Electronic Supporting Information

The anionic framework Zn-MOF composed of 1D columnar SBU has

high C₂H₂/CH₄ selective adsorption, dye adsorption and fluorescence

sensing

Jing-Ru Chen,^a Li-Na Zheng,^{*a} Xin-Wei Meng,^a Zhan-Yao Gao,^a Jing Zhao,^a Bo Liu^b and Tao Ding^{*a}

^aSchool of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R China.

^b College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, P. R. China.

Zn(01)-O(2A)#1	2.04(2)	Zn(01)-O(2A)#2	2.04(2)		
Zn(01)-C(1A)#1	2.582(14)	Zn(01)-N21	2.182(13)		
Zn(01)-C(1A)#2	2.582(14)	Zn(02)-O(1)	1.9462(11)		
Zn(02)-N11	1.891(14)	Zn(02)-O22	1.942(9)		
O(2A)#1-Zn(01)-O(2A)#2	141.6(15)	N21-Zn(01)-C(1A)#2	133.2(6)		
N21-Zn(01)-C(1A)#1	97.8(7)	N11-Zn(02)-O22	106.9(6)		
N11-Zn(02)-O(1)	107.6(5)	O22-Zn(02)-O(1)	107.5(3)		
N11-Zn(02)-Zn(02)#3	84.2(5)	O22-Zn(02)-Zn(02)#3	143.9(3)		
O(1)-Zn(02)-Zn(02)#3	37.45(3)	Zn(02)#5-O(1)-Zn(02)#6	105.10(7)		
Zn(02)#5-O(1)-Zn(02)#3	111.70(4)	Zn(02)#6-O(1)-Zn(02)#3	111.70(4)		
Zn(02)#5-O(1)-Zn(02)	111.70(4)	Zn(02)#6-O(1)-Zn(02)	111.70(4)		
Zn(02)#3-O(1)-Zn(02)	105.10(7)	C21-N11-Zn(02)	128.0(10)		
C11-N11-Zn(02)	128.6(12)	C11-N21-Zn(01)	119.3(10)		
C31-N21-Zn(01)	134.3(10)	C12-O22-Zn(02)	111.1(8)		
O(2A)-C(1A)-Zn(01)#1	50.9(13)	O(1A)-C(1A)-Zn(01)#1	73.3(8)		
C(2A)-C(1A)-Zn(01)#1	66.3(14)	C(1A)-O(2A)-Zn(01)#1	101.3(16)		
Symmetrical codes: #1 -x, -y+1, -z+1; #2 x+1/2, -y+1, z-1; #3 -x+1/2, -y+3/2, z; #4 -y+1/2, -x+1/2, -					
z+1; #5 -y+1, x+1/2, -z+1; #6 y-1/2, -x+1, -z+1.					

Table S1 Selected Bond Length (Å) and Angles (°).

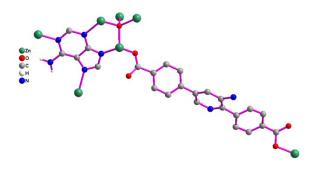


Figure S1 Coordination modes of the ligands in Zn-MOF.

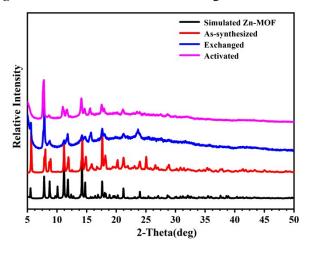


Figure S2 PXRD: Simulated, as-synthesized, exchange and activated samples.

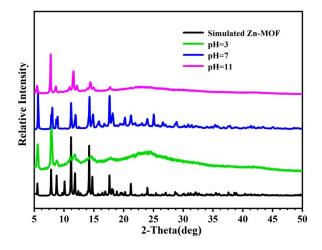


Figure S3 PXRD: Simulated, pH=3, pH=7 and pH=11 exchange activated samples.

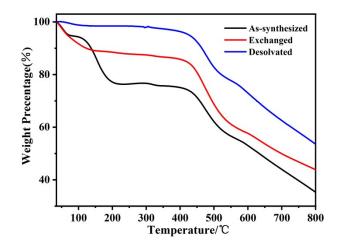
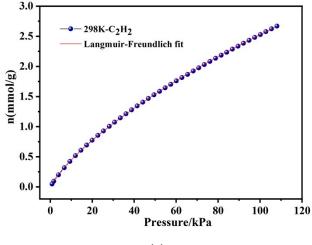


Figure S4 TGA: as-synthesized, exchanged and desolvated samples.

IAST adsorption selectivity calculation

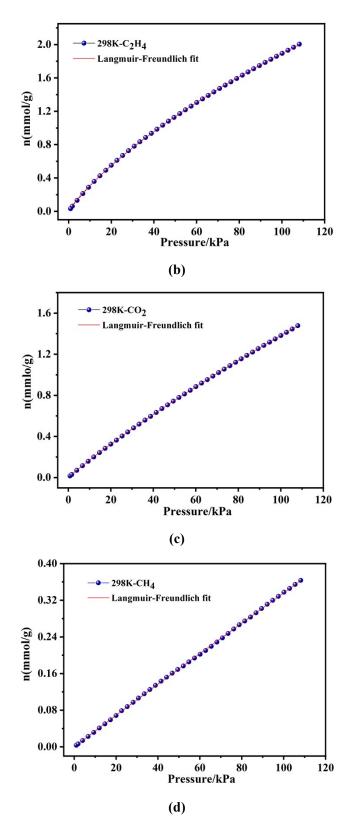
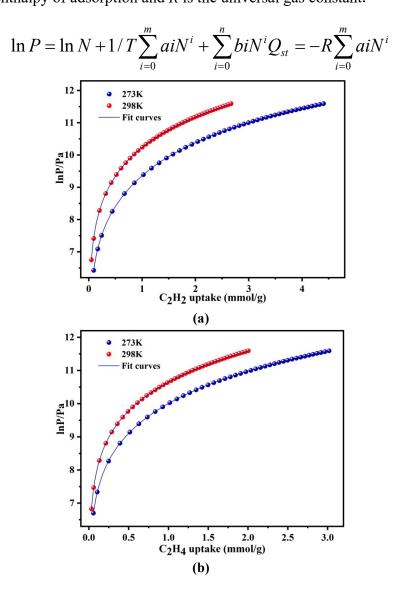

The experimental isotherm data for pure C_2H_2 , C_2H_4 , CO_2 and CH_4 (measured at 298 K) were fitted using a Langmuir-Freundlich (L-F) model.

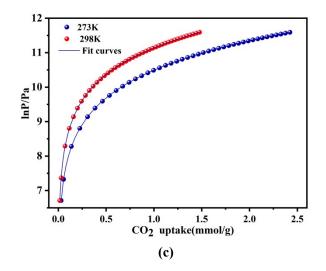
$$q = \frac{a * b * p^c}{1 + b * p^c}$$

Where q and p are adsorbed amounts and pressures of component *i*, respectively. The adsorption selectivities for binary mixtures of C_2H_2/CH_4 , C_2H_4/CH_4 and CO_2/CH_4 at 298 K, defined by

$$S_{ads} = (q_1 / q_2) / (p_1 / p_2)$$

Where qi is the amount of i adsorbed and p_i is the partial pressure of i in the mixture.


Figure S5 (a) C_2H_2 adsorption isotherms of Zn-MOF at 298 K with fitting by L-F model: a=16.34618, b=0.00436, c=0.18891, Chi^2=3.2826E-5, R^2=0.99994; (b) C_2H_4 adsorption isotherms of Zn-MOF at 298 K with fitting by L-F model: a=9.79057, b=0.00443, c=0.13344, Chi^2=1.5219E-5, R^2=0.99996; (c) CO₂ adsorption isotherms of Zn-MOF at 298 K with fitting

by L-F model: a=14.11683, b=0.00137, c=0.05077, Chi^2=5.64383E-7, R^2=1; (d) CH₄ adsorption isotherms of **Zn-MOF** at 298 K with fitting by L-F model: a=26.50021, b=1.33808, c=0.00879, Chi^2=1.33941E-6, R^2=0.99989.

Calculation of sorption heat for C_2H_2 , C_2H_4 and CO_2 uptakes using Virial 2 model

The above equation was applied to fit the combined C_2H_2 , C_2H_4 and CO_2 and isotherm data for desolvated **Zn-MOF** at 273 and 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, *ai* and *bi* are virial coefficients, and *m* and *n* are the number of coefficients used to describe the isotherms. Q_{st} is the coveragedependent enthalpy of adsorption and *R* is the universal gas constant.

Figure S6 (a) Virial analysis of the C₂H₂ adsorption data at 298 K and 273 K for **Zn-MOF**. Fitting results: a0=-3286.16843, a1=512.65988, a2=-91.37345, a3=6.29229, a4=-1.14897, Chi^2=1.26889E-5, R^2=0.99999; (b) Virial analysis of the C₂H₄ adsorption data at 298 K and 273 K for **Zn-MOF**. Fitting results: a0=-2357.196, a1=324.55734, a2=-87.96432, a3=11.04662, a4=-1.21749, Chi^2=2.5328E-6, R^2=1. (c) Virial analysis of the CO₂ adsorption data at 298 K and 273 K for **Zn-MOF**. Fitting results: a0=-2254.39669, a1=-231.24997, a2=654.9978, a3=-267.66544, a4=-5.20644, Chi^2=4.83197E-5, R^2=0.99996.

Dye adsorption performance. The adsorption capacity of **Zn-MOF** for various dyes were assessed according to standard methods. The adsorption amounts (q_t (mg/g), q_e (mg/g)) and the adsorption rates (removal efficiency, R %) were calculated by E_{qs}. (1), (2) and (3), respectively:

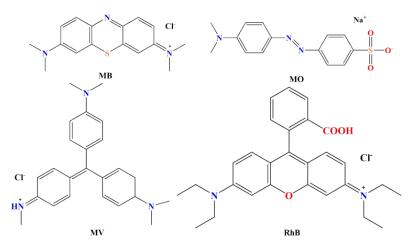
$$q_{t} = \frac{(C_{0} - C_{t})V}{m}$$
(1)
$$q_{e} = \frac{(C_{0} - C_{e})V}{m}$$
(2)
$$R\% = \frac{C_{0} - C_{t}}{C_{0}} \times 100\%$$
(3)

Herein, C_0 , C_t and C_e (mg L⁻¹) are the initial, any time t, and equilibrium concentrations of the organic dye in solution, respectively, V (L) represents the volume of the dye solution and adsorbent mass is m (g).

The adsorption kinetics models of pseudo-first-order and pseudo-second-order were

performed to investigate adsorption mechanism. The pseudo-first-order and pseudosecond-order models were displayed the following:

$$ln(q_{e} - q_{t}) = lnq_{e} - k_{1}t$$


$$\frac{t}{q_{t}} = \frac{1}{k_{2}q_{e}^{2}} + \frac{t}{q_{e}}$$
(4)
(5)

Where, q_t and q_e (mg/g) are the adsorbed amounts of dye at any time t and equilibrium, respectively; k_1 (min⁻¹) and k_2 (g/(mg·min)) are the rate constants of pseudo-first-order and pseudo-second-order.

The theoretical maximum adsorption capacity and adsorption mechanism were assessed through the Langmuir and Freundlich isotherms. Their linear forms were given below:

$$\frac{C_e}{Q_e} = \frac{C_e}{Q_{max}} + \frac{1}{K_L Q_{max}}$$
(6)
$$lnQ_e = lnK_F + \frac{1}{n} + lnC_e$$
(7)

Here, C_e represents the equilibrium concentration (mg/L) of submethyl blue after the adsorption; Q_e represents the equilibrium adsorption amount (mg/g) of the adsorbent, Q_{max} is the maximum adsorption capacity (mg/g) of the adsorbent, while K_L (L/mg) is the Langmuir constant determined by the affinity of the binding site, which defines the adsorption energy. The K_F and n_F are Freundlich constants, corresponding to the capacity and strength of adsorption, respectively. The value of 1/n determines the tendency of adsorption mechanism and the surface unevenness of adsorbent.

Scheme S2 Selected cationic dyes (MB, RhB, MV) and anionic Dyes (MO) in adsorption process.

Dye	Formula weight	Molecular dimension(Å ³)
RhB	479.02	13.43×5.35×4.93
MB	373.9	$1.8 \times 5.5 \times 14.2$
MV	408.3	4×16.32×14.15
МО	327.33	4.5×6.0×14.8

Table S2 Different dyes relative molecular weight and molecular size.

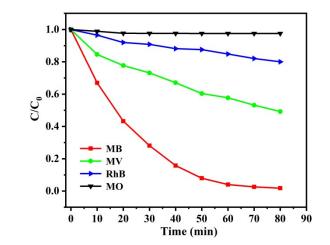


Figure S7 The absorption rate of Zn-MOF by different organic dyes.

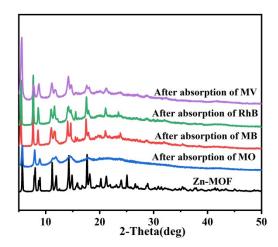


Figure S8 PXRD: Samples after dye absorption.

Table S3 Main fitting parameters of the adsorption kinetic model.

		pseudo-first-order		pseudo-secc		
q _e ,(mg/g)	$k_1(min^{-1})$	q _e (mg/g)	R ²	$k_2(g/(mg \cdot min))$	q _e (mg/g)	R ²
30.76	0.06662	27.28	0.95411	0.00155	32.368	0.98118

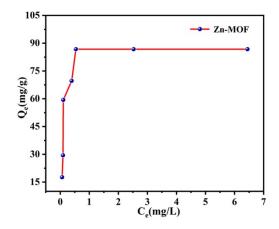


Figure S9 Adsorption isotherms of MB dye onto Zn-MOF.

		Langmuir constants			Freundlich constants		
dye	absorbent	Q _{max} (mg/g)	K_L	R ²	1/n	$K_{\rm F}$	R ²
MB	Zn-MOF	83.75	15.24	0.99422	0.27493	69.225	0.50461

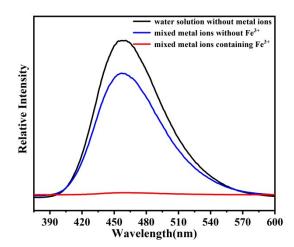


Figure S10 Fluorescence emission spectra of Zn-MOF in different mixed metal ion solutions.

Table S5 A comparison of various fluorescent materials used for detecting Fe³⁺.

Fluorescent materials	Luminescent substrates	K_{sv}/M^{-1}	detection limit/M	Ref.
$\{ [Cd(L)(BPDC)] \cdot 2H_2O \}_n$	Fe ³⁺	3.63×10 ⁴	2.21×10-6	22a
$[Cd_2(pbdc)(H_2O)_3]$	Fe ³⁺	1.86×10 ⁵	-	22b
$[Zn_5(L_5)_4(trz)_2(H_2O)_2]$	Fe ³⁺	4.1×10 ⁵	-	22c
$\{[Cd_{1.5}(DBPT)(DiPyDz)(H_2O)]\cdot 3.5H_2O\}n$	Fe ³⁺	4.78×10^{5}	-	22d
$[(CH_3)_2NH_2]_6[Cd_3L(H_2O)_2]$ ·12H ₂ O	Fe ³⁺	2.67×10^{5}	-	22e
$[Cd(bci)] n \cdot 2n(H_2O)$	Fe ³⁺	1.136×10 ⁴	2.15×10^{-4}	23a
$Eu(C_{22}H_{14}O_2)_3$	Fe ³⁺	-	10-4	23b
$Eu(acac)_3 \subset Zn(C_{15}H_{12}NO_2)_2$	Fe ³⁺	-	5×10 ⁻³	23c
Zn-MOF	Fe ³⁺	5.35×10 ⁵	2.98×10-4	This
	10	5.55~10*	2.76~10	work

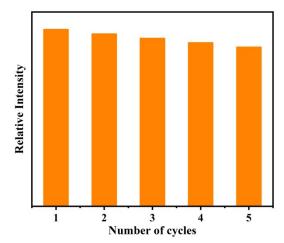


Figure S11 Multiple cycles for the fluorescence quenching of Zn-MOF by Fe^{3+} and recovery after washing by H_2O for several times.

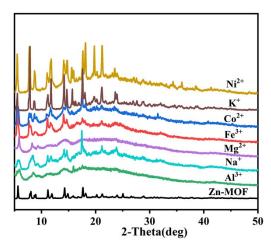


Figure S12 PXRD patterns of Zn-MOF immersed in different metal ion solutions.

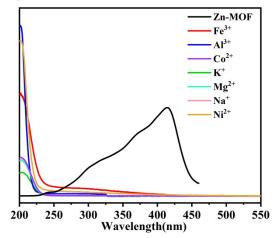


Figure S13 UV-vis adsorption spectra of $M(NO_3)_X$ aqueous and the excitation spectrum of Zn-

MOF.

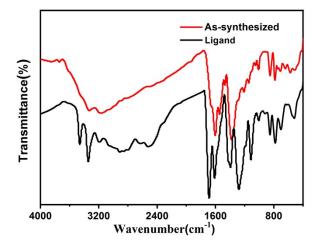


Figure S14 IR spectra of the as-synthesized Zn-MOF and ligand.