Supplementary Information

Elucidating the Mechanism of Photochemical CO₂ Reduction to CO Using a Cyanide-Bridged Di-Manganese Complex

Kailyn Y. Cohen, Adam Reinhold, Rebecca Evans, Tia S. Lee, Hsin-Ya Kuo, Delaan G. Nedd, Gregory D. Scholes, and Andrew B. Bocarsly*

Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, United States

*Email: bocarsly@princeton.edu

Contents

S2
S2
S3
S4
S4
S5
S5
S6
S6
S7
S7
S8
S8
S9

Figure S1. The liquid phase IR spectrum of $s-Mn_2CN^+$ compared with those of $[Mn(bpy)(CO)_3(MeCN)](PF_6)$ (blue) and $[Mn(bpy)(CO)_3(CN)]$ (red).

Figure S2. Headspace gas infrared spectrum of 1 mM Mn_2CN^+ with 1 M phenol after irradiation with 395 nm LED for 1 h. The ratio of ¹³CO/¹²CO is 5%.

Figure S3. A) UV-vis spectra of 0.33 mM $[Mn(bpy)(CO)_3(MeCN)]^+$ in degassed MeCN taken every 10 s of irradiation at 395 nm, showing a decrease in $[Mn(bpy)(CO)_3(MeCN)]^+$ at 375 nm and an increase in the dicarbonyl species, $[Mn(bpy)(CO)_2(MeCN)_2]^+$ (shoulder ~500 nm) for the first 20 s. From 30 to 110 s, **Mn-Mn** is detected. B) Liquid IR spectra of 10 mM $[Mn(bpy)(CO)_3(MeCN)]^+$ in degassed MeCN, taken every 60 s of irradiation at 395 nm. The dicarbonyl signal (red) is the initial signal subtracted from the signal at 60 s, showing two peaks at 1960 and 1880 cm⁻¹.

Figure S4. Liquid phase IR spectra immediately after **Mn-Mn** in degassed MeCN was combined with CO₂-saturated MeCN in the dark (red), and then after irradiation with 395 nm light. *indicates an axial carbonyl peak.

Figure S5. UV-vis of 0.04 mM **Mn-Mn** and 1 M PhOH in degassed MeCN (red). After the introduction of CO₂, two peaks at 375 and a shoulder ~500 nm corresponding to $[Mn(bpy)(CO)_3(MeCN)]^+$ and $[Mn(bpy)(CO)_2(MeCN)_2]^+$, respectively, persist in solution.

Figure S6. UV-vis of 0.087 mM [Mn(bpy)(CO)₃Br] and 10 mM PhOH in CO₂-saturated MeCN every 60 s of irradiation at 395 nm, showing a decrease in the *fac* isomer and an increase in the *mer* isomer (shoulder ~570 nm.) No **Mn-Mn** was detected.

Figure S7. UV-vis of 0.33 mM $[Mn(bpy)(CO)_3(MeCN)]^+$ in CO₂-saturated MeCN every 10 s of irradiation at 395 nm, showing a decrease in $[Mn(bpy)(CO)_3(MeCN)]^+$ at 375 nm and an increase in the dicarbonyl species, $[Mn(bpy)(CO)_2(MeCN)_2]^+$ (shoulder ~500 nm). No **Mn-Mn** was detected.

Figure S8. ³¹P NMR of 15.26 mM PPh₃ and 14 mM $[Mn(bpy)(CO)_3(MeCN)]^+$ (red) and 15.26 mM PPh₃ and 14 mM **Mn-Mn** (black). Free PPh₃ is located at -5.14 ppm and ligated PPh₃ is located at 49.75 ppm. ³¹P NMR spectra were referenced to 85% H₃PO₄ solution as an external standard in d-MeCN.

Figure S9. X-band EPR spectrum (10 K) of **Mn-Mn** in degassed MeCN upon addition of CO_2 in the dark, followed by freezing at 4 K. The EPR signal (g = 2.001) is indicative of a Mn^{II} species.

Figure S10. Headspace gas infrared spectra of ~6.5 mM **Mn-Mn** with 1 M phenol before irradiation with 395 nm LED for 3 h, showing no detectable CO in the headspace.

Figure S11. UV-vis of 0.1 mM Mn_2CN^+ and 1 M PhOH in degassed MeCN (yellow) after irradiation for 300 s at 395 nm (blue) showing Mn-Mn formation. After the introduction of CO₂, two peaks at 375 and a shoulder ~500 nm corresponding to [Mn(bpy)(CO)₃(MeCN)]⁺ and [Mn(bpy)(CO)₂(MeCN)₂]⁺, respectively, persist in solution.

Figure S12. ¹H NMR of $[Mn(bpy)(CO)_3(MeCN)]^+$ (red) and $[Mn(bpy)(CO)_2(MeCN)_2]^+$ (black) in d-MeCN.

Quantum Yield Calculation:

$$Quantum Yield = \binom{mol \ CO}{/\frac{(light \ absorbed, W)(irradiation \ time, s)}{(energy \ per \ Einstein)}}$$

$$0.64 = \left(\frac{4.98 \times 10^{-6} \text{ mol CO}}{\sqrt{\frac{(0.00130 \text{ J/s})(1800 \text{ s})}{\left(\frac{hc}{395 \times 10^{-9} \text{ m}}\right)}}N_A\right)$$

Intensity absorbed = 1.30 mW @ 395 nm Energy per Einstein = $(hc/395 \text{ E} - 9 \text{ m})*N_A$ $N_A = Avogadro's number$ Irradiation time = 1800 s

Mn Complex	CO stretches and OCO	CO stretches	Solvent	Ref.
_	stretches denoted with * (cm ⁻¹)	(cm ⁻¹) exptl.		
	exptl.	calc.		
<i>fac</i> -Mn(bpy)(CO) ₃ CN	2030, 1941, 1934		MeCN	1
fac-Mn(bpy)(CO) ₃ Cl	2025, 1936, 1913		THF	2
fac-Mn(bpy)(CO) ₃ Br	2023, 1935, 1914		THF	3
<i>mer</i> -Mn(bpy)(CO) ₃ Br	2043, 1948, 1903		THF	3
fac-[Mn(bpy)(CO) ₃ (MeCN)] ⁺	2049, 1957		MeCN	4
[Mn(bpy)(CO) ₄] ⁺	2130, 2046, 2024, 1984		MeCN	4
[Mn ⁰ (mesbpy)(CO) ₃] [•]	1973, 1883, 1866		THF	5
<i>fac</i> -Mn ^I (bpy)(CO) ₃ (COOH)	2013; ~1650* and 1600*		MeCN	6
<i>fac</i> -Mn ^I (mesbpy)(CO) ₃ (COOH)	2007		THF	5
$[Mn(bpy)(CO)_2(MeCN)_2]^+$	1961, 1883		MeCN	7
fac-Mn(bpy)(CO) ₃ H	1991, 1892, 1888		MeCN	8
[Mn(bpy)(CO) ₃] ₂	1976, 1931, 1880, 1860		2-MeTHF	9
[Mn(bpy)(CO) ₃] ₂ (µ-CN)	2152, 2043, 2035, 1946		MeCN	1
[Mn(bpy)(CO) ₃ -CN-	2116, 2035, 1946, 1869	2125, ~2030,	MeCN	This
Mn(bpy)(CO) ₃ (MeCN)] ⁺		~1940, 1870		WORK
<i>mer</i> -[Mn ^{II} (bpy)(CO) ₃ (COOH)] ⁺	2036, 1633*	2037, 2001, 1649	MeCN	This work

Table S1. IR shifts of common Mn and Re complexes

REFERENCES

1. Kuo, H.-Y.; S. Lee, T.; T. Chu, A.; E. Tignor, S.; D. Scholes, G.; B. Bocarsly, A., A cyanide-bridged di-manganese carbonyl complex that photochemically reduces CO_2 to CO. *Dalton Transactions* **2019**, *48* (4), 1226-1236.

2. Stor, G.; Stufkens, D.; Vernooijs, P.; Baerends, E.; Fraanje, J.; Goubitz, K., X-ray Structure of fac-IMn(CO)₃(bpy) and Electronic Structures and Transitions of the Complexes fac-XMn(CO)₃(bpy) (X= Cl, I) and mer-ClMn(CO)₃(bpy). *Inorganic Chemistry* **1995**, *34* (6), 1588-1594.

3. Stor, G. J.; Morrison, S. L.; Stufkens, D. J.; Oskam, A., The Remarkable Photochemistry of fac-XMn(CO)3(.alpha.-diimine) (X =Halide): Formation of Mn2(CO)6(.alpha.-diimine)2 via the mer Isomer and Photocatalytic Substitution of X- in the Presence of PR3. *Organometallics* **1994**, *13* (7), 2641-2650.

4. Kuo, H.-Y.; Tignor, S. E.; Lee, T. S.; Ni, D.; Park, J. E.; Scholes, G. D.; Bocarsly, A. B., Reduction-induced CO dissociation by a $[Mn(bpy)(CO)_4][SbF_6]$ complex and its relevance in electrocatalytic CO₂ reduction. *Dalton Transactions* **2020**, *49* (3), 891-900.

5. Sampson, M. D.; Nguyen, A. D.; Grice, K. A.; Moore, C. E.; Rheingold, A. L.; Kubiak, C. P., Manganese Catalysts with Bulky Bipyridine Ligands for the Electrocatalytic Reduction of Carbon Dioxide: Eliminating Dimerization and Altering Catalysis. *Journal of the American Chemical Society* **2014**, *136* (14), 5460-5471.

6. Madsen, M. R.; Rønne, M. H.; Heuschen, M.; Golo, D.; Ahlquist, M. S. G.; Skrydstrup, T.; Pedersen, S. U.; Daasbjerg, K., Promoting Selective Generation of Formic Acid from CO2 Using Mn(bpy)(CO)3Br as Electrocatalyst and Triethylamine/Isopropanol as Additives. *Journal of the American Chemical Society* **2021**, *143* (48), 20491-20500. 7. Yempally, V.; Moncho, S.; Hasanayn, F.; Fan, W. Y.; Brothers, E. N.; Bengali, A. A., Ancillary Ligand Effects upon the Photochemistry of $Mn(bpy)(CO)_3X$ Complexes (X = Br⁻, PhCC⁻). *Inorganic Chemistry* **2017**, *56* (18), 11244-11253.

 Franco, F.; Cometto, C.; Nencini, L.; Barolo, C.; Sordello, F.; Minero, C.; Fiedler, J.; Robert, M.; Gobetto, R.; Nervi, C., Local Proton Source in Electrocatalytic CO₂ Reduction with [Mn(bpy–R)(CO)₃Br] Complexes. *Chemistry – A European Journal* 2017, *23* (20), 4782-4793.
Kokkes, M. W.; De Lange, W. G.; Stufkens, D. J.; Oskam, A., Photochemistry of metal—metal bonded complexes: III. MLCT photolysis of (CO) 5MM'(CO)₃(α-diimine)(M, M'= Mn, Re) in 2-Me-THF and THF at 293 K; Evidence of photocatalytic formation of [(Mn (CO)₃(α-diimine)(P(n-Bu)₃)]⁺[M (CO)₅]⁻ upon photolysis in the presence of P(n-Bu)₃. *Journal of Organometallic Chemistry* 1985, *294* (1), 59-73.