## **Supplementary Information**

Thermal and Photoinduced Electron Transfer Reaction of Phthalocyanine Complexes of Zn(II) and Cu(II) in Acetonitrile

Yui Okawa,<sup>a</sup> Kousuke Endo,<sup>a</sup> Yukihiko Hakamata,<sup>a</sup> Shingo Watanabe,<sup>a</sup> Aika Yokoyama,<sup>a</sup> Tamotsu Sugimori,<sup>b</sup> Hideo D. Takagi, <sup>c</sup> and Masahiko Inamo<sup>a</sup>\*

<sup>a</sup> Department of Chemistry, Aichi University of Education, Kariya 448-8542, Japan

<sup>b</sup> Institute of Liberal arts and Sciences, University of Toyama, Toyama 930-8555, Japan

<sup>c</sup> Research Centre for Materials Science, Nagoya University, Nagoya 464-8602, Japan

## Contents

| Figure S1.  | UV-visible absorption spectum of the free base phthalocyanine in acetonitrile.                                                                                                                                         |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S2.  | <sup>1</sup> H NMR spectra of the phthalocyanine and its Zn(II) complex in CDCl <sub>3</sub> .                                                                                                                         |
| Figure S3.  | UV-visible absorption spectra of [Zn(Pc)] in acetonitrile.                                                                                                                                                             |
| Figure S4.  | UV-visible absorption spectra of [Cu(Pc)] in acetonitrile.                                                                                                                                                             |
| Figure S5.  | The spectral change in the UV-visible region for the reaction of the Zn(II) phthalocyanine complex with Cu <sup>2+</sup> in acetonitrile.                                                                              |
| Figure S6.  | The spectral change in the UV-visible region for the reaction of the Cu(II) phthalocyanine complex with Cu <sup>2+</sup> in acetonitrile.                                                                              |
| Figure S7.  | The UV-visible absorption spectra of the $\pi$ -cation radical of the Zn(II) phthalocyanine complex.                                                                                                                   |
| Figure S8.  | The spectral change in the UV-visible region for the electrochemical oxidation of the Zn(II) phthalocyanine complex in acetonitrile.                                                                                   |
| Figure S9.  | Transient absorption spectrum observed for the solution of [Zn(Pc)].                                                                                                                                                   |
| Figure S10. | Comparison of the transient absorption spectrum observed for the solution of $[Zn(Pc)]$ in the presence of $[VO(salen)]^+$ and the difference spectrum between the $\pi$ -cation radical $[Zn(Pc)]^+$ and $[Zn(Pc)]$ . |
| Figure S11. | Absorbance-time traces for the photoinduced electron transfer reaction (A) and the back electron transfer reaction (B).                                                                                                |

Figure S12. The molecular structure of the phthalocyanine complexes mentined in the article.

Preparation of compounds.



Figure S1. UV-visible absorption spectum of the free base phthalocyanine in acetonitrile.



Figure S2. <sup>1</sup>H NMR spectra of the phthalocyanine (A) and its Zn(II) complex (B) in CDCl<sub>3</sub>.



**Figure S3.** UV-visible absorption spectra of [Zn(Pc)] in acetonitrile. Concentration of [Zn(Pc)] is  $1.50 \times 10^{-6}$  M (green line),  $8.33 \times 10^{-6}$  M (blue line),  $8.33 \times 10^{-5}$  M (red line), and  $1.43 \times 10^{-4}$  M (black line).



**Figure S4.** UV-visible absorption spectra of [Cu(Pc)] in acetonitrile. Concentration of [Cu(Pc)] is  $6.00 \times 10^{-7}$  M (blue line),  $1.78 \times 10^{-6}$  M (red line), and  $2.06 \times 10^{-5}$  M (black line).



**Figure S5.** The spectral change in the UV-visible region for the reaction of the Zn(II) phthalocyanine complex with  $Cu^{2+}$  in acetonitrile.  $C_{[Zn(Pc)]} = 3.30 \times 10^{-6}$  M,  $[Cu^{2+}] = 1.94 \times 10^{-4}$  M. Spectra were measured at every 8 ms interval.



**Figure S6.** The spectral change in the UV-visible region for the reaction of the Cu(II) phthalocyanine complex with  $Cu^{2+}$  in acetonitrile.  $C_{[Cu(Pc)]} = 1.21 \times 10^{-6} \text{ M}$ ,  $[Cu^{2+}] = 1.69 \times 10^{-4} \text{ M}$ . Spectra were measured at every 20 ms interval.



**Figure S7.** The UV-visible absorption spectra of the  $\pi$ -cation radical of the Zn(II) phthalocyanine complex given by the reaction with Cu<sup>2+</sup> in acetonitrile. C<sub>[Zn(Pc)]</sub> = 1.65×10<sup>-6</sup> M (black line), 1.65×10<sup>-5</sup> M (red line).



**Figure S8.** The spectral change in the UV-visible region for the electrochemical oxidation of the Zn(II) phthalocyanine complex in acetonitrile. The applied voltage was 0.38 V vs.  $Fc^{+/0}$ . [TBAP] = 0.10 M.



**Figure S9.** Transient absorption spectrum observed for the solution of [Zn(Pc)].  $[Zn(Pc)] = 2.67 \times 10^{-5}$  M. The spectra were recorded 1 µs after a laser pulse under argon atmosphere.



**Figure S10.** Comparison of the transient absorption spectrum observed for the solution of [Zn(Pc)] in the presence of  $[VO(salen)]^+$  recorded 15µs after a laser pusle (red line) and the difference spectrum between the  $\pi$ -cation radical  $[Zn(Pc)]^+$  and [Zn(Pc)] (black line).



Figure S11. Absorbance-time traces for the photoinduced electron transfer reaction (A) and the back electron transfer reaction (B). Conditions: (A)  $[Zn(Pc)] = 4.48 \times 10^{-6} \text{ M}, [VO(salen)^+] = 5.08 \times 10^{-5} \text{ M}$  (a),  $1.02 \times 10^{-4} \text{ M}$  (b),  $2.03 \times 10^{-4} \text{ M}$  (c); (B)  $[Zn(Pc)] = 3.39 \times 10^{-6} \text{ M}, [VO(salen)^+] = 2.20 \times 10^{-4} \text{ M}, [VO(salen)] = 5.06 \times 10^{-5} \text{ M}$  (d),  $1.01 \times 10^{-4} \text{ M}$  (e),  $2.03 \times 10^{-4} \text{ M}$  (f).



Figure S12. The molecular structure of the phthalocyanine complexes mentined in the article.

Preparation of compounds.

Synthesis of phthalocyanine. To the mixture of 0.24 g of 3-(2-methoxyphenyl)phthalonitrile (1.02 mmol) and 5.0 mL of 1-pentanol (Nacalai Tesque) was added 0.053 g of lithium (7.6 mmol), and the mixture was heated to 130 ° C under argon atmosphere for 1 hour. After the reaction mixture was allowed to cool, 6.5 mL of methanol and 1.5 mL of concentrated hydrochloric acid was slowly added with stirring and the mixture was cooled in a refrigerator overnight. The precipitated product was collected by suction filtration, washed with methanol, and then vacuum dried for 1 hour. The obtained solid was purified by silica gel column chromatography eluting with chloroform containing 5% hexane. The main band was collected, and the product was recrystallized from the mixture of chloroform and methanol (3:4) to obtain fine blue-green crystals (0.046 g, 49 µmol, 19%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm : 8.62 (4H, d, *J* = 7.5 Hz, Ar*H*), 8.02-8.12 (8H, m, Ar*H*), 7.78-7.92 (8H, m, Ar*H*), 7.36-7.48 (8H, m, Ar*H*), 3.51 (12H, br, -OCH<sub>3</sub>), -0.53 (2H, s, -NH).

Synthesis of the Zn(II) phthalocyanine complex. 15 mL of the methanol solution containing 0.201 g of zinc(II) acetate (1.15 mmol) was added to the chloroform solution (30 mL) of 0.046 g of the phthalocyanine (49 µmol) and the mixture was heated to 75 ° C under argon atmosphere for 5 hours. The solvent was evaporated to dryness. The obtained solid was purified by silica gel column chromatography eluting with dichloromethane containing 2% methanol. The main band was collected, and the product was recrystallized from the mixture of chloroform and methanol (1:2) to obtain fine deep-blue crystals (0.041 g, 41 µmol, 84%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm : 8.59 (4H, d, *J* = 7.0 Hz, Ar*H*), 7.93-8.05 (8H, m, Ar*H*), 7.80-7.90 (8H, m, Ar*H*), 7.37-7.43 (8H, m, Ar*H*), 3.44 (12H, br, -OCH<sub>3</sub>), 2.56 (6.32H, s, C<u>H</u><sub>3</sub>OH), 0.21 (2.13H, s, CH<sub>3</sub>O<u>H</u>). Anal. Calcd for C<sub>60</sub>H<sub>40</sub>N<sub>8</sub>O<sub>4</sub>Zn · 2CH<sub>3</sub>OH · 1.5H<sub>2</sub>O: C, 68.10; H, 4.70; N, 10.25. Found: C, 68.03; H, 4.46; N, 10.36.

Synthesis of the Cu(II) phthalocyanine complex. 7 mL of the methanol solution containing 0.052 g of copper(II) acetate (0.26 mmol) was added to the chloroform solution (20 mL) of 0.022 g of the phthalocyanine (23  $\mu$ mol) and the mixture was heated to 60 ° C under argon atmosphere for 2 hours. The solvent was evaporated to dryness. The obtained solid was purified by silica gel column chromatography eluting with dichloromethane

containing 20% hexane. The main band was collected, and the product was recrystallized from the mixture of chloroform and methanol (1:1) to obtain fine blue-purple crystals (0.020 g, 20  $\mu$ mol, 87%). Anal. Calcd for C<sub>60</sub>H<sub>40</sub>N<sub>8</sub>O<sub>4</sub>Cu · H<sub>2</sub>O: C, 70.75; H, 4.16; N, 11.00. Found: C, 70.92; H, 4.09; N, 11.01.