2(7)
F1C	Sb1C	F5C	88.9(8)
F4C	Sb1C	F5C	90.1(8)
F3C	Sb1C	F5C	175.5(8)
F6C	Sb1C	F5C	91.2(7)

FIC	Sb1C	F2C	89.8(8)
F4C	Sb1C	F2C	178.9(9)
F3C	Sb1C	F2C	89.9(8)
F6C	Sb1C	F2C	90.5(7)
F5C	Sb1C	F2C	90.9(8)
F6D	Sb1D	F2D	93.2(11)
F6D	Sb1D	F3D	88.6(9)
F2D	Sb1D	F3D	92.0(9)
F6D	Sb1D	F1D	177.3(9)
F2D	Sb1D	F1D	88.7(9)
F3D	Sb1D	F1D	93.2(9)
F6D	Sb1D	F4D	89.3(9)
F2D	Sb1D	F4D	177.3(9)
F3D	Sb1D	F4D	89.0(8)
F1D	Sb1D	F4D	88.7(8)
F6D	Sb1D	F5D	90.9(9)
F2D	Sb1D	F5D	91.9(10)
F3D	Sb1D	F5D	176.1(9)
F1D	Sb1D	F5D	87.2(8)
F4D	Sb1D	F5D	87.1(8)
F4E	Sb1E	F2E	172(2)
F4E	Sb1E	F1E	87.2(17)
F2E	Sb1E	F1E	89.2(16)
F4E	Sb1E	F3E	86.5(17)
F2E	Sb1E	F3E	86.7(17)
F1E	Sb1E	F3E	93.3(17)
F4E	Sb1E	F5E	94.0(18)
F2E	Sb1E	F5E	92.9(18)
F1E	Sb1E	F5E	88.1(17)
F3E	Sb1E	F5E	178.5(17)
F4E	Sb1E	F6E	93(2)
F2E	Sb1E	F6E	91(2)
F1E	Sb1E	F6E	174(2)
F3E	Sb1E	F6E	93(2)
F5E	Sb1E	F6E	86(2)
F5E'	Sb2E	F6E'	95(2)
F5E'	Sb2E	F1E'	90.9(14)
F6E'	Sb2E	F1E'	172(2)
F5E'	Sb2E	F2E'	91.1(17)

F6E'	Sb2E	F2E'	87(2)
F1E'	Sb2E	F2E'	88.2(14)
F5E'	Sb2E	F3E'	175.9(18)
F6E'	Sb2E	F3E'	86(2)
F1E'	Sb2E	F3E'	88.2(16)
F2E'	Sb2E	F3E'	84.9(19)
F5E'	Sb2E	F4E'	90.9(16)
F6E'	Sb2E	F4E'	94(2)
F1E'	Sb2E	F4E'	91.2(13)
F2E'	Sb2E	F4E'	177.9(17)
F3E'	Sb2E	F4E'	93.1(17)
F2F	Sb1F	F4F	177.9(16)
F2F	Sb1F	F1F	92.5(14)
F4F	Sb1F	F1F	86.7(13)
F2F	Sb1F	F6F	91.3(13)
F4F	Sb1F	F6F	89.5(13)
F1F	Sb1F	F6F	176.1(14)
F2F	Sb1F	F5F	89.5(14)
F4F	Sb1F	F5F	92.5(15)
F1F	Sb1F	F5F	92.1(12)
F6F	Sb1F	F5F	88.7(12)
F2F	Sb1F	F3F	85.5(14)
F4F	Sb1F	F3F	92.6(14)
F1F	Sb1F	F3F	87.8(12)
F6F	Sb1F	F3F	91.7(12)
F5F	Sb1F	F3F	174.9(15)
F2F'	Sb2F	F4F'	178.7(14)
F2F'	Sb2F	F1F'	94.1(14)
F4F'	Sb2F	F1F'	87.2(12)
F2F'	Sb2F	F6F'	91.6(14)
F4F'	Sb2F	F6F'	87.1(13)
F1F'	Sb2F	F6F'	174.1(14)
F2F'	Sb2F	F5F'	88.9(14)
F4F'	Sb2F	F5F'	91.0(14)
F1F'	Sb2F	F5F'	91.8(12)
F6F'	Sb2F	F5F'	89.8(13)
F2F'	Sb2F	F3F'	85.7(14)
F4F'	Sb2F	F3F'	94.4(12)
F1F'	Sb2F	F3F'	86.9(12)

F6F' Sb2F F3F' 91.9(13) F5F' Sb2F F3F' 174.4(15)

Table 3. Torsion angles [°] for **Complex 3**.

N1A C1A C2A C3A 1(5) C6A C1A C2A C3A -178(3) C1A C2A C3A C4A -5(5) C2A C3A C4A C5A 6(5) C19A C14A C15A C16A 5(5) P1A C14A C15A C16A 179(2) C14A C15A C16A C17A -1(5) C15A C16A C17A C18A -3(5) C16A C17A C18A C19A 3(5) C15A C14A C19A C18A -5(4) P1A C14A C19A C18A -179(2) C17A C18A C19A C14A 1(5) C25A C20A C21A C22A 14(7) P2A C20A C21A C22A 177(3) C20A C21A C22A C23A 6(6) C21A C22A C23A C24A -30(5) C22A C23A C24A C25A 34(5) C21A C20A C25A C24A -10(6) P2A C20A C25A C24A -174(3) C23A C24A C25A C20A -13(6) C25' C20' C21' C22' -4(11) P2A C20' C21' C22' 172(5) C20' C21' C22' C23' -16(10) C21' C22' C23' C24' 35(8) C22' C23' C24' C25' -34(8) C21' C20' C25' C24' 5(12) P2A C20' C25' C24' -170(6) C23' C24' C25' C20' 13(10) C31A C26A C27A C28A 0.0 P2A C26A C27A C28A -175(2) C26A C27A C28A C29A 0.0 C27A C28A C29A C30A 0.0

C28A C29A C30A C31A 0.0 C29A C30A C31A C26A 0.0 C27A C26A C31A C30A 0.0 P2A C26A C31A C30A 175(2) C36A N2A C32A C33A -6(5) Au3A N2A C32A C33A 178(2) C36A N2A C32A C37A -172(3) Au3A N2A C32A C37A 12(4) N2A C32A C33A C34A 7(5) C37A C32A C33A C34A 174(3) C32A C33A C34A C35A -7(5) C33A C34A C35A C36A 5(4) C32A N2A C36A C38A 174(3) Au3A N2A C36A C38A -10(4) C32A N2A C36A C35A 3(4) Au3A N2A C36A C35A 179.2(19) C34A C35A C36A N2A -2(4) C34A C35A C36A C38A -174(3) N2A C32A C37A P3A 76(3) C33A C32A C37A P3A -91(3) N2A C36A C38A P4A 86(3) C35A C36A C38A P4A -103(3) C44A C39A C40A C41A -6(5) P3A C39A C40A C41A 176(3) C39A C40A C41A C42A 3(6) C40A C41A C42A C43A 1(5) C41A C42A C43A C44A -1(5) C40A C39A C44A C43A 6(4) P3A C39A C44A C43A -176(2) C42A C43A C44A C39A -2(4) C45A C46A C47A C48A 7(4) C46A C47A C48A C49A -4(4) C47A C48A C49A C50A 1(4) C48A C49A C50A C45A -3(4) C56A C51A C52A C53A 0.0 P4A C51A C52A C53A 177.7(17) C51A C52A C53A C54A 0.0 C52A C53A C54A C55A 0.0 C53A C54A C55A C56A 0.0

C54A C55A C56A C51A 0.0 C52A C51A C56A C55A 0.0 P4A C51A C56A C55A -177.8(17) C63A C57A C58A C59A 0.0 P4A C57A C58A C59A 174.5(18) C57A C58A C59A C60A 0.0 C58A C59A C60A C62A 0.0 C59A C60A C62A C63A 0.0 C60A C62A C63A C57A 0.0 C58A C57A C63A C62A 0.0 P4A C57A C63A C62A -174.7(17) C2A C1A N1A C5A 2(4) C6A C1A N1A C5A -179(2) C2A C1A N1A Au2A -171(2) C6A C1A N1A Au2A 8(3) C5B C4B C3B C2B 5(5) C4B C3B C2B C1B -4(5) C3B C2B C1B N1B 2(5) C3B C2B C1B C6B 178(4) C13B C8B C9B C10B 0(5) P1B C8B C9B C10B -179(2) C8B C9B C10B C11B -2(5) C9B C10B C11B C12B 0(5) C10B C11B C12B C13B 4(5) C9B C8B C13B C12B 4(4) P1B C8B C13B C12B -177(2) C11B C12B C13B C8B -6(4) C15B C14B C19B C18B 0.0 P1B C14B C19B C18B 177.6(15) C14B C19B C18B C17B 0.0 C19B C18B C17B C16B 0.0 C18B C17B C16B C15B 0.0 C17B C16B C15B C14B 0.0 C19B C14B C15B C16B 0.0 P1B C14B C15B C16B -177.6(15) C32B C33B C34B C35B -1(4) C33B C34B C35B C36B -1(4) C44B C39B C40B C41B 5(5) P3B C39B C40B C41B -165(3)

C39B C40B C41B C42B -17(6) C40B C41B C42B C43B 16(5) C41B C42B C43B C44B -2(5) C40B C39B C44B C43B 9(4) P3B C39B C44B C43B 179(2) C42B C43B C44B C39B -10(4) C50B C45B C46B C47B -2(5) P3B C45B C46B C47B 177(3) C45B C46B C47B C48B 1(5) C46B C47B C48B C49B -1(6) C47B C48B C49B C50B 2(5) C46B C45B C50B C49B 3(4) P3B C45B C50B C49B -176(2) C48B C49B C50B C45B -3(5) C56B C51B C52B C53B 6(5) P4B C51B C52B C53B -176(3) C51B C52B C53B C54B -1(5) C52B C53B C54B C55B 3(6) C53B C54B C55B C56B -10(6) C54B C55B C56B C51B 16(5) C52B C51B C56B C55B -14(5) P4B C51B C56B C55B 168(3) C62B C57B C58B C59B -3(5) P4B C57B C58B C59B 177(2) C57B C58B C59B C60B 4(5) C58B C59B C60B C61B -8(5) C59B C60B C61B C62B 10(5) C58B C57B C62B C61B 5(5) P4B C57B C62B C61B -175(2) C60B C61B C62B C57B -9(5) C2B C1B N1B C5B -2(4) C6B C1B N1B C5B -178(3) C2B C1B N1B Au2B 166(2) C6B C1B N1B Au2B -10(3) C19A C14A P1A C6A -88(2) C15A C14A P1A C6A 99(2) C19A C14A P1A C8A 167(2) C15A C14A P1A C8A -6(3) C19A C14A P1A Au1A 41(2)

C15A	C14A	P1A	Au1A -132(2)
C25A	C20A	P2A	C26A -100(4)
C21A	C20A	P2A	C26A 97(4)
C25A	C20A	P2A	C7A 147(3)
C21A	C20A	P2A	C7A -16(4)
C25A	C20A	P2A	Au3A 28(4)
C21A	C20A	P2A	Au3A -135(3)
C27A	C26A	P2A	C20A -34.4(19)
C31A	C26A	P2A	C20A 150.3(17)
C27A	C26A	P2A	C7A 81.2(18)
C31A	C26A	P2A	C7A -94.2(19)
C27A	C26A	P2A	C20' -24(3)
C31A	C26A	P2A	C20' 161(3)
C27A	C26A	P2A	Au3A -157.9(12)
C31A	C26A	P2A	Au3A 27(2)
C44A	C39A	P3A	C45A 88(3)
C40A	C39A	P3A	C45A -94(3)
C44A	C39A	P3A	C37A -21(3)
C40A	C39A	P3A	C37A 157(2)
C44A	C39A	P3A	Au2A -143(2)
C40A	C39A	P3A	Au2A 35(3)
C32A	C37A	P3A	C39A -179(2)
C32A	C37A	P3A	C45A 69(2)
C32A	C37A	P3A	Au2A -52(2)
C58A	C57A	P4A	C51A 141.2(14)
C63A	C57A	P4A	C51A -44.2(16)
C58A	C57A	P4A	C38A -106.8(15)
C63A	C57A	P4A	C38A 67.8(15)
C58A	C57A	P4A	Au4A 14.9(16)
C63A	C57A	P4A	Au4A -170.5(10)
C52A	C51A	P4A	C57A 98.1(16)
C56A	C51A	P4A	C57A -84.2(15)
C52A	C51A	P4A	C38A -10.8(17)
C56A	C51A	P4A	C38A 166.9(14)
C52A	C51A	P4A	Au4A -134.5(12)
C56A	C51A	P4A	Au4A 43.2(14)
C36A	C38A	P4A	C57A 71(2)
C36A	C38A	P4A	C51A -174(2)
C36A	C38A	P4A	Au4A -51(2)

C3A	C4A	C5A	N1A	-3(4)
C3A	C4A	C5A	C7A	173(3)
C1A	N1A	C5A	C4A	-1(4)
Au2A	N1A	C5A	C4A	172(2)
C1A	N1A	C5A	C7A	-178(3)
Au2A	N1A	C5A	C7A	-5(3)
N1A	C1A	C6A	P1A	73(3)
C2A	C1A	C6A	P1A	-108(2)
C14A	P1A	C6A	C1A	71.5(18)
C8A	P1A	C6A	C1A	-179.0(16)
AulA	P1A	C6A	C1A	-52.5(19)
C4A	C5A	C7A	P2A	-91(3)
N1A	C5A	C7A	P2A	85(3)
C20A	P2A	C7A	C5A	-167(2)
C26A	P2A	C7A	C5A	79(2)
C20'	P2A	C7A (C5A	-171(3)
Au3A	P2A	C7A	C5A	-47(2)
C6A	P1A	C8A	C9A	-24.3(16)
C14A	P1A	C8A	C9A	83.9(15)
AulA	P1A	C8A	C9A	-152.8(10)
C6A	P1A	C8A	C13A	160.9(13)
C14A	P1A	C8A	C13A	-90.9(14)
AulA	P1A	C8A	C13A	32.5(13)
C13A	C8A	C9A	C10A	0.0
P1A	C8A	C9A	C10A	-174.6(17)
C8A	C9A	C10A	C11A	0.0
C9A	C10A	C11A	C12A	A 0.0
C10A	C11A	C12A	C13	A 0.0
C11A	C12A	C13A	C8A	0.0
C9A	C8A	C13A	C12A	0.0
P1A	C8A	C13A	C12A	175.0(15)
C47A	C46A	C45A	C50	A -8(4)
C47A	C46A	C45A	P3A	-175(2)
C49A	C50A	C45A	C46	A 6(4)
C49A	C50A	C45A	P3A	174(2)
C39A	P3A	C45A	C46A	-32(2)
C37A	P3A	C45A	C46A	80(2)
Au2A	P3A	C45A	C46A	A -162.9(19)
C39A	P3A	C45A	C50A	160(2)

C37A	P3A	C45A	C50A	-87(2)
Au2A	P3A	C45A	C50A	. 29(2)
C13B	C8B	P1B	C14B	-173(2)
C9B	C8B	P1B	C14B	7(3)
C13B	C8B	P1B	C6B	72(3)
C9B	C8B	P1B	C6B ·	-109(3)
C13B	C8B	P1B	Au1B	-46(3)
C9B	C8B	P1B	Au1B	133(2)
C19B	C14B	P1B	C8B	-79.5(15)
C15B	C14B	P1B	C8B	98.1(15)
C19B	C14B	P1B	C6B	36.1(16)
C15B	C14B	P1B	C6B	-146.3(15)
C19B	C14B	P1B	Au1B	158.7(9)
C15B	C14B	P1B	Au1B	-23.7(14)
C44B	C39B	P3B	C37B	28(3)
C40B	C39B	P3B	C37B	-162(3)
C44B	C39B	P3B	C45B	-79(3)
C40B	C39B	P3B	C45B	90(3)
C44B	C39B	P3B	Au2B	149(2)
C40B	C39B	P3B	Au2B	-41(3)
C50B	C45B	P3B	C37B	96(2)
C46B	C45B	P3B	C37B	-84(2)
C50B	C45B	P3B	C39B	-153(2)
C46B	C45B	P3B	C39B	27(3)
C50B	C45B	P3B	Au2B	-21(2)
C46B	C45B	P3B	Au2B	159(2)
C56B	C51B	P4B	C57B	98(3)
C52B	C51B	P4B	C57B	-80(3)
C56B	C51B	P4B	C38B	-154(3)
C52B	C51B	P4B	C38B	29(3)
C56B	C51B	P4B	Au4B	-31(3)
C52B	C51B	P4B	Au4B	151(3)
C62B	C57B	P4B	C51B	-134(2)
C58B	C57B	P4B	C51B	46(3)
C62B	C57B	P4B	C38B	116(2)
C58B	C57B	P4B	C38B	-64(3)
C62B	C57B	P4B	Au4B	-5(3)
C58B	C57B	P4B	Au4B	175(2)
C1B	N1B	C5B	C4B	3(4)

Au2B	N1B	C5B	C4B	-165(2)
C1B	N1B	C5B	C7B	-179(3)
Au2B	N1B	C5B	C7B	13(4)
C3B	C4B	C5B	N1B	-5(5)
C3B	C4B	C5B	C7B	177(3)
C2B	C1B	C6B	P1B	104(4)
N1B	C1B	C6B	P1B	-81(3)
C8B	P1B	C6B	C1B	-55(3)
C14B	P1B	C6B	C1B	-171(2)
Au1B	P1B	C6B	C1B	63(2)
N1B	C5B	C7B	P2B	-89(3)
C4B	C5B	C7B	P2B	90(3)
C20B	P2B	C7B	C5B	-90(2)
C26B	P2B	C7B	C5B	160(2)
Au3B	P2B	C7B	C5B	38(2)
C36B	N2B	C32B	C33E	3 -3(4)
Au3B	N2B	C32B	C33E	B 178(2)
C36B	N2B	C32B	C37E	3 171(3)
Au3B	N2B	C32B	C37E	3 -8(3)
C34B	C33B	C32B	N2B	2(4)
C34B	C33B	C32B	C371	B -171(3)
C32B	N2B	C36B	C35E	B 1(4)
Au3B	N2B	C36B	C35E	3 -180(2)
C32B	N2B	C36B	C38E	3 -174(3)
Au3B	N2B	C36B	C38E	3 5(4)
C34B	C35B	C36B	N2B	1(5)
C34B	C35B	C36B	C381	B 176(3)
N2B	C32B	C37B	P3B	-80(3)
C33B	C32B	C37B	P3B	94(3)
C39B	P3B	C37B	C32B	178.7(19)
C45B	P3B	C37B	C32B	-68(2)
Au2B	P3B	C37B	C32B	53(2)
N2B	C36B	C38B	P4B	-82(3)
C35B	C36B	C38B	P4B	103(3)
C51B	P4B	C38B	C36B	171(2)
C57B	P4B	C38B	C36B	-76(2)
Au4B	P4B	C38B	C36B	48(2)
C26B	P2B	C20B	C21B	-128.3(19)
C7B	P2B	C20B	C21B	123.4(17)

Au3B P2B C20B C21B 7(2) C26B P2B C20B C25B 49(2) C7B P2B C20B C25B -59.0(19) Au3B P2B C20B C25B -175.4(12) C25B C20B C21B C22B 0.0 P2B C20B C21B C22B 178(2) C20B C21B C22B C23B 0.0 C21B C22B C23B C24B 0.0 C22B C23B C24B C25B 0.0 C23B C24B C25B C20B 0.0 C21B C20B C25B C24B 0.0 P2B C20B C25B C24B -177(2) C20B P2B C26B C27B -165.2(19) C7B P2B C26B C27B -62(2) Au3B P2B C26B C27B 55(2) C20B P2B C26B C31B 12(2) C7B P2B C26B C31B 115(2) Au3B P2B C26B C31B -128.4(16) C31B C26B C27B C28B 0.0 P2B C26B C27B C28B 177(3) C26B C27B C28B C29B 0.0 C27B C28B C29B C30B 0.0 C28B C29B C30B C31B 0.0 C29B C30B C31B C26B 0.0 C27B C26B C31B C30B 0.0 P2B C26B C31B C30B -177(3)

Symetry operations

- 1 'x, y, z' 2 '-x, y+1/2, -z+1/2' 3 '-x, -y, -z' 4 'x, x 1/2 z 1/2'
- 4 'x, -y-1/2, z-1/2'

Complex 5

	P P		
Identification code	Complex 5		
Empirical formula	C66 H60 Au4 B2 Cl2 F8 N4 P4		
Formula weight	2065.44		
Temperature	150.0 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/n$		
Unit cell dimensions	a = 15.1241(12) Å	<i>α</i> = 90°.	
	b = 10.3724(8) Å	β=101.162(3)°.	
	c = 20.8748(16) Å	$\gamma = 90^{\circ}$.	
Volume	3212.8(4) Å ³		
Ζ	2		
Density (calculated)	2.135 Mg/m ³		
Absorption coefficient	9.356 mm ⁻¹		
F(000)	1952		
Crystal size	$0.17 \text{ x } 0.06 \text{ x } 0.04 \text{ mm}^3$		
Theta range for data collection	0.994 to 25.027°.		
Index ranges	-18<=h<=17, -12<=k<=12, 0	<=l<=24	
Reflections collected	11200		
Independent reflections	5730 [R(int) = 0.0542]		
Completeness to theta = 25.027°	99.8 %		
Absorption correction	Semi-empirical from equivale	ents	
Max. and min. transmission	0.046758 and 0.012757		
Refinement method	Full-matrix least-squares on F	72	
Data / restraints / parameters	5730 / 16 / 360		
Goodness-of-fit on F ²	1.126		
Final R indices [I>2sigma(I)]	R1 = 0.0596, wR2 = 0.1272		
R indices (all data)	R1 = 0.0724, wR2 = 0.1329		
Extinction coefficient	n/a		
Largest diff. peak and hole	2.716 and -1.559 e.Å ⁻³		

 Table 1. Crystal data and structure refinement for Complex 5.

	Х	у	Z	U(eq)
Au(1)	5415(1)	5951(1)	4608(1)	29(1)
Au(2)	7514(1)	5142(1)	5208(1)	32(1)
Cl(1)	7486(3)	3080(4)	5609(2)	40(1)
P(1)	4663(3)	5751(4)	6073(2)	28(1)
P(2)	7789(3)	7094(4)	4836(2)	33(1)
N(1)	5627(7)	7748(12)	5096(6)	29(3)
C(1)	3832(6)	5438(10)	6578(5)	30(3)
C(6)	3025(7)	6113(10)	6511(5)	46(4)
C(5)	2411(6)	5807(11)	6904(6)	53(5)
C(4)	2604(7)	4827(12)	7364(5)	47(5)
C(3)	3411(8)	4153(10)	7431(5)	48(5)
C(2)	4025(6)	4458(10)	7038(5)	41(4)
C(7)	5713(5)	5982(9)	6638(4)	29(3)
C(8)	6448(6)	5188(9)	6618(5)	35(4)
C(9)	7258(5)	5393(10)	7050(5)	44(4)
C(10)	7334(5)	6391(11)	7501(5)	46(4)
C(11)	6600(7)	7185(9)	7521(5)	45(4)
C(12)	5789(6)	6981(9)	7089(5)	34(4)
C(13)	4375(10)	7348(14)	5686(7)	29(3)
C(14)	5151(10)	8126(14)	5557(7)	32(3)
C(15)	5350(11)	9291(15)	5878(8)	35(4)
C(16)	6020(11)	10069(16)	5728(8)	40(4)
C(17)	6485(10)	9685(15)	5277(7)	33(4)
C(18)	6286(9)	8525(14)	4947(7)	31(3)
C(19)	6808(10)	8087(16)	4456(8)	35(4)
C(20)	8389(7)	8108(10)	5482(4)	40(4)
C(25)	8835(8)	9205(11)	5331(4)	51(5)
C(24)	9250(8)	10024(9)	5826(6)	60(5)
C(23)	9219(8)	9745(11)	6473(5)	53(5)
C(22)	8773(9)	8648(12)	6624(4)	55(5)
C(21)	8358(8)	7830(10)	6129(5)	49(5)
C(26)	8501(6)	6958(11)	4233(4)	34(4)
C(31)	9202(7)	6074(11)	4377(5)	51(5)
C(30)	9809(7)	5938(11)	3959(6)	59(5)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **Complex 5**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(29)	9714(7)	6684(12)	3397(5)	44(4)
C(28)	9012(8)	7567(11)	3253(4)	45(4)
C(27)	8406(7)	7704(10)	3670(5)	46(4)
F(1)	4643(9)	1628(12)	7783(6)	74(4)
F(2)	4187(8)	306(17)	6930(6)	93(5)
F(3)	5607(7)	164(12)	7472(6)	68(3)
F(4)	5173(9)	1887(12)	6837(6)	76(4)
B(1)	4905(13)	990(20)	7260(10)	45(5)
N(2)	7840(15)	10900(20)	4039(10)	76(5)
C(32)	9129(15)	12520(30)	4339(12)	80(6)
C(33)	8431(16)	11600(20)	4164(12)	68(5)

Table 3. Bond lengths [Å] and angles $[\circ]$ for Complex 5.

Au(1)-Au(1)#1	2.9905(12)
Au(1)-Au(2)	3.2881(9)
Au(1)-P(1)#1	2.255(4)
Au(1)-N(1)	2.119(12)
Au(2)-Cl(1)	2.299(4)
Au(2)-P(2)	2.237(4)
P(1)-C(1)	1.820(8)
P(1)-C(7)	1.802(8)
P(1)-C(13)	1.857(16)
P(2)-C(19)	1.853(16)
P(2)-C(20)	1.811(9)
P(2)-C(26)	1.813(8)
N(1)-C(14)	1.367(13)
N(1)-C(18)	1.363(13)
C(1)-C(6)	1.3900
C(1)-C(2)	1.3900
C(6)-H(6)	0.9500
C(6)-C(5)	1.3900
C(5)-H(5)	0.9500
C(5)-C(4)	1.3900
C(4)-H(4)	0.9500
C(4)-C(3)	1.3900
C(3)-H(3)	0.9500

C(3)-C(2)	1.3900
C(2)-H(2)	0.9500
C(7)-C(8)	1.3900
C(7)-C(12)	1.3900
C(8)-H(8)	0.9500
C(8)-C(9)	1.3900
C(9)-H(9)	0.9500
C(9)-C(10)	1.3900
C(10)-H(10)	0.9500
C(10)-C(11)	1.3900
С(11)-Н(11)	0.9500
C(11)-C(12)	1.3900
С(12)-Н(12)	0.9500
C(13)-H(13A)	0.9900
C(13)-H(13B)	0.9900
C(13)-C(14)	1.49(2)
C(14)-C(15)	1.39(2)
C(15)-H(15)	0.9500
C(15)-C(16)	1.38(2)
C(16)-H(16)	0.9500
C(16)-C(17)	1.34(2)
С(17)-Н(17)	0.9500
C(17)-C(18)	1.39(2)
C(18)-C(19)	1.48(2)
C(19)-H(19A)	0.9900
C(19)-H(19B)	0.9900
C(20)-C(25)	1.3900
C(20)-C(21)	1.3900
С(25)-Н(25)	0.9500
C(25)-C(24)	1.3900
C(24)-H(24)	0.9500
C(24)-C(23)	1.3900
С(23)-Н(23)	0.9500
C(23)-C(22)	1.3900
С(22)-Н(22)	0.9500
C(22)-C(21)	1.3900
C(21)-H(21)	0.9500
C(26)-C(31)	1.3900
C(26)-C(27)	1.3900

C(31)-H(31)	0.9500
C(31)-C(30)	1.3900
C(30)-H(30)	0.9500
C(30)-C(29)	1.3900
C(29)-H(29)	0.9500
C(29)-C(28)	1.3900
C(28)-H(28)	0.9500
C(28)-C(27)	1.3900
С(27)-Н(27)	0.9500
F(1)-B(1)	1.40(2)
F(2)-B(1)	1.37(2)
F(3)-B(1)	1.37(2)
F(4)-B(1)	1.39(3)
N(2)-C(33)	1.14(3)
C(32)-H(32A)	0.9800
C(32)-H(32B)	0.9800
C(32)-H(32C)	0.9800
C(32)-C(33)	1.42(3)
Au(1)#1-Au(1)-Au(2)	95.71(3)
P(1)#1-Au(1)-Au(1)#1	81.48(10)
P(1)#1-Au(1)-Au(2)	88.22(10)
N(1)-Au(1)-Au(1)#1	111.0(3)
N(1)-Au(1)-Au(2)	89.8(3)
N(1)-Au(1)-P(1)#1	167.5(3)
Cl(1)-Au(2)-Au(1)	106.95(11)
P(2)-Au(2)-Au(1)	82.36(10)
P(2)-Au(2)-Cl(1)	170.43(15)
C(1)-P(1)-Au(1)#1	105.6(4)
C(1)-P(1)-C(13)	106.3(6)
C(7)-P(1)-Au(1)#1	116.7(3)
C(7)-P(1)-C(1)	105.3(5)
C(7)-P(1)-C(13)	105.5(6)
C(13)-P(1)-Au(1)#1	116.5(5)
C(19)-P(2)-Au(2)	117.7(5)
C(20)-P(2)-Au(2)	111.5(4)
C(20)-P(2)-C(19)	103.9(7)
C(20)-P(2)-C(26)	106.5(5)
C(26)-P(2)-Au(2)	110.2(4)

C(26)-P(2)-C(19)	106.3(6)
C(14)-N(1)-Au(1)	122.6(9)
C(18)-N(1)-Au(1)	117.4(9)
C(18)-N(1)-C(14)	120.0(13)
C(6)-C(1)-P(1)	123.0(6)
C(6)-C(1)-C(2)	120.0
C(2)-C(1)-P(1)	117.0(6)
C(1)-C(6)-H(6)	120.0
C(1)-C(6)-C(5)	120.0
C(5)-C(6)-H(6)	120.0
C(6)-C(5)-H(5)	120.0
C(4)-C(5)-C(6)	120.0
C(4)-C(5)-H(5)	120.0
C(5)-C(4)-H(4)	120.0
C(5)-C(4)-C(3)	120.0
C(3)-C(4)-H(4)	120.0
C(4)-C(3)-H(3)	120.0
C(2)-C(3)-C(4)	120.0
C(2)-C(3)-H(3)	120.0
C(1)-C(2)-H(2)	120.0
C(3)-C(2)-C(1)	120.0
C(3)-C(2)-H(2)	120.0
C(8)-C(7)-P(1)	120.7(5)
C(8)-C(7)-C(12)	120.0
C(12)-C(7)-P(1)	119.3(5)
C(7)-C(8)-H(8)	120.0
C(7)-C(8)-C(9)	120.0
C(9)-C(8)-H(8)	120.0
C(8)-C(9)-H(9)	120.0
C(8)-C(9)-C(10)	120.0
C(10)-C(9)-H(9)	120.0
C(9)-C(10)-H(10)	120.0
C(11)-C(10)-C(9)	120.0
C(11)-C(10)-H(10)	120.0
C(10)-C(11)-H(11)	120.0
C(10)-C(11)-C(12)	120.0
С(12)-С(11)-Н(11)	120.0
C(7)-C(12)-H(12)	120.0
C(11)-C(12)-C(7)	120.0

C(11)-C(12)-H(12)	120.0
P(1)-C(13)-H(13A)	108.3
P(1)-C(13)-H(13B)	108.3
H(13A)-C(13)-H(13B)	107.4
C(14)-C(13)-P(1)	115.8(10)
C(14)-C(13)-H(13A)	108.3
C(14)-C(13)-H(13B)	108.3
N(1)-C(14)-C(13)	120.9(13)
N(1)-C(14)-C(15)	119.7(14)
C(15)-C(14)-C(13)	119.3(13)
C(14)-C(15)-H(15)	120.0
C(16)-C(15)-C(14)	120.0(15)
C(16)-C(15)-H(15)	120.0
C(15)-C(16)-H(16)	120.1
C(17)-C(16)-C(15)	119.7(16)
С(17)-С(16)-Н(16)	120.1
С(16)-С(17)-Н(17)	119.6
C(16)-C(17)-C(18)	120.8(15)
C(18)-C(17)-H(17)	119.6
N(1)-C(18)-C(17)	119.8(13)
N(1)-C(18)-C(19)	119.2(13)
C(17)-C(18)-C(19)	121.0(13)
P(2)-C(19)-H(19A)	109.4
P(2)-C(19)-H(19B)	109.4
C(18)-C(19)-P(2)	111.4(11)
C(18)-C(19)-H(19A)	109.4
C(18)-C(19)-H(19B)	109.4
H(19A)-C(19)-H(19B)	108.0
C(25)-C(20)-P(2)	120.1(6)
C(25)-C(20)-C(21)	120.0
C(21)-C(20)-P(2)	119.8(6)
C(20)-C(25)-H(25)	120.0
C(24)-C(25)-C(20)	120.0
C(24)-C(25)-H(25)	120.0
C(25)-C(24)-H(24)	120.0
C(25)-C(24)-C(23)	120.0
C(23)-C(24)-H(24)	120.0
C(24)-C(23)-H(23)	120.0
C(22)-C(23)-C(24)	120.0

C(22)-C(23)-H(23)	120.0
С(23)-С(22)-Н(22)	120.0
C(21)-C(22)-C(23)	120.0
С(21)-С(22)-Н(22)	120.0
C(20)-C(21)-H(21)	120.0
C(22)-C(21)-C(20)	120.0
С(22)-С(21)-Н(21)	120.0
C(31)-C(26)-P(2)	115.6(6)
C(31)-C(26)-C(27)	120.0
C(27)-C(26)-P(2)	124.4(6)
C(26)-C(31)-H(31)	120.0
C(26)-C(31)-C(30)	120.0
C(30)-C(31)-H(31)	120.0
C(31)-C(30)-H(30)	120.0
C(29)-C(30)-C(31)	120.0
C(29)-C(30)-H(30)	120.0
C(30)-C(29)-H(29)	120.0
C(30)-C(29)-C(28)	120.0
C(28)-C(29)-H(29)	120.0
C(29)-C(28)-H(28)	120.0
C(27)-C(28)-C(29)	120.0
C(27)-C(28)-H(28)	120.0
C(26)-C(27)-H(27)	120.0
C(28)-C(27)-C(26)	120.0
C(28)-C(27)-H(27)	120.0
F(2)-B(1)-F(1)	108.8(16)
F(2)-B(1)-F(3)	109.0(18)
F(2)-B(1)-F(4)	109.0(17)
F(3)-B(1)-F(1)	111.3(16)
F(3)-B(1)-F(4)	108.6(15)
F(4)-B(1)-F(1)	110.1(17)
H(32A)-C(32)-H(32B)	109.5
H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5
C(33)-C(32)-H(32A)	109.5
C(33)-C(32)-H(32B)	109.5
C(33)-C(32)-H(32C)	109.5
N(2)-C(33)-C(32)	176(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(1)	31(1)	25(1)	30(1)	-3(1)	8(1)	-1(1)
Au(2)	33(1)	28(1)	36(1)	2(1)	7(1)	0(1)
Cl(1)	45(2)	27(2)	45(2)	3(2)	3(2)	1(2)
P(1)	28(2)	31(2)	27(2)	-2(2)	7(2)	0(2)
P(2)	28(2)	35(2)	36(2)	3(2)	8(2)	-1(2)
N(1)	30(7)	25(7)	35(7)	-2(6)	10(6)	4(5)
C(1)	27(7)	33(8)	29(8)	-11(7)	4(6)	-2(7)
C(6)	45(10)	46(11)	46(10)	0(9)	6(8)	10(9)
C(5)	45(10)	61(13)	53(12)	-15(10)	8(9)	2(10)
C(4)	49(10)	48(11)	50(11)	-5(9)	24(9)	-21(9)
C(3)	63(12)	37(10)	51(11)	-8(9)	29(9)	-7(9)
C(2)	49(10)	45(10)	33(9)	-4(8)	15(8)	-5(8)
C(7)	31(8)	21(7)	37(9)	-1(7)	11(7)	-2(6)
C(8)	36(8)	33(9)	32(8)	-14(7)	-2(7)	-6(7)
C(9)	30(8)	51(11)	48(10)	-6(9)	1(7)	-4(8)
C(10)	43(10)	47(11)	44(10)	12(9)	0(8)	-5(9)
C(11)	52(11)	39(10)	45(10)	-9(8)	15(8)	-11(9)
C(12)	27(8)	36(9)	37(9)	-3(7)	1(7)	3(7)
C(13)	28(8)	28(8)	30(8)	-8(7)	7(6)	-2(6)
C(14)	38(9)	21(8)	39(9)	1(7)	9(7)	3(7)
C(15)	46(9)	26(8)	33(9)	9(7)	9(7)	10(7)
C(16)	46(9)	26(8)	45(10)	-4(8)	5(8)	-4(8)
C(17)	33(8)	29(8)	38(9)	-4(7)	5(7)	-5(7)
C(18)	33(8)	20(8)	39(9)	3(7)	3(7)	6(7)
C(19)	38(9)	32(9)	37(9)	8(7)	9(7)	0(7)
C(20)	34(9)	49(11)	41(9)	-1(8)	21(7)	-5(8)
C(25)	60(12)	41(11)	52(11)	-6(9)	9(9)	-14(10)
C(24)	71(13)	43(11)	67(14)	-4(11)	12(11)	-9(11)
C(23)	55(11)	39(11)	58(12)	-23(9)	-6(9)	2(9)
C(22)	67(13)	56(13)	41(11)	-7(9)	7(9)	0(11)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **Complex 5**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(21)	56(11)	56(12)	36(10)	3(9)	10(8)	-7(10)
C(26)	37(9)	42(9)	24(8)	-12(7)	14(7)	-8(8)
C(31)	34(9)	73(14)	45(11)	20(10)	5(8)	7(9)
C(30)	55(12)	69(14)	59(13)	3(11)	23(10)	19(11)
C(29)	48(10)	40(10)	47(11)	1(9)	18(8)	-3(9)
C(28)	55(11)	42(10)	42(10)	9(8)	19(8)	-4(9)
C(27)	45(10)	47(11)	47(11)	6(9)	14(8)	2(9)
F(1)	95(9)	59(8)	77(8)	-17(7)	43(7)	5(7)
F(2)	54(7)	165(16)	64(8)	-32(9)	26(6)	-25(9)
F(3)	55(7)	62(8)	91(9)	19(7)	23(6)	15(6)
F(4)	99(10)	55(7)	92(9)	9(7)	62(8)	16(7)
B(1)	38(11)	54(13)	43(11)	-14(10)	6(9)	0(10)
N(2)	98(13)	61(11)	72(11)	2(10)	18(11)	-3(8)
C(32)	54(11)	88(14)	90(14)	21(13)	-3(11)	10(8)
C(33)	70(12)	65(12)	72(11)	14(10)	22(10)	10(8)

	x	у	Z	U(eq)
Н(6)	2803	6783	6107	55
H(0)	1850	6768	6850	55
H(4)	2184	4618	7633	57
H(3)	3542	3/83	7055	57
H(2)	55 4 2 4576	3007	7083	/0
H(2)	6396	4506	6309	42
H(0)	7761	4950	7037	53
H(10)	7888	6531	7037	55
H(11)	6651	7867	7830	53
H(12)	5287	7523	7850	41
H(12)	3051	7323	5267	-11
H(13R)	4055	7213	5072	35
H(15)	4033 5024	9553	6202	42
H(15)	6151	10874	5942	48
H(17)	6056	103/4	5181	40
H(17)	7021	10213 9947	4242	40
H(19A)	6412	0047 7575	4242	42
H(19B)	0412 8856	0205	4110	42
H(23)	0555	10773	4009	72
H(24)	9555	10775	6811	64
H(23)	9505 8752	8458	7066	66
H(22)	8054	7080	6233	59
H(21)	9267	5565	4761	61
H(31)	10288	5334	4058	71
H(20)	10200	6500	2112	53
H(28)	2017	8077	2868	53
H(27)	0747 7076	8207	2000	55
$H(27\Lambda)$	0550	12//2	<i>J</i> 0/1	110
H(32R)	9559	12440	4044 1700	119
H(32D)	9441 0070	12307	4/07	119
п(32С)	88/0	13371	4303	119

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for Complex 5.

Table 6. Torsion angles [°] for Complex 5.

Au(1)#1-P(1)-C(1)-C(6)	-107.8(6)
Au(1)#1-P(1)-C(1)-C(2)	70.9(6)
Au(1)#1-P(1)-C(7)-C(8)	3.9(7)
Au(1)#1-P(1)-C(7)-C(12)	-177.1(5)
Au(1)#1-P(1)-C(13)-C(14)	-94.5(11)
Au(1)-N(1)-C(14)-C(13)	-7(2)
Au(1)-N(1)-C(14)-C(15)	177.3(11)
Au(1)-N(1)-C(18)-C(17)	-176.7(11)
Au(1)-N(1)-C(18)-C(19)	0.4(18)
Au(2)-P(2)-C(19)-C(18)	69.3(12)
Au(2)-P(2)-C(20)-C(25)	162.4(6)
Au(2)-P(2)-C(20)-C(21)	-21.4(8)
Au(2)-P(2)-C(26)-C(31)	-41.3(7)
Au(2)-P(2)-C(26)-C(27)	141.5(6)
P(1)-C(1)-C(6)-C(5)	178.7(8)
P(1)-C(1)-C(2)-C(3)	-178.7(8)
P(1)-C(7)-C(8)-C(9)	178.9(8)
P(1)-C(7)-C(12)-C(11)	-178.9(8)
P(1)-C(13)-C(14)-N(1)	68.4(17)
P(1)-C(13)-C(14)-C(15)	-116.1(14)
P(2)-C(20)-C(25)-C(24)	176.2(9)
P(2)-C(20)-C(21)-C(22)	-176.2(9)
P(2)-C(26)-C(31)-C(30)	-177.3(8)
P(2)-C(26)-C(27)-C(28)	177.0(9)
N(1)-C(14)-C(15)-C(16)	1(2)
N(1)-C(18)-C(19)-P(2)	-86.9(15)
C(1)-P(1)-C(7)-C(8)	120.6(6)
C(1)-P(1)-C(7)-C(12)	-60.5(7)
C(1)-P(1)-C(13)-C(14)	148.3(10)
C(1)-C(6)-C(5)-C(4)	0.0
C(6)-C(1)-C(2)-C(3)	0.0
C(6)-C(5)-C(4)-C(3)	0.0
C(5)-C(4)-C(3)-C(2)	0.0
C(4)-C(3)-C(2)-C(1)	0.0
C(2)-C(1)-C(6)-C(5)	0.0
C(7)-P(1)-C(1)-C(6)	128.2(7)
C(7)-P(1)-C(1)-C(2)	-53.1(7)

C(7)-P(1)-C(13)-C(14)	36.7(12)
C(7)-C(8)-C(9)-C(10)	0.0
C(8)-C(7)-C(12)-C(11)	0.0
C(8)-C(9)-C(10)-C(11)	0.0
C(9)-C(10)-C(11)-C(12)	0.0
C(10)-C(11)-C(12)-C(7)	0.0
C(12)-C(7)-C(8)-C(9)	0.0
C(13)-P(1)-C(1)-C(6)	16.5(8)
C(13)-P(1)-C(1)-C(2)	-164.8(7)
C(13)-P(1)-C(7)-C(8)	-127.2(7)
C(13)-P(1)-C(7)-C(12)	51.7(8)
C(13)-C(14)-C(15)-C(16)	-175.0(15)
C(14)-N(1)-C(18)-C(17)	2(2)
C(14)-N(1)-C(18)-C(19)	178.7(13)
C(14)-C(15)-C(16)-C(17)	-1(2)
C(15)-C(16)-C(17)-C(18)	2(2)
C(16)-C(17)-C(18)-N(1)	-2(2)
C(16)-C(17)-C(18)-C(19)	-179.0(15)
C(17)-C(18)-C(19)-P(2)	90.2(16)
C(18)-N(1)-C(14)-C(13)	174.6(13)
C(18)-N(1)-C(14)-C(15)	-1(2)
C(19)-P(2)-C(20)-C(25)	-69.9(8)
C(19)-P(2)-C(20)-C(21)	106.3(8)
C(19)-P(2)-C(26)-C(31)	-169.9(8)
C(19)-P(2)-C(26)-C(27)	13.0(10)
C(20)-P(2)-C(19)-C(18)	-54.6(12)
C(20)-P(2)-C(26)-C(31)	79.8(7)
C(20)-P(2)-C(26)-C(27)	-97.3(8)
C(20)-C(25)-C(24)-C(23)	0.0
C(25)-C(20)-C(21)-C(22)	0.0
C(25)-C(24)-C(23)-C(22)	0.0
C(24)-C(23)-C(22)-C(21)	0.0
C(23)-C(22)-C(21)-C(20)	0.0
C(21)-C(20)-C(25)-C(24)	0.0
C(26)-P(2)-C(19)-C(18)	-166.7(10)
C(26)-P(2)-C(20)-C(25)	42.1(8)
C(26)-P(2)-C(20)-C(21)	-141.7(7)
C(26)-C(31)-C(30)-C(29)	0.0
C(31)-C(26)-C(27)-C(28)	0.0

C(31)-C(30)-C(29)-C(28)	0.0
C(30)-C(29)-C(28)-C(27)	0.0
C(29)-C(28)-C(27)-C(26)	0.0
C(27)-C(26)-C(31)-C(30)	0.0

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1

Table 7. Hydrogen bonds for Complex 5 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(9)-H(9)F(3)#2	0.95	2.50	3.197(14)	129.9
C(29)-H(29)F(3)#3	0.95	2.45	3.199(15)	136.0

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x+3/2,y+1/2,-z+3/2 #3 x+1/2,-y+1/2,z-1/2