Supporting Information

Multistimuli-responsive Materials Based on Zinc(II) Complex with High-contrast and Multicolor Switching

Han-Wen Zheng,[‡] Dong-Dong Yang,[‡] Yong-Sheng Shi, Tong Xiao, Xiang-Jun Zheng*

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.

Corresponding author:

Tel.: +86-10-58805522; fax: +86-10-58802075.

E-mail address: xjzheng@bnu.edu.cn (X. -J. Zheng)

Contents

Fig. S1 Multiple intramolecular and intermolecular interactions in complex 13
Fig. S2 Fluorescence decay curves and fit results of complex 1 in different states: (a)
Original sample monitored at 525 nm. (b) Highly ground sample monitored at 625 nm.
(c) Fumed sample monitored at 530 nm
Fig. S3 (a) Emission spectra and (b) emission switching characteristics of complex 1
upon repeating the grinding and fuming processes
Fig. S4 PXRD patterns of the simulation of complex 1 and the samples before and
after grinding, fuming under ethanol vapor4
Fig. S5 TG curve of (a) Original and (b) Highly ground samples of complex 14
Fig. S6 UV–Vis absorption spectra of the original crystals of ligand HL, 1 before and
after exposing to HCl/NH ₃ vapor, (a) in solid state, (b) in THF solution4
Fig. S7 (a) Emission spectra and (b) emission switching characteristics of complex 1
upon repeating the HCl–NH ₃ fumigation processes5
Fig. S8 PXRD patterns of complex 1 upon HCl / NH ₃ fumigation processes5
Fig. S9 DLS data of complex 1 (10 $\mu M)$ in THF/H2O: (a) 70% H2O, (b) 80% H2O and
(c) 90% H ₂ O5
Fig. S10 (a) Emission spectra (excited at 365 nm). (b) Fluorescence decay curves and
fit results. (c) Photographs under ambient light and UV (365 nm) light of the
aggregates and highly ground sample of complex 16
Fig. S11 PXRD patterns of original crystals, highly ground and aggregates samples of
complex 16
Fig. S12 (a) Cyclic voltammogram and (b) UV-Vis absorption spectra of
electrochemical devices (ECD) assembled by complex 17
Fig. S13 (a) Cyclic voltammogram of electrochemical devices (ECD) assembled by
TPE-NH $_2$ and complex 1. (b) Photographs of the color changes of ECD assembled by
TPE-NH ₂
Fig. S14 Photographs of complex 1 film taken under ambient light before and after
fuming with HCl/NH ₃ vapor7
Table S1 Crystal data and structure refinement parameters of complex 1
Table S2 Selected Bond Lengths (Å) and Angles (deg) of complex 1
Table S3 Types of intramolecular and intermolecular interactions and corresponding
distances and angles in complex 19
Table S4 The dihedral angles between different planes in complex 19
2

Fig. S1 Multiple intramolecular and intermolecular interactions in complex 1.

Fig. S2 Fluorescence decay curves and fit results of complex 1 in different states: (a) Original sample monitored at 525 nm. (b) Highly ground sample monitored at 625 nm. (c) Fumed sample monitored at 530 nm.

Fig. S3 (a) Emission spectra and (b) emission switching characteristics of complex **1** upon repeating the grinding and fuming processes.

Fig. S4 PXRD patterns of the simulation of complex **1** and the samples before and after grinding, fuming under ethanol vapor.

Fig. S5 TG curve of (a) Original and (b) Highly ground samples of complex 1.

Fig. S6 UV–Vis absorption spectra of the original crystals of ligand HL, 1 before and after exposing to HCl/NH_3 vapor, (a) in solid state, (b) in THF solution.

Fig. S7 (a) Emission spectra and (b) emission switching characteristics of complex **1** upon repeating the HCl–NH₃ fumigation processes.

Fig. S8 PXRD patterns of complex 1 upon HCl / NH₃ fumigation processes.

Fig. S9 DLS data of complex 1 (10 μ M) in THF/H₂O: (a) 70% H₂O, (b) 80% H₂O and (c) 90% H₂O.

Fig. S10 (a) Emission spectra (excited at 365 nm). (b) Fluorescence decay curves and fit results. (c) Photographs under ambient light and UV (365 nm) light of the aggregates and highly ground sample of complex **1**.

Fig. S11 PXRD patterns of original crystals, highly ground and aggregates samples of complex 1.

Fig. S12 (a) Cyclic voltammogram and (b) UV-Vis absorption spectra of electrochemical devices (ECD) assembled by complex **1**.

Fig. S13 (a) Cyclic voltammogram of electrochemical devices (ECD) assembled by TPE-NH₂ and complex 1. (b) Photographs of the color changes of ECD assembled by TPE-NH₂.

Fig. S14 Photographs of complex 1film taken under ambient light before and after fuming with HCl/NH₃ vapor.

•	
Compound	1
Empirical formula	$C_{86}H_{66}N_4O_7S_2Zn_2$
Formula weight	1462.28
Temperature/K	100.00(10)
Crystal system	Triclinic
Space group	P^{1}
a/Å	8.9256 (3)
b/Å	19.1901 (4)
c/Å	22.0658 (7)
α/°	108.594 (2)
β/°	93.475 (3)
γ/°	94.909 (2)
Volume/Å ³	3553.58 (19)
Z	2
$ ho_{calc}g/cm^3$	1.367
μ/mm^{-1}	1.864
F(000)	1516.0
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2θ range for data collection/°	7.448 to 144.26
Index ranges	$-10 \le h \le 11, -16 \le k \le 23, -26 \le l \le 23$
Reflections collected	24940
Independent reflections	13577 [$R_{int} = 0.0664, R_{sigma} = 0.0738$]
Data/restraints/parameters	13557/7/914
Goodness-of-fit on F ²	1.031
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0583, wR_2 = 0.1518$
R indices (all data)	$R_1 = 0.0734, wR_2 = 0.1604$
Largest diff. peak/hole (e Å ⁻³)	1.13/-0.89
CCDC number	2191342

 Table S1 Crystal data and structure refinement parameters of complex 1.

Table S2 Selected Bond	Lengths (Å) and	l Angles (deg)	of complex 1.

Table 52 Selected	Bolid Leliguis (A)	and Angles (deg) of co	mplex I.	
Zn1—01	1.912 (2)	Zn2—O3	1.923 (2)	
Zn1—O2	1.962 (2)	Zn2—O4	1.964 (2)	
Zn1—O5	1.963 (2)	Zn2—O6 ⁱ	1.994 (2)	
O6—Zn2 ⁱⁱ	1.994 (2)	Zn2—N3	2.005 (3)	
Zn1—N1	1.993 (2)			
O1—Zn1—O2	130.09 (10)	O3—Zn2—O4	104.80 (9)	
O1—Zn1—O5	103.58 (9)	O3—Zn2—O6 ⁱ	132.15 (9)	

O1—Zn1—N1	97.95 (9)	O3—Zn2—N3	96.76 (10)
O2—Zn1—O5	102.15 (9)	O4—Zn2—O6 ⁱ	97.42 (9)
O2—Zn1—N1	110.56 (10)	O4—Zn2—N3	116.49 (9)
O5—Zn1—N1	112.33 (10)	O6 ⁱ —Zn2—N3	110.38 (10)
C1—O1—Zn1	124.48 (19)	C83—O6—Zn2 ⁱⁱ	106.89 (18)
C81—O2—Zn1	109.57 (19)	C14—N1—Zn1	120.4 (2)
C41—O3—Zn2	125.3 (2)	C15—N1—Zn1	120.36 (18)
C81—O4—Zn2	128.6 (2)	C54—N3—Zn2	119.7 (2)
C83—O5—Zn1	128.9 (2)	C55—N3—Zn2	120.89 (18)

Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

 Table S3 Types of intramolecular and intermolecular interactions and corresponding distances and angles in complex 1.

Interactions	Distances (Å)	Angles (°)
O_7 - H_7 ···N_4	2.069	167.50
$C_5-H_5\cdots N_2$	2.489	101.08
C_{45} - H_{45} ···· N_4	2.532	100.59
C_{82} - H_{82C} ···· O_6	2.588	120.87
C_{84} - H_{84A} ···· O_2	2.586	135.36
$C_{11}-H_{11}\cdots\pi(C_{69}-C_{74})$	2.879	142.94
$C_{17}-H_{17}\cdots\pi(S_2,C_{47},N_4,C_{48},C_{53})$	2.896	115.65
$C_{44}-H_{44}\cdots\pi(C_{62}-C_{67})$	2.991	141.51
$C_{57}-H_{57}\cdots\pi(S_1,C_7,N_2,C_8,C_{13})$	2.949	118.26
$C_{59}-H_{59}\cdots\pi(S_1,C_7,N_2,C_8,C_{13})$	2.833	139.15
$C_{73}-H_{73}\cdots\pi(C_{75}-C_{80})$	2.651	158.84

Table S4 The	dihedral	angles	between	different	planes	in comp	lex 1	۱.

A/B	2.44 °	
B/C	44.24 °	
A/C	42.91 °	Of the second se
A'/B'	11.52 °	A N2 B 02 NI
B'/C'	34.93 °	SI OI Zal
A'/C'	46.42 °	
		Zn2 ⁱⁱ