Supporting Information for

Renaissance of Dinitroazetidine: Novel Hybrid Energetic Boosters and Oxidizers

Egor S. Zhilin,¹ Ivan V. Ananyev,^{2,3} Alla N. Pivkina⁴ and Leonid L. Fershtat^{1,3,*}

^{1.} N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991 (Russian Federation).

^{2.} N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prospect, 31, 119991 Moscow, Russia.

^{3.} National Research University Higher School of Economics 101000, Myasnitskaya str., 20, Moscow (Russia).

^{4.} N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991 (Russian Federation).

E-mail: <u>fershtat@bk.ru</u> (L.L.F.)

Table of Contents

S1. Synthesis of 3,3-dinitroazetidine (DNAZ)	3
S2. Crystallographic data	4
S3. Thermal analysis	6
S4. Copies of NMR spectra	6

Scheme S1. Synthesis of DNAZ hydrochloride.

The synthesis of **DNAZ** hydrochloride was accomplished via a previously described procedure starting from t-butylamine, paraform and nitromethane. The details of the synthetic procedures can be found in corresponding references:

1. Y.-H. Kown, J.-S. Kim, H.-S. Kim, 1-Glycidyl-3,3-dinitroazetidine containing explosive moiety and preparation method thereof. US Patent 20090299079A1, publication date Dec. 3, 2009.

2. M. A. Hiskey, M. D. Coburn, M. A. Mitchell, B. C. Benicewicz, Synthesis of 3,3dinitroazetidine from 1-*t*-butyl-3,3-dinitroazetidine. *J. Heterocycl. Chem.*, 1992, **29**, 1855-1856.

S2. Crystallographic dataTable S1. The main crystallography data and refinement details for 3 and 4.

	3	4
Formula	$C_6H_4N_6O_9$	$C_{5}H_{6}N_{6}O_{10}$
Molecular Mass	304.15	310.16
Т, К	100	140
Crystal system	Monoclinic	Monoclinic
Space group	C_2/c	Pn
Z (Z')	8 (1)	2 (1)
a, Å	35.7181(13)	8.5418(5)
b, Å	5.4680(2)	7.1633(4)
c, Å	11.2106(4)	9.5501(5)
a, °	90	90
b, °	92.986(2)	101.7793(16)
g, °	90	90
V, Å ³	2186.53(14)	572.04(6)
$d_{calc}, g cm^{-3}$	1.848	1.801
F(000)	1232	316
2q _{max} , °	50	50
Number of reflections measured	36666	9582
Independent reflections	3208	3312
Reflections with I>2s(I)	2610	2632
Number of parameters	206	190
R_1	0.0389	0.0352
wR_2	0.0950	0.0799
GOF	1.030	0.986
Residual electron density, eYÅ ⁻³ (d _{max} /d _{min})	0.363/-0.245	0.203/-0.235

Figure S1. The best mean square overlap for crystal (dashed lines) and isolated (solid lines) structures of **3** (top), **4** (middle) and **TNAZ** (bottom). Position of hydrogen atoms were optimized in all cases at the PBE0-D3/def2tzvp level.

S3. Thermal analysis

Figure S2. Differential scanning calorimetry of **2**. Heating rate is 5 K min⁻¹.

Figure S3. Differential scanning calorimetry of 3. Heating rate is 5 K min⁻¹.

S4. Copies of NMR spectra

	158.43 156.67				— 60.49 — 57.28			
nlarugungungungungungungungungungungungungun	Herrowski for and the state of	alluminisuuninpustisuuluituinetutune	h <mark>ruph lai la ha ha</mark>	/orforquardelloutodellovrnikiloijideloof	dipidibrijingande har habarniverdage	halajanna ⁿ hadisalaajiyiya	n de ferret de la fe Ferret de la ferret de	

