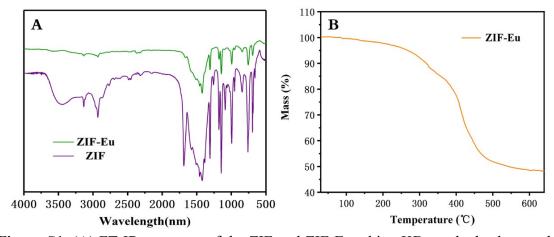
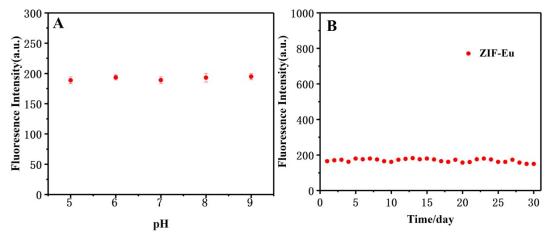
Supporting Information

Reusable Ratiometric Fluorescence Probe for Tetracycline Antibiotics Detection and High-Efficient Removal from Environmental Water

Hongxia Chen,^a Chao Yuan,^{*a} Junxiang Peng,^a Mingtai Sun,^a Shaoquan Liu,^b Dejian Huang,^b Suhua Wang^{*a}


^a Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China

^b Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore


*Corresponding author:

Suhua Wang, E-mail: wangsh@gdupt.edu.cn

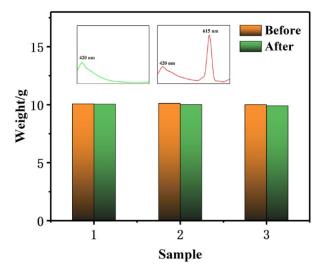

Chao Yuan, E-mail: yuanchao@gdupt.edu.cn

Figure S1. (A) FT-IR spectrum of the ZIF and ZIF-Eu taking KBr as the background peak. (B) TGA of the ZIF-Eu.

Figure S2. (A) Fluorescence spectra of ZIF-Eu (0.025 mg/mL) in Tris-HCl buffer solution (pH = 5, 6, 7, 8, and 9). (B) Fluorescence stability of the ZIF-Eu in Tris-HCl buffer solution (pH = 8).

Figure S3. weight comparison of ZIF-Eu nanocomposite before and after regeneration. Inset represented the fluorescence properties of the material before and after regeneration.