Self-assembly of fish-bone and grid-like Co^{II}-based single-molecule magnets using dihydrazone ligands with NNN and NNO pockets

Qianqian Yang,^{a,b} Guo-Lu Wang,^c Yi-Quan Zhang*^c and Jinkui Tang*^{a,b}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. E-mail: tang@ciac.ac.cn

^bSchool of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China

^cJiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China

1.	¹ H-NMR spectrum	S2
2.	IR Spectroscopy	S2
3.	Crystallographic data	S3
4.	Structural details of complexes	S4
5.	Direct current (dc) magnetic measurements	S6
6.	Theoretical study	S7
7.	Alternating current (ac) magnetic measurements	S 8
8.	References	S10

1. ¹H-NMR spectrum

Fig. S1 ¹H-NMR spectrum of H_2L^1 in DMSO- d_6 recorded at room temperature. Solvent peaks are marked with asterisks (DMSO- d_6 , *; H_2O , **).

2. IR Spectroscopy

Fig. S2 IR (ATR) spectrum of solid samples for complex 1.

Fig. S3 IR (ATR) spectrum of solid samples for complex 2.

Fig. S4 IR (ATR) spectrum of solid samples for complex 3.

3. Crystallographic data

Table S1 Crystallographic data for complexes 1-3.

	1	2	3
Formula	$C_{54}H_{54}Cl_4Co_2N_{22}O_{24}$	$C_{42}H_{38}Cl_4Co_2N_{14}O_{24}$	$C_{84}H_{76}Cl_8Co_4N_{28}O_{48}$
FW, g·mol ⁻¹	1654.85	1382.52	2765.04
crystal system	triclinic	monoclinic	orthorhombic
space group	Pl	$P2_1/c$	Pnma
Т, К	173.0	300.0	180.0
λ , Å	1.54178	0.71073	0.71073
<i>a</i> , Å	10.4794(3)	10.4910(14)	36.8996(9)
$b, \mathrm{\AA}$	11.2095(3)	9.5103(12)	19.0503(5)
<i>c</i> , Å	15.2781(4)	25.965(4)	21.1241(5)
α, \circ	89.526(2)	90	90
eta,\circ	75.536(2)	92.001(4)	90
γ, °	72.6610(10)	90	90
<i>V</i> , Å ³	1654.59(8)	2589.0(6)	14849.2(6)
Ζ	1	2	4
$\rho_{\rm calcd}, {\rm g} \cdot {\rm cm}^{-3}$	1.661	1.773	1.237
GOF on F^2	1.050	1.026	1.682
reflns collected	10996	32854	290382
$R_1 (I \ge 2 \sigma (I))$	0.0933	0.0895	0.1167
wR_2 (all data)	0.2776	0.3228	0.4058
CCDC	2161940	2161941	2161949

4. Structural details of complexes

1		2			3		
Co1-N1 ¹	2.256(6)	Co1-O1	2.156(6)	Co1-O1	2.171(5)	Co2-O4	2.204(5)
Co1-N31	2.106(6)	Co1-O4 ¹	2.164(7)	Co1-O8	2.207(5)	Co2-O5	2.169(5)
Co1-N4 ¹	2.178(6)	Co1-N1	2.045(7)	Co1-N1	2.063(5)	Co2-N6	2.168(5)
Co1-N8	2.206(6)	Co1-N2	2.217(7)	Co1-N2	2.197(5)	Co2-N7	2.086(6)
Co1-N9	2.055(6)	Co1-N6 ¹	2.171(7)	Co1-N14	2.202(5)	Co2-N8	2.058(5)
Co1-N11	2.135(7)	Co1-N7 ¹	2.046(8)	Co1-N15	2.061(5)	Co2-N9	2.236(5)
N31-Co1-N11	72.2(2)	O1-Co1-O41	90.5(3)	O1-Co1-O8	94.1(2)	O4-Co2-N9	87.1(2)
N31-Co1-N41	73.4(2)	O1-Co1-N2	148.3(3)	O1-Co1-N2	149.63(19)	O5-Co2-O4	94.1(2)
N31-Co1-N8	108.7(2)	O1-Co1-N6 ¹	97.5(3)	O1-Co1-N14	90.26(19)	O5-Co2-N9	150.32(18)
N3 ¹ -Co1-N11	99.3(2)	O4 ¹ -Co1-N2	102.1(3)	N1-Co1-O1	74.48(19)	N6-Co2-O4	147.2(2)
N41-Co1-N11	144.7(2)	O41-Co1-N61	149.1(3)	N1-Co1-O8	83.60(19)	N6-Co2-O5	91.8(2)
N4 ¹ -Co1-N8	88.0(2)	N1-Co1-O1	75.4(3)	N1-Co1-N2	75.74(19)	N6-Co2-N9	103.07(18)
N8-Co1-N1 ¹	95.5(2)	N1-Co1-O4 ¹	93.3(3)	N1-Co1-N14	127.3(2)	N7-Co2-O4	73.0(2)
N9-Co1-N11	81.6(2)	N1-Co1-N2	75.0(3)	N2-Co1-O8	88.35(19)	N7-Co2-O5	85.4(2)
N9-Co1-N31	153.8(2)	N1-Co1-N6 ¹	117.7(3)	N2-Co1-N14	103.20(18)	N7-Co2-N6	75.4(2)
N9-Co1-N41	132.6(2)	N1-Co1-N7 ¹	160.4(3)	N14-Co1-O8	148.62(18)	N7-Co2-N9	122.9(2)
N9-Co1-N8	74.7(2)	N6 ¹ -Co1-N2	86.5(3)	N15-Co1-O1	88.0(2)	N8-Co2-O4	85.7(2)
N9-Co1-N11	76.6(3)	N7 ¹ -Co1-O1	89.1(3)	N15-Co1-O8	73.71(18)	N8-Co2-O5	74.54(18)
N11-Co1-N11	85.4(2)	N71-Co1-O41	74.7(3)	N15-Co1-N1	150.3(2)	N8-Co2-N6	126.82(19)
N11-Co1-N41	108.0(2)	N7 ¹ -Co1-N2	122.1(3)	N15-Co1-N2	121.49(19)	N8-Co2-N7	149.7(2)
N11-Co1-N8	150.9(2)	N7 ¹ -Co1-N6 ¹	75.6(3)	N15-Co1-N14	75.41(18)	N8-Co2-N9	75.99(18)

Table S2 Selected bond distances (Å) and bond angles (°) for complexes 1-3.

¹1-X,1-Y,1-Z

Table S3 The BVS values for complexes 1-3.

BVS value	1	2		3
	Col	Col	Col	Co2
Co ^{II}	2.171	2.183	2.090	2.069
Co ^{III}	1.954	1.965	1.881	1.862

Fig. S5 Packing model along with b (left) and c axes (right) of complex **1**. Color code: Co^{II}, dark-blue; N, light-blue; C, gray; O, red; Cl, bright green; H, white.

Fig. S6 Packing model along with a (left) and c axes (right) of complex **2**. Color code: Co^{II}, dark-blue; N, light-blue; C, gray; O, red; Cl, bright green; H, white.

Fig. S7 Packing model along with *a* (left) and *c* axis (right) of complex **3**. Color code: Co^{II} , dark-blue; N, light-blue; C, gray; O, red; Cl, bright green; H, white.

Fig. S8 Coordination polyhedrons of Co^{II} ions in complexes 1 (a), 2 (b) and 3 (c). Color code: Co^{II}, sky-blue; N, blue; O, red.

Coordination Coordination	1	2	Í	3
Coordination Geometry	Col	Col	Col	Co2
Hexagon (D_{6h})	29.080	29.648	32.551	32.692
Pentagonal pyramid (C_{5v})	15.327	15.773	17.863	17.488
Octahedron (O_h)	7.128	6.557	7.035	7.290
Trigonal prism (D_{3h})	8.637	7.227	5.941	5.816
Johnson pentagonal pyramid J2 (C_{5v})	18.976	19.091	21.303	20.796

Table S4 The CShM values calculated by SHAPE 2.1¹ for 1-3.

5. Direct current (dc) magnetic measurements

Fig. S9 Magnetization (M) versus H for 1 at indicated temperatures. Inset represents the plots of M versus H/T.

Fig. S10 Magnetization (M) versus H for 2 at indicated temperatures. Inset represents the plots of M versus H/T.

Fig. S11 Magnetization (M) versus H for 3 at indicated temperatures. Inset represents the plots of M versus H/T.

6. Theoretical study

Fig. S12 Molecular structures of complexes **1** (up), **2** (middle) and **3** (down). Color code: Co^{II}, sky-blue; C, dark-gray; N, blue; O, red. Hydrogen atoms, solvents and counter ions have been omitted for clarity.

Table S5 Calculated spin-free energies	(cm ⁻¹) of the lowest ten t	terms $(S = 3/2)$ of the	Co ^{II} ion of complexes 1-3
using CASSCF/RASSI-SO with OpenM	olcas.		

	1_Co1	2_Co1	3_Co1	3_Co2
	Ε	E	Ε	Ε
1	0.0	0.0	0.0	0.0
2	1306.1	901.8	497.5	793.0
3	2744.4	2482.9	2619.1	2833.5
4	5185.9	5894.2	5292.4	5370.9
5	7016.2	6429.0	6076.2	5982.2
6	8410.6	8155.1	6202.2	6325.6
7	13049.2	13246.1	11157.4	11028.5
8	22242.6	21717.9	21044.6	21141.2
9	24280.9	24498.5	23932.9	23873.9
10	25333.5	25759.6	24374.5	24506.1

	Spin-orbit states	Energ y (cm ⁻¹)	Spin-free states, Spin, Weights				
1 Col	1	0.0	1, 1.5, 0.9019	2, 1.5, 0.0832	3, 1.5, 0.0077	4, 1.5, 0.0039	5, 1.5, 0.0017
1_001	2	114.2	1, 1.5, 0.9676	2, 1.5, 0.0153	3, 1.5, 0.0089	4, 1.5, 0.0042	5, 1.5, 0.0026
2 Cal	1	0.0	1, 1.5, 0.8294	2, 1.5, 0.1556	3, 1.5, 0.0112	5, 1.5, 0.0013	4, 1.5, 0.0011
2_001	2	135.7	1, 1.5, 0.9529	2, 1.5, 0.0263	3, 1.5, 0.0119	5, 1.5, 0.0039	4, 1.5, 0.0029
3 Co1	1	0.0	1, 1.5, 0.7232	2, 1.5, 0.2624	3, 1.5, 0.0095	4, 1.5, 0.0019	6, 0.5, 0.0012
3_001	2	217.3	1, 1.5, 0.8970	2, 1.5, 0.0828	3, 1.5, 0.0109	6, 1.5, 0.0041	4, 1.5, 0.0025
3 ()	1	0.0	1, 1.5, 0.8101	2, 1.5, 0.1762	3, 1.5, 0.0082	4, 1.5, 0.0028	6, 1.5, 0.0008
5_002	2	170.8	1, 1.5, 0.9407	2, 1.5, 0.0407	3, 1.5, 0.0089	5, 1.5, 0.0042	4, 1.5, 0.0036

Table S6 Calculated weights of the five most important spin-orbit-free states for the lowest two spin-orbit states individual Co^{II} fragments for **1-3** using CASSCF/RASSI-SO with OpenMolcas.

Table S7 Calculated ZFS parameters D (E) (cm⁻¹) and g (g_x , g_y , g_z) tensors of complexes 1-3 using CASSCF/RASSI-SO with OpenMolcas.

1_Co1		2_Co1		3_Co1		3_Co2	
$D\left(E ight)$	g	D(E)	g	D(E)	g	D(E)	g
	2.077		2.117		1.996		2.045
-53.5 (11.6)	2.266	-66.4 (8.1)	2.230	-107.5 (9.5)	2.123	-83.6 (9.9)	2.223
	2.737		2.897		3.214		3.031

Table S8 Calculated dipole-dipole interactions \tilde{J}_{dip} (cm⁻¹) between Co^{II} in **1-3** with respect to the pseudospin $\tilde{S} = 1/2$ of the Co^{II} ion.

1	2		3	
1	2	Col-Col	Co1-Co2	
-0.02	-0.03	-0.04	-0.03	

7. Alternating current (ac) magnetic measurements

Fig. S13 Temperature-dependent ac susceptibility of complexes 1 (left), 2 (middle) and 3 (right) at 997 Hz under zero dc field.

Fig. S14 Field-dependent ac susceptibility of complexes 1 (left), 2 (middle) and 3 (right) at 1.9 K and 997 Hz.

Fig. S15 Temperature-dependent ac susceptibility of complexes 1 under 2000 Oe (left), 2 under 700 Oe (middle) and 3 under 800 Oe dc field (right).

Table S9 Parameters for the best fit of frequency-dependent ac susceptibility of complex 1 in the temperature rangeof 1.9-2.5 K under 2000 Oe dc field.

<i>T</i> /K	$\chi_{S,tot}$	$\Delta \chi_1$	$ au_{ m 1/s}$	α_1	$\Delta \chi_2$	$ au_{2/s}$	α_2
1.9	1.3626E-10	0.138044E+01	2.54815E-4	0.15487E+00	0.54621E+00	0.2579E+00	1.96401E-16
2.2	8.3390E-11	0.133007E+01	2.05745E-4	0.12324E+00	0.27777E+00	0.24602E+00	7.29043E-16
2.5	7.3601E-12	0.126619E+01	1.49667E-4	0.11351E+00	0.16428E+00	0.26858E+00	8.61464E-16

 Table S10 Parameters for the best fit of frequency-dependent ac susceptibility of complex 1 in the temperature range of 3.0-5.0 K under 2000 Oe dc field.

<i>T</i> /K	χs	XT	τ	α
3.0	7.88804E-14	0.120332E+01	9.08732E-5	0.910E-01
3.5	2.50005E-15	0.106854E+01	5.60793E-5	0.863E-01
4.0	8.31092E-15	0.95118E+00	1.49118E-5	0.562E-01
4.5	2.57364E-16	0.8576E+00	1.00486E-6	0.508E-01
5.0	9.99556E-17	0.78029E+00	2.95485E-7	0.482E-01

<i>T</i> /K	χs	XT	τ	α
1.9	0.418409E+00	0.228259E+01	0.491737E-03	0.273611E+00
2.2	0.405979E+00	0.202314E+01	0.411760E-03	0.230072E+00
2.5	0.393410E+00	0.178172E+01	0.345981E-03	0.191897E+00
2.8	0.344963E+00	0.160177E+01	0.280147E-03	0.173251E+00
3.1	0.339927E+00	0.145476E+01	0.238929E-03	0.149195E+00
3.5	0.340165E+00	0.129439E+01	0.187155E-03	0.111747E+00
4.0	0.316122E+00	0.113762E+01	0.131713E-03	0.731204E-01
4.5	0.319607E+00	0.101515E+01	0.920839E-04	0.295014E-01
5.0	0.171286E+00	0.917934E+00	0.460148E-04	0.502116E-01
5.5	0.223217E-20	0.838770E+00	0.223226E-04	0.610448E-01
6.0	0.762738E-21	0.770644E+00	0.124564E-04	0.119567E+00
7.0	0.111197E-20	0.664433E+00	0.208573E-05	0.182253E+00

Table S11 Parameters for the best fit of frequency-dependent ac susceptibility of complex 2 under 700 Oe dc field.

Table S12 Parameters for the best fit of frequency-dependent ac susceptibility of complex 3 under 800 Oe dc field.

T (K)	χs	χ_T	τ	α
1.9	0.470630E+00	0.349090E+01	0.210850E-03	0.217710E+00
2.2	0.373338E+00	0.306773E+01	0.129410E-03	0.220567E+00
2.5	0.182835E-01	0.274202E+01	0.653620E-04	0.267101E+00
2.8	0.568434E-01	0.246565E+01	0.449573E-04	0.281996E+00
3.1	0.151398E-01	0.224224E+01	0.319595E-04	0.280224E+00
3.4	0.572606E-14	0.205315E+01	0.233610E-04	0.288021E+00
3.7	0.684589E-14	0.189649E+01	0.176289E-04	0.291805E+00
4.0	0.879608E-14	0.176204E+01	0.131778E-04	0.300371E+00

8. References

(a) D. Casanova, M. Llunell, P. Alemany, S. Alvarez, *Chem. Eur. J.*, 2005, **11**, 1479-1494; (b) D. Casanova, P. Alemany, J. M. Bofill, S. Alvarez, *Chem. Eur. J.*, 2003, **9**, 1281-1295.