Supporting information for

Synthesis and characterisation of group 8 tris(1-benzyl-1,2,3-triazol-4-yl)-p-

anisolylmethane complexes

Samuel Francis, Craig R. Rice, Paul A. Scattergood & Paul I. P. Elliott*

Fig. S1. ¹ H NMR spectrum of ttmz in CDCl ₃ .	S2
Fig. S2. ¹³ C NMR spectrum of ttzm in CDCl ₃ .	S2
Fig. S3. ¹ H NMR spectrum of $[Fe(ttzm)_2](PF_6)_2$ in d ₃ -acetonitrile.	S3
Fig. S4. ¹³ C NMR spectrum of $[Fe(ttzm)_2](PF_6)_2$ in d ₃ -acetonitrile.	S3
Fig. S5. ¹ H NMR spectrum of [Ru(<i>p</i> -cymene)(ttzm)](PF ₆) ₂ in d ₃ -acetonitrile.	S4
Fig. S6. ¹³ C NMR spectrum of $[Ru(p-cymene)(ttzm)](PF_6)_2$ in d ₃ -acetonitrile.	S4
Fig. S7. Photophysical and electrochemical characterisation for $[Ru(p-cymene)(ttzm)](PF_6)_2$	S5
Fig. S8. ¹ H NMR spectrum of $[Ru(ttzm)_2](PF_6)_2$ in d ₃ -acetonitrile.	S 6
Fig. S9. ¹³ C NMR spectrum of $[Ru(ttzm)_2](PF_6)_2$ in d ₃ -acetonitrile.	S 6
Fig. S10. ¹ H NMR spectrum of $[Os(ttzm)_2](PF_6)_2$ in d ₃ -acetonitrile.	S7
Fig. S11. ¹³ C NMR spectrum of $[Os(ttzm)_2](PF_6)_2$ in d ₃ -acetonitrile.	S7
Fig. S12. DFT optimised geometries of Fe, Ru and Os.	S 8
Fig. S13. Cyclic voltammetry traces for Fe, Ru and Os in acetonitrile.	S 8
Fig. S14. Plots of selected orbitals for Fe (isosurface 0.02).	S9
Fig. S15. Plots of selected orbitals for Ru (isosurface 0.02).	S10
Fig. S16. Plots of selected orbitals for Os (isosurface 0.02).	S11
Fig. S17. UV-visible absorption spectrum of free ttzm ligand in acetonitrile solution.	S12
Fig. S18. TDDFT Calculated UV-visible absorption spectra for Fe, Ru & Os	S13
Optimised ground state geometry for Fe	S14
Optimised ground state geometry for Ru	S16
Optimised ground state geometry for Os	S18
Table S1. Selected TDDFT transitions for Fe	S20
Table S2. Selected TDDFT transitions for Ru	S21
Table S3. Selected TDDFT transitions for Os	S23
Fig. S19. Luminescence excitation profile recorded for Os	S25

Fig. S3. ¹H NMR spectrum of [Fe(ttzm)₂](PF₆)₂ in d₃-acetonitrile.

Fig. S4. ¹³C NMR spectrum of [Fe(ttzm)₂](PF₆)₂ in d₃-acetonitrile.

Fig. S5. ¹H NMR spectrum of [Ru(*p*-cymene)(ttzm)](PF₆)₂ in d₃-acetonitrile.

Fig. S6. ¹³C NMR spectrum of [Ru(*p*-cymene)(ttzm)](PF₆)₂ in d₃-acetonitrile.

Fig. S7. (a) Cyclic voltammograms recorded for [Ru(*p*-cymene)(ttzm)](PF₆)₂ at 100 mVs⁻¹ in MeCN.
(b) UV-Visible electronic absorption spectrum recorded for an MeCN solution of [Ru(*p*-cymene)(ttzm)](PF₆)₂ at room temperature (blue, solid line) and 77 K luminescence spectrum recorded for [Ru(*p*-cymene)(ttzm)](PF₆)₂ in a 4:1 EtOH/MeOH glass (λ_{ex} = 340 nm)(red, dashed line).

Fig. S8. ¹H NMR spectrum of [Ru(ttzm)₂](PF₆)₂ in d₃-acetonitrile.

Fig. S9. ¹³C NMR spectrum of [Ru(ttzm)₂](PF₆)₂ in d₃-acetonitrile.

Fig. S10. ¹H NMR spectrum of [Os(ttzm)₂](PF₆)₂ in d₃-acetonitrile.

Fig. S11. ¹³C NMR spectrum of [Os(ttzm)₂](PF₆)₂ in d₃-acetonitrile.

Fig. S12. Optimised ground state geometries of Fe, Ru and Os (benzyl substituents replaced by methyl).

Fig. S13. Cyclic voltammetry traces for Fe, Ru and Os in acetonitrile recorded at 100 mVs⁻¹ (calibrated against the Fc/Fc⁺ couple for E = 0.0 V).

Fig. S14. Plots of selected orbitals for Fe (isosurface 0.02).

Fig. S15. Plots of selected orbitals for Ru (isosurface 0.02).

Fig. S16. Plots of selected orbitals for Os (isosurface 0.02).

Fig. S17. UV-visible absorption spectrum of free ttzm ligand in acetonitrile solution (inset: zoom of the region containing structured band apparent in spectra of complexes).

Fig. S18. TDDFT Calculated UV-visible absorption spectra for **Fe**, **Ru** & **Os**: positions of vertical excitations (green peaks) with Gaussian convolution (blue trace, FWHM = 0.1 eV). Red markers in the spectrum for **Os** show positions of spin-forbidden excitations of lowest 20 triplet states.

Optimised ground state geometry for Fe

93 Coordinates from ORCA-job gs

E2 0.00717886208006	0.01207921621572	0.00166202752086
Fe -0.00/1/880298090	0.0129/0210515/2	0.00100292735060
N -2./9351////22659	0.15/1483/815121	-2.903448/6482949
N -2.44131263323053	-0.05348513390114	-1.63649283505974
N -1.16018532439425	0.21022911458127	-1.57053045179051
N 0.77217252960633	1.73515257508326	-0.49901201613591
N 1.06605649634793	2.76493781042508	0.25427600690221
N 1.56663934783035	3.69156053366668	-0.56677837658592
N 1.30602941811975	-0.79757522349990	-1.20625657096351
N 1.92692751885305	-1.93289783842244	-1.00982109403041
N 2 53701782290738	-2 22208581458532	-2 15643696337641
0 2 48230200075006	3 47336747471640	-7 603/15255182851
C = 1.74127542447249	0 55110010156045	2 65605926200214
C = 1./413/34244/348	0.33110010130043	-5.05005650209214
H -1.83/20038100/98	0./52011488011/5	-4./0/91294850125
C -0.6800/229/6/648	0.59952607006432	-2.78231908103959
C 0.80238410589684	0.94667080373044	-2.87855324595147
C 1.07851022418148	1.98631051426035	-1.79873339272780
C 1.59476547199112	3.25860629952177	-1.84789596117277
H 1.96238918907653	3.86592445479076	-2.65637009472219
C 1.98108537858298	4.98549678345220	-0.04328075158592
Н 2.40564872052325	5.56294403199750	-0.86156975817403
Н 2.73104408474855	4.83776305813974	0.73272635240370
C 1.52213839619714	-0.33574775310525	-2.47130508329389
C 2 31442473599977	-1 27309761748264	-3 09442444685216
Н 2 71641797831999	-1 35524086623791	-4 08796288062237
C = 3.3383731/8571/0	-3 /373/8677367/7	-7.26515000186320
U = 2.50059710190076	2 59477295045290	2 21185701510547
II 2 75452450870002	-3.304/2303043200	1 20564215260561
$\Pi 2.73433439870902$	-4.2/42/232603061	-1.09504215500501
C = 2.400056(2700512)	1.3421/00000900/	-4.22100184044905
C 2.49093662799313	1.30289743438812	-4./300989901/043
H 3.21129333143325	0./3435280/83100	-4.24600413/89809
C 2.88/10430586/40	2.00988075475039	-5.90893271730580
H 3.88152746630255	1.85453887812563	-6.3111/981509/96
C 2.01291200473675	2.87888927646961	-6.56775356368446
C 0.74147404851559	3.09590298267701	-6.03501882080208
Н 0.04739200317236	3.77929488153234	-6.50469179690915
C 0.36245485083163	2.43949438715785	-4.86977101810179
Н -0.61092600143996	2.66848053388703	-4.45728802535014
C 1.58600462673527	4.32500572903672	-8.41682599903488
Н 0.71367810378544	3.76507171585142	-8.76652951644201
Н 2.15109063832468	4.69352431483093	-9.27146649712635
Н 1.25985543230895	5.17110107537394	-7.80480628728427
C -4.18465592632978	0.01280839812728	-3.30357545203882
H -4.25897747704367	0.23524297533686	-4.36601498469689
H -4 79617554095712	0.71309541985878	-2 73610985565880
N 2 61406110667599	0.10341689017627	3 07726035485262
N 2 35326033471552	0.21802033142630	1 77434212197050
N 1 10062257202812	0.21002055142050	1.61746281272760
N 0.79410225952969	1 71221104791580	0.46660429499504
N = 0.76419323633606	-1./1321104/01309	0.40009430400394
IN $-1.00/1/\delta1402\delta/20$ N 1.50165556460200	-2./2301428914083	-0.31/13832803409
IN -1.3910333462292	-3.004230110036/9	0.4/081444/390/1
N -1.34860307548840	0.81129048977792	1.18895595354887
N -1.98934633343717	1.93083837124912	0.97344447265085
N -2.691/3435719895	2.1/180010018845	2.07/05199331629
0 -2.58684503737872	-3.59743303043476	7.59314188106054
C 1.54142350086484	-0.35690103563903	3.76039153199531
Н 1.56117676621076	-0.50100847040318	4.82628553016124

С	0.56928096914731	-0.54569381596281	2.80801468843877
С	-0.89943767197992	-0.95535190202928	2.84564667731557
С	-1.12149123889998	-1.98958060609742	1.75131378180184
С	-1.64713797267243	-3.25962992629001	1.76069469077077
Н	-2.03838091664951	-3.88236208821601	2.54602339841356
С	-2.00220479545144	-4.94196983503524	-0.09464592494262
Η	-2.46240539371830	-5.53180838616469	0.69494311934975
Η	-1.12948653905865	-5.46263290557786	-0.48881183619422
С	-1.63954949666329	0.31196872689894	2.42484427054905
С	-2.50842726541682	1.20659718551687	3.00739438817165
Η	-2.98676882667195	1.25174304553003	3.96894919727740
С	-3.55787948040265	3.33924384165910	2.14100362793032
Η	-4.45294921165265	3.16273479683578	1.54399199039615
Η	-3.83321218949677	3.50945033993712	3.17907710984741
С	-1.31820146962760	-1.57851495668055	4.17166455062781
С	-2.61288080110127	-1.44540326693675	4.67901160274035
Η	-3.34352261350270	-0.83247248279215	4.17043140956257
С	-3.00843355478434	-2.12164134775665	5.82177044271255
Η	-4.01406756920156	-2.00360718493924	6.20864276164821
С	-2.11905824251247	-2.97373572644849	6.48241176961544
С	-0.83269220677729	-3.14478515398546	5.96838015488662
Η	-0.12625094588600	-3.81380010771443	6.44019997910990
С	-0.45397361555172	-2.45897355587012	4.82058742857732
Η	0.53521148985453	-2.64524449772725	4.42292869194750
С	-1.68247907598474	-4.45077756013431	8.30468681907695
Η	-0.82443015717048	-3.88434443216792	8.67820828512845
Η	-2.25001904580390	-4.85180989401760	9.14290776402091
Η	-1.33436029589387	-5.27466458567850	7.67456222203281
С	3.93418765026637	0.42551380294964	3.60047913036433
Н	4.50537063910962	0.88993400595868	2.79957643253170
Η	4.42898332301997	-0.48552772964709	3.93715833569575
Η	1.11561736122550	5.50363774709869	0.36973882238634
Η	4.24908261762258	-3.32201534774186	-1.67672820921304
Н	-4.51320347302615	-1.00815562084001	-3.10961954364390
Н	-2.72180442401461	-4.76656187820748	-0.89327170130088
Н	-3.01372733065816	4.19868884946958	1.75276017575163
Н	3.83024618650075	1.11998968004489	4 43332296761936

Optimised ground state geometry for Ru

93 Coordinates from ORCA-job gs

Ru 0.00075239154264	0.00035972032611	-0.00001392487812
N -2.78032569179895	0.23542827877170	-3.02203822649033
N -2.45276262606423	-0.00608561058574	-1.75580538931798
N -1.16629989073675	0.22001263611821	-1.66938543674855
N 0.82272721943584	1.78828905626248	-0.57417659467922
N 1.11788101918753	2.83913711669273	0.14791028191916
N 1.61254289528026	3.74119954031510	-0.70184543330052
N 1.35904980662372	-0.82823799156488	-1.29794661283138
N 1.96914057367080	-1.97389287308560	-1.13422841670787
N 2.54659918153484	-2.25145026598570	-2.29823301679597
0 2.52607218269250	3.51400793625000	-7.74305656256356
C -1.70847494462038	0.60772199881939	-3.75304010212667
H -1.78497561484973	0.82607102783631	-4.80107675729243
C -0.65592425127016	0.61502801815149	-2.86822244303887
C 0.83383106767950	0.94682067431643	-2.95177036886173
C 1.12190269799337	2.00030927913574	-1.88364665438687
C 1.63463203371810	3.27198078330372	-1.96739091921810
Н 1.99676261486700	3.85713242648453	-2.79216327267433
C 2.02885435385075	5.05069189614235	-0.21815766426744
H 2.44405410558500	5.60477811215755	-1.05512687491775
Н 2.78537672408698	4.92620207806766	0.55333822344606
C 1.55028389193242	-0.34604838212632	-2.56107124602397
C 2.31394977692602	-1.28654438338739	-3.21416743536145
Н 2.68947902093840	-1.36054725405727	-4.21683305325972
C 3.31649684702168	-3.47878122389665	-2.44584964606434
Н 3.57545153171512	-3.59781865265824	-3.49365784555196
Н 2.70666591363345	-4.31623594494871	-2.11434058928163
C 1.24275805126960	1.54624374490282	-4.29644159212720
C 2.51605059754646	1.35428250593439	-4.83674391081997
Н 3.22970301384228	0.70922905628194	-4.34863571204847
C 2.91502268392750	2.01185713254305	-5.98818819747301
Н 3.90250173631118	1.84479000216855	-6.39824254104224
C 2.05371757211579	2.90683662440588	-6.62638527410467
C 0.79082871708411	3.13631915099483	-6.08171190943594
Н 0.10637594445078	3.83878739221162	-6.53301116175873
C 0.40938481475942	2.46932648298441	-4.92462183897786
Н -0.55320395729941	2.71360237238348	-4.50106220135533
C 1.63738076997216	4.38313551316099	-8.45282105076768
Н 0.76391177911726	3.83475071460716	-8.81257957498950
Н 2.20558411974793	4.76263535417616	-9.29859115298246
Н 1.31533034431267	5.21958959336586	-7.82858346659270
C -4.17302813022573	0.15762553803047	-3.43542171028525
Н -4.22836075527078	0.39503272243467	-4.49421859885475
Н -4.75549280010541	0.87767458686363	-2.86520284602413
N 2.55311317917666	0.13942794386391	3.24787501179722
N 2.35038513261353	0.22917743821108	1.93449621478373
N 1.12014818130686	-0.17402339172778	1.72928403476560
N -0.81569235747648	-1.79213783870909	0.53736286596533
N -1.09312845748505	-2.82553675461639	-0.21595488385617
N -1.60799129715729	-3.74576335082237	0.60096596758580
N -1.40726309865328	0.80501896146513	1.25852915394811
N -2.06267647695046	1.91675200083998	1.05260162387229
N -2.76775619823378	2.13659396038606	2.15624241779730
O -2.53097695017238	-3.64406209121223	7.67767452921991
C 1.45946876408414	-0.32507774165745	3.88889785304243
Н 143365748837751	-0.45266325544214	4.95505802495764

С	0.53164384968982	-0.54503498018588	2.90100956984962
С	-0.93493478420056	-0.97416127856264	2.91122945884425
С	-1.14668862032965	-2.03093152296809	1.83233571361712
С	-1.66227867145915	-3.30406545591153	1.87610441628882
Η	-2.04613902702961	-3.90693526712068	2.67799615378267
С	-2.01239337749448	-5.04291000561308	0.07480942439704
Η	-2.45290199865705	-5.61618133423902	0.88541013152286
Η	-1.14095999370138	-5.56189743983320	-0.31997472880128
С	-1.69203714990876	0.28631296566406	2.49024913927203
С	-2.57238960992077	1.16711199752757	3.07626725836495
Η	-3.05116465768135	1.20211304110695	4.03594823442209
С	-3.64882835113727	3.29256217387742	2.22708463810092
Η	-4.53560319489189	3.11052563137362	1.62233296990943
Η	-3.93359738778872	3.44784229659647	3.26331966671431
С	-1.34018921475856	-1.60271110163239	4.24286700615701
С	-2.61540744671114	-1.45819827455624	4.79013765926922
Η	-3.35400519911112	-0.83357963001148	4.31303800903847
С	-2.98459051934152	-2.14128735592763	5.93782505832724
Η	-3.97481887199102	-2.01265634186762	6.35511929769043
С	-2.08983654178940	-3.01359571992244	6.56089316262090
С	-0.82348646665799	-3.19681719438990	6.00563005272080
Η	-0.11325963592606	-3.88016634567831	6.44619462384033
С	-0.47140321022627	-2.50407342675316	4.85533513285221
Η	0.50116566385123	-2.69959282181457	4.42656526410728
С	-1.61895183968525	-4.51749790522599	8.35167979643898
Η	-0.74838103478512	-3.96607053233900	8.71347078754411
Η	-2.16951898027920	-4.92790913162814	9.19467685961390
Η	-1.29387342185543	-5.33233053993239	7.70072643164236
С	3.84766162480938	0.47818710926810	3.82400343892366
Η	4.44183580877951	0.95585997249763	3.05028448271503
Η	4.34125411863937	-0.42627891525216	4.17476820101569
Η	1.16708968188179	5.57641383434910	0.18883747620748
Η	4.22160739587894	-3.41535832262694	-1.84533657288626
Η	-4.54739658342966	-0.84800664380452	-3.25371861976911
Н	-2.74557224886930	-4.89744762219089	-0.71534971858019
Н	-3.11238450373727	4.16054063961755	1.85174874553464
Н	3.70002217826334	1.16443673422586	4.65457408472725

Optimised ground state geometry for Os

93 Coordinates from ORCA-job gs

		(11 51 (250500100
Os 5.18140448358479	5.74554447693820	6.41516379790128
N 2.40278656765023	5.99279528048573	3.38043481766428
N 2.72718407000228	5.74667283992961	4.64673895509539
N 4.01807194817231	5.96939279851743	4.73459844742403
N 6.00805694837738	7.53566371823649	5.82813149935141
N 6.30536065240028	8.58913892802151	6.55225083216526
N 6 80198735408270	9 48890992684926	5 70074947764808
N 6 53740740205158	1 01673016664322	5 10320737845000
N = 7.15502706071468	2 771007007776744	5.26744000256821
N = 7.13303700971408	2 50100102002001	J.20/44090230831 4 10456082454107
N 7.73848377799602	5.50100192982881	4.10430082434107
0 7.70983834558878	9.26365423048310	-1.34308857965827
C 3.47529675291337	6.36332449852239	2.65065460861923
H 3.39898322312126	6.58413441374216	1.60311993570637
C 4.52920100366539	6.36655456767052	3.53328817638464
C 6.01915023514535	6.69631146751175	3.44912508538045
C 6.30914708335061	7.74971159176281	4.51646529827220
C 6.82433348403927	9.01988577548644	4.43556606379090
Н 7.18803123799523	9.60483128538116	3.61129381636878
C 7.21974881105021	10.79778420053487	6.18399256448456
Н 7.63288867033582	11 35228115584354	5 34626301298758
H 7 97818697501007	10 67304850284244	6 95367810691424
C = 6.73583717020221	5 /0372663007082	3 83055071531233
C = 7.50630730681012	1 16677061301768	3 10026670126808
C = 7.50050755081512	4.40077004334208	2 19020079120898
Π /.88/403804/9039	4.39000331037070	2.1693300/0//910
C 8.31328301830004	2.2/822903024///	3.938100/8/03394
H 8.//99/346684911	2.16256572020743	2.911341165/3096
H 7.90824049193178	1.43695965103324	4.28526691919599
C 6.427/1052234496	7.29621571859379	2.10433166510188
C 7.70062954999153	7.10398932677531	1.56318934357196
Н 8.41474181995112	6.45926440049734	2.05095283710266
C 8.09920385009982	7.76149080421649	0.41157862889282
Н 9.08644772335635	7.59409715175729	0.00109329423895
C 7.23795132077065	8.65689599585722	-0.22603700919882
C 5.97563498459542	8.88705362765938	0.31968041555858
Н 5.29127457739065	9.59000893689969	-0.13100717805591
C 5.59460798779332	8.22015050510728	1.47699495683210
Н 4.63264725332776	8.46513429231236	1.90138843780292
C 6.82118955305164	10.13302116272104	-2.05262250283886
Н 5.94733021275588	9.58492039424248	-2.41185673815096
H 7 38919634016253	10 51206645578740	-2.89873056851494
H 6 49982980941594	10.96977142846468	-1 42844351341110
C = 1.00986019453147	5 92262214908891	2 96731103519813
Н 0.05520708656678	6 16101048250560	1 00867881230707
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.64522560861002	2 52876657244240
11 0.43103137307883	5.87502075040701	0.67277218540621
N 7.73383994984420	5.87502075049701	9.0/2//218349021
N 7.53122359110152	5.9/0/2//2802546	8.359/9606906144
N 6.29569191659102	5.5/1/8/92489/84	8.154/1142984/99
N 4.36066615002721	3.949810/4085134	6.96698441362872
N 4.08039162533925	2.91347467006671	6.21220593235669
N 3.56424648538291	1.99581963310655	7.03180460947632
N 3.77263561278973	6.54845722857336	7.68608894531531
N 3.10826802099733	7.65887701918745	7.47816447695702
N 2.39897962277978	7.87173175271573	8.58056204443110
O 2.65056232024203	2.09888351519152	14.10983439688004
C 6.64083522907793	5.41097371874234	10.31403223159549
Н 6.61734927561127	5.27981421526591	11.37980631122288

С	5.70927023747987	5.19568799654674	9.32921430205611
С	4.24250440806038	4.76772714937763	9.34130920304719
С	4.02856201097278	3.70958981633987	8.26439881304289
С	3.51090691787309	2.43793802387558	8.30643446668014
Η	3.12618981587468	1.83566463304375	9.10841620307141
С	3.15799327980276	0.69910552296687	6.50681121774008
Η	2.71918681712966	0.12604635649099	7.31849295673701
Η	4.02827141673167	0.17973277010933	6.10979677225185
С	3.48434884251770	6.02697064468940	8.91938887459342
С	2.59721634832828	6.90367945164700	9.50061298745539
Η	2.11463447243445	6.93602691846268	10.45848840767625
С	1.50978929815525	9.02135044286655	8.64812774299144
Η	0.62888099596173	8.83498597257073	8.03606821874788
Η	1.21607016272990	9.17169662984817	9.68257744132311
С	3.83852992208638	4.13998886252068	10.67383303454387
С	2.56306106838150	4.28289890434852	11.22099263418828
Η	1.82330979290027	4.90559909861514	10.74328831828499
С	2.19481436424334	3.59996720415552	12.36903871255283
Η	1.20428750276696	3.72731106315023	12.78600646251651
С	3.09074694720300	2.72925673071021	12.99268661596031
С	4.35727448666815	2.54743197899930	12.43744526681848
Η	5.06848398152492	1.86530178485559	12.87828595948206
С	4.70836751900832	3.23993422704214	11.28669553815138
Η	5.68103037400574	3.04511002971747	10.85806102355209
С	3.56353331546352	1.22633254093374	14.78379058385418
Η	4.43351655305467	1.77866547406163	15.14558802678408
Η	3.01337146995823	0.81528860880955	15.62673689781290
Η	3.88942247777495	0.41189393285447	14.13275027696217
С	9.03049120779133	6.20690326637171	10.24800447752490
Η	9.62429169586216	6.68756705790450	9.47585732249378
Η	9.52252179258204	5.29908171369802	10.59228510046804
Η	6.35903319179786	11.32338829033215	6.59355253193763
Η	9.41723538873555	2.34521575440494	4.56312931152954
Η	0.63008663430671	4.91891820970423	3.14874581845151
Η	2.42300805894984	0.84465913124322	5.71822943088348
Η	2.04297746874218	9.89412099870920	8.27911421156653
Η	8.88645108607325	6.88864965871799	11.08291282870234

State	Energy /	λ./	f(osc)	Composition	Character
	cm ⁻¹	nm	5()		
\mathbf{S}_1	21224	471	0.000416	HOMO→LUMO+10 (27 %)	¹ MC
				HOMO-1→LUMO+10 (13 %)	
S_8	29259	342	0.0106	HOMO→LUMO (46 %)	¹ MLCT (tz)
				HOMO-1→LUMO (16 %)	
S_9	29616	338	0.0202	HOMO-1→LUMO (32 %)	¹ MLCT (tz)
				HOMO→LUMO+1 (29 %)	
S_{10}	29869	335	0.0587	HOMO-1→LUMO+1 (31 %)	¹ MLCT (tz)
				HOMO→LUMO (25 %)	
				HOMO-1→LUMO (17 %)	
S_{11}	30710	326	0.149	HOMO→LUMO+1 (31 %)	$^{1}MLCT$ (tz)
				HOMO-1→LUMO+1 (28 %)	
				HOMO-1→LUMO (14 %)	
S_{12}	31005	323	0.0294	HOMO-1→LUMO+2 (29 %)	$^{1}MLCT$ (tz)
				HOMO→LUMO+3 (28 %)	
_				HOMO-2→LUMO+2 (14 %)	to
S_{14}	32020	312	0.0476	HOMO→LUMO+4 (38 %)	¹ MLCT (tz)
				HOMO-1→LUMO+4 (37 %)	
a	22100		0.0114	HOMO-2 \rightarrow LUMO (16 %)	
S ₁₅	32188	311	0.0114	HOMO-2→LUMO (72 %)	$^{1}MLCT(tz)$
S_{16}	32424	308	0.0758	HOMO-1 \rightarrow LUMO+4 (47 %)	¹ MLCT (tz)
C	26040	077	0.0201	HOMO \rightarrow LUMO+4 (42 %)	
S ₂₅	36048	277	0.0201	HOMO-4 \rightarrow LUMO (52 %)	¹ ILCT (An \rightarrow tz)
				HOMO-3 \rightarrow LUMO (16 %)	¹ MLC1 (An)
C	26127	277	0.0111	$HOMO \rightarrow LUMO + 6 (11\%)$	$MICT(A_{n})$
S_{27}	30127	211	0.0111	HOMO-1 \rightarrow LUMO+6 (71%)	^A MLC1 (An)
c	27550	266	0.0454	HOMO \rightarrow LUMO+6 (22 %)	$MICT(\Lambda n)$
S ₃₇	57550	200	0.0434	HOMO-1 \rightarrow LUMO+8 (44 %)	MLCI (All)
S	30870	251	0.0504	$HOMO \rightarrow LOMO + 8 (28.76)$	MI CT (tz)
351	39870	231	0.0304	$HOMO \rightarrow LUMO + 14 (00\%)$	MILCI (IZ)
See	40228	249	0.0144	$HOMO \xrightarrow{2} UIMO \xrightarrow{14} (28\%)$	III CT (An sta)
552	40220	277	0.0144	$HOMO 4 \rightarrow LUMO + 6 (52 \%)$	$^{1}LCI(An)$
See	45028	222	0.0471	HOMO 5 \rightarrow LUMO 4 (77 %)	¹ II CT (Λ n λ tz)
589	45020		0.0471	$\operatorname{HOMO-J-JLOWO+4}(77.70)$	¹ LC (tz)
Sos	46212	216	0.0208	HOMO-5→LUMO+5 (30 %)	¹ LC
- 98				HOMO-8 \rightarrow LUMO+4 (28 %)	
				HOMO-7 \rightarrow LUMO+4 (13 %)	
S_{99}	46288	216	0.143	HOMO-7 \rightarrow LUMO+4 (37 %)	¹ LC
~~				HOMO-6 \rightarrow LUMO+5 (11 %)	
				HOMO-3→LUMO+9 (77 %)	
_					2
T_1	15587	642	-	HOMO \rightarrow LUMO+10 (35 %)	³ MC
-	1 < 1 < 5	(10		HOMO-1 \rightarrow LUMO+10 (13 %)	21.60
T_2	16165	619	-	HOMO-2 \rightarrow LUMO+10 (27 %)	³ MC
13	16268	615	-	HOMO-1 \rightarrow LUMO+11 (17%)	MC
				HOMO-1 \rightarrow LUMO+12 (17%)	
т	26200	200		$HOMO - 1 \rightarrow LUMO + 13 (16\%)$	3ML CT
17	20288	200	-	$HOMO \rightarrow LUMO + 3 (32\%)$	IVILUI
				$HOMO = 1 \rightarrow LUMO + 1 (15\%)$	
				$HOWO-1 \rightarrow LOWO+1 (13\%)$	

Table S1. Selected TDDFT transitions for Fe and their dominant composition and character.

State	Energy /	λ/	f(osc)	Composition	Character
	cm ⁻¹	nm		1	
S ₁	29178	343	0.0107	HOMO \rightarrow LUMO (72 %)	¹ MLCT (tz)
c	20005	225	0.0268	$HOMO-1 \rightarrow LUMO+1 (17\%)$	1 MI CT (t_{τ})
\mathbf{S}_2	29883	333	0.0208	HOMO-1 \rightarrow LUMO+1 (37%)	WILCT (12)
				HOMO- $1 \rightarrow LUMO (34\%)$	
C	20172	221	0.0015	$HOMO \rightarrow LUMO + 1 (24\%)$	1MLCT $(4-)$
\mathbf{S}_3	50175	331	0.0913	$HOMO-1 \rightarrow LUMO+1 (38\%)$	WILCT (12)
				$HOMO - 1 \rightarrow LUMO (28\%)$	
c	21051	222	0.0022	$HOMO \rightarrow LUMO (20\%)$	1 MI CT $(t_{7} + \Lambda_{7})$
5_4	51051	322	0.0955	$HOMO \rightarrow LUMO + 1 (26.%)$	$\operatorname{Auller}(\operatorname{IZ} + \operatorname{Au})$
				$HOMO \rightarrow LUMO + I (26\%)$	
S	21627	216	0.102	HOMO- $1 \rightarrow LUMO (11\%)$	$MI CT (t_7 \perp \Lambda n)$
\mathbf{S}_5	51027	510	0.192	$HOMO \rightarrow LUMO + 1 (36\%)$	WILCT $(12 \pm AII)$
				$HOMO \rightarrow LUMO + 2 (28\%)$	
c	22007	212	0.0220	HOMO-1 \rightarrow LUMO (14 %)	1 MI CT $(t_{7} + \Lambda_{7})$
\mathbf{S}_6	52007	312	0.0329	HOMO-1 \rightarrow LUMO+2 (45 %)	WILCT $(12 \pm AII)$
C	22762	205	0.0094	HOMO- $1 \rightarrow LUMO+4 (30\%)$	1MLCT $(4-)$
5_8	32/63	305	0.0984	$HOMO \rightarrow LUMO + 3 (61\%)$	¹ MLC1 (tz)
C	22222	201	0.12	$HOMO \rightarrow LUMO + 4 (11\%)$	1 ML CT $(1-)$
59	33233	301	0.12	HOMO-1 \rightarrow LUMO+3 (53 %)	¹ MLC1 (tz)
				HOMO-1 \rightarrow LUMO+4 (24 %)	
C	22944	200	0.0122	$HOMO \rightarrow LUMO + 3 (10\%)$	1 ML CT $(1-)$
S_{11}	33844	296	0.0133	HOMO-1 \rightarrow LUMO+5 (16 %)	1 MLCI (tZ)
C	27512	267	0.0225	HOMO-3 \rightarrow LUMO+1 (14 %)	¹ ILC1 (An \rightarrow tz)
S ₂₁	3/512	267	0.0235	$HOMO \rightarrow LUMO + 6 (38\%)$	¹ MLC1 (An)
				HOMO-1 \rightarrow LUMO+6 (27%)	
C	27522	200	0.022	HOMO-2 \rightarrow LUMO (12 %)	
S ₂₂	3/533	266	0.022	$HOMO \rightarrow LUMO + 6 (40\%)$	'MLCI (An)
C	27722	265	0.0102	HOMO-1 \rightarrow LUMO+6 (38 %)	1 ML CT $(1-)$
S ₂₄	3//22	265	0.0102	HOMO-4 \rightarrow LUMO (38 %)	1 MLCI (tZ)
C	28000	2(2	0.0121	HOMO-3 \rightarrow LUMO (30 %)	¹ ILC1 (An \rightarrow tZ)
S_{28}	38009	203	0.0121	HOMO- $2 \rightarrow LUMO+1$ (49%)	$\frac{1}{11} \text{ OT } (12)$
C	29(02	250	0.0572	HOMO-4 \rightarrow LUMO+1 (16 %)	¹ ILC1 (An \rightarrow tz)
S_{30}	38603	259	0.0572	HOMO-1 \rightarrow LUMO+8 (48 %)	1 MLC1 (An + tZ)
				HOMO-1 \rightarrow LUMO+10 (24 %)	
C	107(2	245	0.07(1	$HOMO \rightarrow LUMO + 8 (14\%)$	1 ML CT $(1-)$
S_{44}	40/63	245	0.0761	$HOMO \rightarrow LUMO + 12 (43\%)$	¹ MILCI (tZ)
C	42070	227	0.0110	HOMO-1 \rightarrow LUMO+12 (36 %)	
S_{57}	43970	221	0.0119	HOMO-5→LUMO (86 %)	¹ ILC1 (An \rightarrow tz)
S	16557	215	0.0130	$HOMO(6) \times HIMO(2)(28.9/)$	$^{1}LC(1Z)$
377	40337	215	0.0139	$HOMO = 0 \rightarrow LUMO + 2 (28 \%)$	
				HOMO-5 \rightarrow LUMO+3 (14 %)	
S	46840	214	0.0311	HOMO $5 \rightarrow LUMO + 2$ (11 %)	lI C
382	40840	214	0.0311	$HOMO-5 \rightarrow LUMO+3 (50\%)$	
S	47240	212	0.0561	$HOMO = 0 \rightarrow LUMO + 1((10\%))$	IMC
S_{87}	47249	212	0.0301	$HOMO - 1 \rightarrow LOMO + 16 (10\%)$	IVIC
				$HOMO = 1 \times IIMO \pm 17 (16.07)$	
				$HOMO \rightarrow LUMO + 17 (16\%)$	
S	17200	212	0.226	$HOMO \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	ILC
388	4/280	212	0.230	$HOMO 2 \rightarrow LUMO + 0 (16.97)$	LU
S	47402	211	0.0205	$HOMO = 2 \rightarrow LUMO (27.%)$	ILC
389	4/402	211	0.0293	$HOMO \leftarrow HIMO + 2 (16.04)$	LU
S	17611	210	0.0663	$HOMO \leftarrow LUMO + 4 (49.97)$	ILC/IILCT
S 91	4/014	∠1U	0.0003	п∪м∪-о→LUMU+4 (48 %)	·LC/·ILCI

Table S2. Selected TDDFT transitions for \mathbf{Ru} and their dominant composition and character.

S ₉₂	47921	209	0.0795	HOMO-8→LUMO+2 (24 %)	¹ LC
				HOMO-7→LUMO+3 (17 %)	
				HOMO-6→LUMO+4 (14 %)	
				HOMO-6→LUMO+2 (12 %)	
				HOMO-6→LUMO+5 (16 %)	
S ₉₄	48102	208	0.0184	HOMO-7→LUMO+3 (22 %)	^{1}LC
				HOMO-8→LUMO+3 (17 %)	
				HOMO-7→LUMO+3 (16 %)	
S ₉₇	48324	207	0.0311	HOMO-7→LUMO+3 (30 %)	^{1}LC
				HOMO-8→LUMO+3 (20 %)	
т	2(920	272			
I ₁	26830	3/3		HOMO-1 \rightarrow LUMO (62 %)	³ MLC1 (tz)
-	07015	2.67		HOMO \rightarrow LUMO+1 (13 %)	
T_2	27215	367		HOMO \rightarrow LUMO+1 (39 %)	³ MLCT (tz)
				HOMO→LUMO (29 %)	
				HOMO-1→LUMO+1 (21 %)	
T ₃	27171	368		HOMO→LUMO (35 %)	$^{3}MLCT$ (tz)
				HOMO→LUMO+1 (25 %)	
				HOMO-1→LUMO (13 %)	
T_4	27418	365		HOMO-1→LUMO+2 (32 %)	³ MLCT (tz)
T_5	28874	346		HOMO→LUMO+4 (22 %)	$^{3}MLCT$ (tz)
				HOMO→LUMO+3 (12 %)	
				HOMO-1→LUMO+1 (10 %)	

State	Energy / cm ⁻¹	λ / nm	f(osc)	Composition	Character
S ₁	26047	384	0.00783	HOMO→LUMO (73 %) HOMO-1→LUMO+1 (21 %)	¹ MLCT (tz)
S_2	26839	373	0.0285	HOMO-1 \rightarrow LUMO+1 (47 %)	1 MLCT (tz)
2		2.0		HOMO-1 \rightarrow LUMO (24 %)	
				HOMO \rightarrow LUMO+1 (18 %)	
S_3	27331	366	0.0847	HOMO-1 \rightarrow LUMO (34 %)	¹ MLCT (tz)
2				HOMO-1→LUMO+1 (24 %)	~ /
				HOMO→LUMO (13 %)	
				HOMO→LUMO+1 (20 [°] %)	
S_4	29058	344	0.278	HOMO→LUMO+1 (46 %)	¹ MLCT (tz)
				HOMO-1→LUMO (23 %)	
S_5	29545	339	0.129	HOMO→LUMO+3 (22 %)	¹ MLCT (tz)
				HOMO→LUMO+2 (21 %)	
				HOMO→LUMO+1 (20 %)	
S_6	30199	331	0.0704	HOMO-1→LUMO+2 (29 %)	¹ MLCT (tz)
				HOMO→LUMO+2 (21 %)	
				HOMO→LUMO+4 (17 %)	
_				HOMO-1→LUMO+3 (21 %)	1 · · ·
S_7	30252	331	0.119	HOMO→LUMO+3 (29 %)	¹ MLCT (tz)
				HOMO-1→LUMO+3 (22 %)	
G	20.410	220	0.0207	HOMO \rightarrow LUMO+2 (14 %)	
S_8	30410	329	0.0396	HOMO-1 \rightarrow LUMO+4 (43 %)	¹ MLC1 (tz)
				HOMO \rightarrow LUMO+2 (16 %)	
G	20(00	226	0.0122	HOMO-1 \rightarrow LUMO+2 (14 %)	
S9	30698 20870	326	0.0132	HOMO-2 \rightarrow LUMO (82 %)	1 MLCT (tz)
S_{10}	308/9	324	0.139	HUMO-1 \rightarrow LUMO+2 (30 %)	'MILCI (tz)
				$HOMO \rightarrow LUMO + 4 (22\%)$	
S	2/861	207	0.0107	$HOMO \rightarrow LUMO + (25\%)$	IMI CT (An)
S ₁₇	34001	201 286	0.019/	$HOMO = 1 \times UMO \pm 6 (27.97)$	¹ MLCI (AII) 1 MI CT (An)
S ₁₈	34924 36026	200 278	0.0100	$HOMO_1 \rightarrow UWO+0 (67 \%)$	$\frac{1}{1} MI CT (\Delta n + tz)$
323	50020	210	0.0717	$HOMO_1 \rightarrow U WO + 0 (00 \%)$	$\mathbf{MLC} \in (\mathbf{AII} + \mathbf{IZ})$
Saa	37072	270	0.0178	$HOMO_{2} \rightarrow I IMO (52.0\%)$	¹ II CT (An sta)
529	51012	270	0.01/0	HOMO-4 \rightarrow LUMO (10 %)	ILCI (All \rightarrow 12)
S25	38034	263	0.0177	$HOMO \rightarrow I I IMO + 13 (31 \%)$	1 MLCT (tz)
-35	5005-T	205	0.01//	HOMO \rightarrow LUMO + 12 (24 %)	
				HOMO-1 \rightarrow LUMO+12 (20 %)	
				HOMO \rightarrow LUMO+11 (15 %)	
S ₃₆	38150	262	0.069	HOMO-1 \rightarrow LUMO+13 (31 %)	¹ MLCT (tz)
50				HOMO \rightarrow LUMO+11 (29 %)	()
				HOMO-1 \rightarrow LUMO+12 (18 %)	
				HOMO-1 \rightarrow LUMO+11 (11 %)	
S ₃₇	38226	262	0.0215	HOMO-1 \rightarrow LUMO+13 (43 %)	¹ MLCT (tz)
- /				HOMO \rightarrow LUMO+13 (19 %)	~ /
S_{42}	40439	247	0.0119	HOMO-3→LUMO+2 (54 %)	¹ ILCT (An \rightarrow tz)
				HOMO-3→LUMO+3 (15 %)	× /
				HOMO-4→LUMO+2 (15 %)	
S_{58}	43427	230	0.0105	HOMO-5→LUMO (71 %)	¹ILCT (An→tz)
S ₆₂	43893	228	0.0122	HOMO-5→LUMO+1 (75 %)	¹ ILCT (An \rightarrow tz)
				HOMO-7→LUMO+1 (14 %)	
S ₇₇	46444	215	0.0147	HOMO-5→LUMO+3 (54 %)	¹ ILCT (An→tz) ¹ LC
S ₇₉	46707	214	0.0536	HOMO-4→LUMO+11 (24 %)	¹ ILCT (An \rightarrow tz)

Table S3. Selected TDDFT transitions for Os and their dominant composition and character.

				HOMO-4→LUMO+8 (18 %)	
				HOMO-3→LUMO+11 (15 %)	
S_{81}	46843	214	0.0625	HOMO-6→LUMO+3 (24 %)	¹ LC
				HOMO-3→LUMO+8 (20 %)	
				HOMO-3→LUMO+10 (12 %)	
S_{82}	46887	213	0.033	HOMO-6→LUMO+2 (45 %)	lLC
S_{83}	46923	213	0.0336	HOMO-9→LUMO (51 %)	lLC
				HOMO-3→LUMO+9 (15 %)	
S_{84}	47012	213	0.021	HOMO-3→LUMO+11 (31 %)	¹ LC
				HOMO-3→LUMO+9 (22 %)	
				HOMO-9→LUMO (12 %)	
				HOMO-3→LUMO+13 (11 %)	
S_{86}	47332	211	0.0679	HOMO-7→LUMO+2 (18 %)	^{1}LC
S_{87}	47380	211	0.0435	HOMO→LUMO+18 (41 %)	^{1}LC
S_{88}	47420	211	0.0364	HOMO→LUMO+16 (45 %)	¹ LC
S_{89}	47495	211	0.0873	HOMO→LUMO+18 (30 %)	¹ LC
				HOMO-1→LUMO+18 (24 %)	
				HOMO-8→LUMO+2 (11 %)	
S ₉₀	47536	210	0.0189	HOMO-1→LUMO+18 (35 %)	¹ LC
				HOMO→LUMO+16 (16 %)	
				HOMO-8→LUMO+4 (16 %)	
S ₉₂	47633	210	0.0122	HOMO-1→LUMO+16 (53 %)	^{1}LC
				HOMO-10→LUMO (15 %)	
				HOMO→LUMO+16 (12 %)	
S ₉₃	47686	210	0.0164	HOMO-8→LUMO+3 (19 %)	¹ LC
				HOMO-11→LUMO (17 %)	
				HOMO-7→LUMO+3 (10 %)	
S ₉₄	47714	210	0.0135	HOMO-10→LUMO (58 %)	
S ₉₆	47966	209	0.0225	HOMO-6→LUMO+4 (47 %)	¹ LC
т	23802	420			3 MI CT (tz)
11	23802	420	-	$HOMO \rightarrow LUMO + 1 (20.9\%)$	WILCT (IZ)
т	24062	416		$HOMO \rightarrow LUMO + 1 (20\%)$	3MLCT(tz)
12	24002	410	-	$HOMO \rightarrow LUMO + 1 (43\%)$	WILCI (IZ)
				HOMO 1 \rightarrow LUMO (2/%)	
т	24277	410		HOMO-I \rightarrow LUMO+I (I/ %)	3ML CT (4-)
13	24377	410	-	HOMO \rightarrow LUMO (44 %)	SMILCT (IZ)
				HOMO \rightarrow LUMO+1 (26 %)	
т	75515	202		HUMU-1 \rightarrow LUMU (16 %)	3MLCT(+-)
14	20040	392	-	HOMO-1 \rightarrow LUMO+1 (60 %)	MILCI (tz)
т	0(000	200		HOMO \rightarrow LUMO (20 %)	
15	26302	380	-	HOMO-1 \rightarrow LUMO+3 (23 %)	³ MLC1 (tz)
				HOMO \rightarrow LUMO+4 (18%)	
				HOMO-1 \rightarrow LUMO+2 (11 %)	

Fig. S19. Overlaid electronic absorption profile recorded for a room temperature MeCN solution of Os (blue) and excitation profile corresponding to luminescence at $\lambda_{max} = 472$ nm, recorded in a 4:1 EtOH/MeOH solvent glass at 77 K (orange).