Development of gold(I) phosphorescent tweezer for sensing applications

Araceli de Aquino,^{a,b} Francisco J. Caparrós,^{a,b} Gabriel Aullón,^{a,c} Khai-Nghi Truong,^d Kari Rissanen,^d João Carlos Lima,^{e,*} Laura Rodríguez^{a,b,*}

^a Departament de Química Inorgànica i Orgànica. Secció de Química Inorgànica. Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. e-mail: laura.rodriguez@qi.ub.es

^b Institut de Nanociència i Nanotecnologia (IN²UB). Universitat de Barcelona, 08028 Barcelona (Spain)

^c Department of Chemistry, University of Jyväskyla, 40014 Jyväskylä (Finland)

^d Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea

^e LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. e-mail: lima@fct.unl.pt

Supporting Information

Figure S2. IR spectra of 1.

Figure S3. ¹H NMR spectrum of L in CDCl₃.

7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 fl(ppm)

Figure S4. ¹H NMR spectrum of 2 in CDCl₃.

Figure S5. ³¹P NMR spectrum of 2 in CDCl₃.

Figure S6. MALDI-TOF MS(+) spectrum of 2.

Figure S7. Boat-like conformation of compound 2.

Figure S8. Packing of compound 2. Yellow: gold; orange: phosphorus; grey: carbon; red: oxygen. Hydrogens have been omitted for clarity.

Figure S9. Emission spectra of 1×10^{-5} M solutions of the compounds L and 2 in acetonitrile in air-equilibrated samples at room temperature.

Figure S10. Absorption (left) and emission (right) spectra of the compound 2 in the presence of different amounts of heptane fluoride (D) at room temperature. $\lambda_{exc} = 300$ nm.

Figure S11. Absorption (left) and emission (right) spectra of the compound 2 in the presence of different amounts of naphthalene (A) at room temperature. $\lambda_{exc} = 330$ nm.

Figure S12. Absorption (left) and emission (right) spectra of the compound 2 in the presence of different amounts of phenanthrene (C) at room temperature. $\lambda_{exc} = 330$ nm.

Figure S13. Absorption (left) and emission (right) spectra of the compound 2 in the presence of different amounts of diphenyl fluoride (E) at room temperature. $\lambda_{exc} = 300$

Figure S14. Calculated host-guest structures of the gold(I) complex and the heptadecafluoro-1-decanethiol with two different orientations.

(E)

Figure S15. Calculated host-guest structures of the gold(I) complex and the diphenyl fluoride.

Table S1. Calculated host-guest energies (in kcal·mol⁻¹) of the gold(I) complex and the adducts obtained with naphthalene (A), anthracene (B), phenanthrene (C), heptane fluoride (D) and diphenyl fluoride (E).

A 11	Corrected	Host	Guest	BSSE-corrected	Non-corrected	
Adduct	formation	deformation	deformation	interaction	formation	
Naphthalene (A)	-8.2	8.9	0.1	17.2	-10.1	
Anthracene (B)	-10.7	10.0	0.1	20.8	-12.9	
Phenanthrene (C)	-5.2	18.4	0.3	23.9	-7.1	
Heptane fluoride (D)	-12.7	22.9	9.3	0.9	-15.2	
Diphenyl fluoride (E)	-14.6	32.9	17.0	1.3	-19.2	

Figure S16. Emission spectra of the compounds L and 2 immobilized in Cellulose (A), PMMA (B), PS (C) and Zeonex (D) with air-equilibrated samples at room temperature. $\lambda_{exc} = 335$ nm for 2, 3 and 4. $\lambda_{exc} = 285$ nm for L.

Figure S19. Absorption spectra of compound 2 and an anthracene solution in 1×10^{-5} M dichloromethane solutions at room temperature.

Compound	2			
	$C_{58}H_{46}Au_2P_2\cdot$			
Formula	C ₃ H ₆ O			
	0.24 x 0.27 x			
Crystal size, mm	0.28			
Fw	1256.90			
Temp., K	170(2)			
Wavelenght, Å	0.71073			
Crystal system	triclinic			
Space group	рĪ			
<i>a</i> , Å	11.4012(2)			
b, Å	12.0453(3)			
c, Å	22.9156(7)			
α, °	98.2270(10)			
β, °	95.3860(10)			
γ, °	117.227(2)			
Volume, Å ³	2723.73(13)			
Ζ	2			
D _{calc.} , mg m ⁻³	1.533			
Abs. coef., mm ⁻¹	5.477			
F(000)	1228			
θ range for data coll, $^\circ$	1.945 to 26.250			
Refins coll./independent	22153/10958			
Data/restraint/parameters	10958/33/597			
GOF on F^2	1.042			
Final P index $(I > 2\sigma(I))$	R1 = 0.0449,			
$T \text{ mar } K \text{ max} (I \ge 20(I))$	wR2 = 0.0831			
Dindox (all data)	R1 = 0.0741,			
A muex (an data)	wR2 = 0.0905			
Peak and hole, e Å ⁻³	1.250 and -0.757			
CCDC	2194275			

 Table S2. Crystal data and structure refinement for 2.

Compound .	ΦFI				ΦPh			
	Cellulose	PMMA	PS	Zeonex	Cellulose	PMMA	PS	Zeonex
L	0.12	0.055	0.16	0.12	-	-	-	-
2	0.001	0.002	0.003	0.004	0.011	0.02	0.015	0.014

Table S3. Phosphorescent quantum yields of L and 2 in Cellulose, PMMA, PS andZeonex with air-equilibrated samples.