Electronic Supporting Information

Boron complexes of π-extended nitroxide ligands exhibiting three-state redox processes and nearinfrared-II (NIR-II) absorption properties

Marika Nakamura,^a Risa Hyakutake,^a Shogo Morisako,^b Takahiro Sasamori,^b Yoshiyuki Mizuhata,^c Norihiro Tokitoh,^c Kouichi Nakashima,^a Hiroki Fukumoto,^a and Tomohiro Agou^{*a}

^a Department of Quantum Bean Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi, Ibaraki 316-8511, Japan.

^b Division of Chemistry, Faculty of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Sciences (TREMS), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan. ^c Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.

Table of Contents

S18
S38

General remarks

All the manipulations were performed under a dry Ar atmosphere using Schlenk techniques or using a MBraun MB150B-G-II glovebox. Unless otherwise noted, compounds obtained from commercial suppliers (Tokyo Chemical Industries Co., Ltd., KANTO CHEMICAL Co., Inc., FUJIFILM Wako Pure Chemical Corp., or Sigma-Aldrich) were used without further purifications. Column chromatography was performed using Wako Silicagel 70 PF254, Kanto Silica Gel 60 (spherical, particle size 100-210 µm). ¹H, ¹³C and ¹⁹F NMR spectra were measured on a Bruker Avance-III 400 spectrometer (¹H: 400 MHz, ¹³C: 100 MHz, ¹⁹F 376 MHz) and chemical shifts were reported as the delta scale in ppm relative to the residual solvent signals (¹H and ¹³C) or an external reference (CFCl₃, ¹⁹F). UV-vis-NIR spectra were recorded on a Shimadzu UV-3101PC spectrophotometer. Spectroelectrochemical measurements were conducted on a BAS SEC-2000-UV/vis spectrometer and a BAS Electrochemical Analyzer Model 1140A. ESR spectra were recorded at the X-band frequency using a JEOL JES-X320 spectrometer equipped with a 100 kHz magnetic-field modulation. ESR microwave power low enough to prevent the saturation and distortion of the spectrum. ESR spectra were recorded at 25 °C or -150 °C. High resolution mass spectra (HRMS) were recorded on a Bruker micrOTF or a timsTOF (IMS-QTOF) spectrometer using ESI or APPI mode. Electrochemical measurements were performed under a dry Ar atmosphere using a BAS Electrochemical Analyzer Model 1210C or a BAS Electrochemical Analyzer Model 1140A. Elemental analysis was carried out using a YANACO MT-6 microanalyzer. (C₆F₅)₂BOEt was prepared according to a literature.^{S1}

Single crystal X-ray diffraction (XRD) measurements were carried out on a Bruker D8 VENTURE System (PHOTONIII 14 with I μ S Diamond) (**4a**) or a Rigaku MicroMax-007HF diffractometer equipped with a VariMax DW light source and a Pilatus P200 detector ([**5a**]SbCl₆ and [**5b**]SbCl₆). A Mo-K α radiation ($\lambda =$ 0.71073Å) that was mono-chromated by the multilayer confocal mirror was used for the measurement of the diffractions. The crystals were kept at -173 °C (**4a**) or -100 °C ([**5a**]SbCl₆ and [**5b**]SbCl₆) while the data collections. The collected data were processes using the Bruker SAINT v8.40A (Bruker Nano, Inc., 2019) (**4a**) or CrysAlisPro ver. 1.171.41.117a program package (Rigaku Oxford Diffraction, 2021) ([**5a**]SbCl₆ and [**5b**]SbCl₆). Using Olex2,^{S2} the structures were solved with the SHELXT and refined with the SHELXL program packages.^{S3} The full-matrix least-squares refinements were performed on F^2 . All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. For [**5a**]SbCl₆, the following level B CheckCIF alert was pointed, which may stem from the specific beamstop alignment of the Pilatus P200 detector.

PLAT910_ALERT_3_B Missing # of FCF Reflection(s) Below Theta (Min). 15 Note In addition, the crystals of [**5a**]SbCl₆ contained two CH₂Cl₂ molecules per one [**5a**]SbCl₆ unit, and one of the two CH₂Cl₂ molecules was highly disordered over four positions (occupancy ratio = 0.30:0.30:0.20:0.20), resulting in the relatively strong residual electron density (1.310 e Å⁻³) around the disordered CH₂Cl₂ molecules. In order to refine the disordered CH₂Cl₂ molecule, DFIX and SIMU restraints were applied to the bond lengths and anisotropic parameters of this CH₂Cl₂ molecule. These crystallographic problems may not have substantial effects on the structural features of the main part CCDC-2182062 (**4a**), 2182063 ([**5a**]SbCl₆) and 2182064 ([**5b**]SbCl₆) contain the supplementary crystallographic data for this paper. Density functional theory (DFT) calculations were performed using Gaussian 16, Revision C.02^{S4} program package. CAM-B3LYP density functional with 6-31G(d) and 6-31+G(d) base were employed for the geometry optimizations and single point energy calculations, respectively. ESR *g*-tensors were calculated using ORCA $5.0.3^{S5}$ program suite at the B3LYP/EPR-II level of theory. Natural Bond Orbital (NBO) analyses were performed using NBO 7.0.^{S6} The computation was performed using Research Center for Computational Science, Okazaki, Japan (Project: 19-IMS-C235, 20-IMS-C151, 21-IMS-C164, and 22-IMS-C164).

High resolution mass spectrum (HRMS) measurements and elemental analyses were carried out at the Microanalytical Laboratory, Institute for Chemical Research (ICR), Kyoto University and at University of Tsukuba, respectively.

Syntheses and copies of spectra of new compounds N-(5-bromopyridin-2-yl)-N-(tert-butyl)hydroxylamine (2)

$$\begin{array}{c}
\text{Br} & \begin{array}{c}
1) \text{ BuLi} \\
2) (t-\text{BuNO})_2 (0.5 \text{ eq.}) \\
\hline
\text{toluene} \\
-78 ^{\circ}\text{C to } 25 ^{\circ}\text{C} \\
1 \end{array} \xrightarrow{\text{Br}} & \begin{array}{c}
\text{N} \\
\text{N} \\
\text{OH} \\
2 (35\%)
\end{array}$$

To a toluene solution (50 mL) of 2,5-dibromopyridine (1) (3.6 g, 15 mmol) was added n-butyl lithium (1.57 M in hexane, 11 mL, 18 mmol) at -78 °C, and the mixture was stirred for 2 h at -78 °C. This mixture was treated with 2-methyl-2-nitrosopropane dimer (1.70 g, 9.8 mmol) in toluene (20 mL) and stirred for 12 h at 25 °C. The reaction was quenched with aq. NH4Cl, and the mixture was extracted with ethyl acetate. The organic layer was dried with Na₂SO₄, and the solvents were evaporated. The crude product was separated by column chromatography (SiO₂, eluent: hexane/ethyl acetate = 9:1, v/v) to give **2** as a yellow solid (1.3 g, 5.3 mmol, 35%). Compound **2** was rapidly oxidized under air to give the corresponding nitroxide radical, and thus satisfactory ¹³C NMR spectrum could not be recorded due to the substantial signal broadening.

¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, J = 1.6 Hz, 1H, ArH), 7.67 (dd, J = 8.7,1.6 Hz, 1H, ArH), 7.06 (d, J = 8.7 Hz, 1H, ArH), 6.91 (brs, 1H, OH), 1.25 (s, 9H, C(CH₃)₃); HRMS (ESI): m/z calcd for C₉H₁₄⁷⁹BrN₂O 245.0284, C₉H₁₉⁸¹BrN₂O 247.0264. Found: 245.0281, 247.0263 ([M+H]⁺).

¹H NMR of **2** (400 MHz, CDCl₃)

Aminoxide-substituted borane compound 3

To a CH₂Cl₂ (10 mL) solution of **2** (0.40 g, 1.4 mmol) was added (C₆F₅)₂BOEt (0.71 g, 1.8 mmol) at 25 °C, and the mixture was stirred for 1 h. The solvent was evaporated. The crude product was separated by column chromatography (SiO₂, eluent: hexane/ethyl acetate = 7:3, v/v) to give **3** as a yellow solid (0.78 g, 1.3 mmol, 94%).

¹H NMR (400 MHz, CDCl₃): δ 7.83 (brs, 1H, Ar*H*), 7.61 (dd, *J* = 9.6, 2.0 Hz, 1H, Ar*H*), 6.95 (dd, *J* = 9.6, 2.0 Hz, 1H, Ar*H*), 1.51 (s, 9H, C(CH₃)₃); ¹⁹F NMR (376 MHz, CDCl₃): δ –134.92 (dd, *J* = 24.5, 9.4 Hz, 4F), -156.16 (t, *J* = 20.4 Hz, 2F), -163.15~-163.30 (m, 4F); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 27.80 (s, C(CH₃)₃), 62.02 (s, C(CH₃)₃), 105.69 (s, C(Ar)), 108.94 (s, C(Ar)), 116.12 (br, CB), 135.70~138.56 (m, *C*F) 139.06~141.83 (m, *C*F), 139.39 (brt, *J* = 3.4 Hz, *C*(Ar)), 143.20 (s, *C*(Ar)), 146.82-149.51 (m, *C*F), 151.59 (s, *C*(Ar)); HRMS (APCI): *m*/*z* calcd for C₂₁H₁₃B⁷⁹BrF₁₀N₂O 589.0143, C₂₁H₁₃B⁸¹BrF₁₀N₂O 591.0125. Found: 589.0143, 591.0124 ([M+H]⁺).

¹H NMR (400 MHz, CDCl₃) of **3**

¹⁹F NMR (376 MHz, CDCl₃) of **3**

¹³C{¹H} NMR (100 MHz, CDCl₃) of **3**

HRMS (APCI) of 3

Aminoxide-substituted borane compound 4a

A mixture of **3** (0.30 g, 0.51 mmol), bis(4-*tert*-butylphenyl)amine (0.15 g, 0.53 mmol), Pd(OAc)₂ (10 mg, 0.05 mmol), $[(t-Bu_3)PH]BF_4$ (20 mg, 0.080 mmol), *t*-BuONa(0.15 g, 1.5 mmol), and toluene (20 mL) was stirred at 100 °C for 20 h. The reaction was quenched with aq. NH₄Cl, and the mixture was extracted with CHCl₃. The organic layer was dried with MgSO₄, and the solvents were evaporated. The crude product was separated by column chromatography (SiO₂, eluent: hexane/ethyl acetate = 8:2,

v/v) to give **4a** as a yellow solid (0.32 g, 0.40 mmol, 79%). Compound **4a** was stable in the solid state but was gradually oxidized in air-saturated solutions to give purple-coloured and NMR-silent materials, which may contain the corresponding radical and oxoammonium species.

¹H NMR (400 MHz, CDCl₃): δ 7.52-7.49 (m, 2H, Ar*H*), 7.26 (d, *J* = 8.7 Hz, 4H, Ar*H*), 7.04 (d, *J* = 9.2 Hz, 1H, Ar*H*), 6.93 (d, *J* = 8.7 Hz, 4H, Ar*H*), 1.47 (s, 9H, C(CH₃)₃), 1.29 (s, 18H, C(CH₃)₃); ¹⁹F NMR (400 MHz, CDCl₃): δ -134.70 (dd, *J* = 24.4, 9.5 Hz, 4F), -156.97 (t, *J* = 20.1 Hz, 2F), -163.71~-163.85 (m, 4F); ¹³C{¹H} (100 MHz, CDCl₃): δ 27.74 (s, C(CH₃)₃), 31.30 (s, C(CH₃)₃), 34.33 (s, C(CH₃)₃), 61.48 (s, C(CH₃)₃), 109.05 (s, C(Ar)), 122.98 (s, C(Ar)), 126.46 (s, C(Ar)), 133.16 (t, *J* = 6.7 Hz, *C*(Ar)), 135.60~138.43 (m, *C*F), 137.73 (s, *C*(Ar)), 137.80 (s, *C*(Ar)), 138.78~141.68 (m, *C*F), 143.49 (s, *C*(Ar)), 146.89 (s, *C*(Ar)), 146.95~149.51 (m, *C*F), 150.71 (s, *C*(Ar)) (the *C*B signal could not be observed probably because of the signal broadening); ¹H NMR (400 MHz, CD₂Cl₂): δ 7.54-7.51 (m, 2H, Ar*H*), 7.28 (d, *J* = 6.7 Hz, 4H, Ar*H*), 7.04 (d, *J* = 8.4 Hz, 1H, Ar*H*), 6.94 (d, *J* = 6.7 Hz, 4H, Ar*H*), 1.47 (s, 9H, C(*CH*₃)₃), 1.29 (s, 18H, C(*CH*₃)₃); ¹⁹F NMR (400 MHz, CD₂Cl₂): δ -135.07 (dd, *J* = 24.6, 10.0 Hz, 4F), -158.00 (t, *J* = 20.5 Hz, 2F), -164.52~-164.66 (m, 4F); UV-vis (CH₂Cl₂, rt): $\lambda_{max} 424$ nm ($\varepsilon 2.4 \times 10^3$ M⁻¹ cm⁻¹); HRMS (APCI): m/z calcd for C₄₁H₃₉BF₁₀N₃O 790.3028. Found: 790.3027 ([M+H]⁺).

¹H NMR (400 MHz, CDCl₃) of **4a**

¹⁹F NMR (376 MHz, CDCl₃) of 4a

$^1\mathrm{H}$ NMR (400 MHz, CD₂Cl₂) of 4a

HRMS (APCI) of 4a

Aminoxide-substituted borane compound 4b

A mixture of **3** (0.15 g, 0.25 mmol), bis(4-methoxyphenyl)amine (0.07 g, 0.28 mmol), Pd(OAc)₂ (7 mg, 0.03 mmol), [(*t*-Bu₃)PH]BF₄ (0.012 g, 0.04 mmol), *t*-BuONa (0.07 g, 0.75 mmol), and toluene (5 mL) was stirred at 100 °C for 20 h. The reaction was quenched with aq. NH₄Cl, and the mixture was extracted with CHCl₃. The organic layer was dried with MgSO₄, and the solvents were evaporated. The crude product was separated by column chromatography (SiO₂, eluent: hexane/ethyl acetate = 8:2, v/v) to give **4b** as a yellow solid (0.11 g, 0.16 mmol, 62%). Compound **4b** was gradually oxidized under air even in the solid state and was rapidly oxidized in air-saturated solutions to give green-coloured and NMR-silent materials, which may contain the corresponding radical and oxoammonium species.

¹H NMR (400 MHz, CDCl₃): δ 7.46 (br, 1H, Ar*H*), 7.40 (dd, *J* = 9.6, 2.5 Hz, 1H, Ar*H*), 7.02 (dd, *J* = 1.9, 8.8 Hz, 1H, Ar*H*), 6.95 (d, *J* = 9.0 Hz, 4H, Ar*H*), 6.93~6.98 (m, 1H, Ar*H*), 6.81 (d, *J* = 9.0 Hz, 4H, Ar*H*), 3.78 (s, 6H, OC*H*₃), 1.46 (s, 9H, C(C*H*₃)₃); ¹⁹F NMR (400 MHz, CDCl₃): δ –135.02 (dd, *J* = 24.5, 9.4 Hz, 4F), -158.02 (t, *J* = 20.2 Hz, 2F), -164.55~-164.70 (m, 4F); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 27.68 (s, C(CH₃)₃), 55.49 (s, C(CH₃)₃), 61.43 (s, OCH₃), 109.24 (s, C(Ar)), 115.62 (s, C(Ar)), 125.50 (s, *C*(Ar)), 130.39 (t, *J* = 9.5 Hz, *C*(Ar)), 135.63 (s, *C*(Ar)), 135.73~138.45 (m, *C*F), 138.82 (s, *C*(Ar)), 139.24 (s, *C*(Ar)), 138.95~141.62 (m, *C*F), 146.83~149.53 (m, *C*F), 150.34 (s, *C*(Ar)), 156.44 (s, *C*(Ar)) (the *C*B signal could not be observed probably because of the signal broadening); UV-vis (CH₂Cl₂, rt): λ_{max} 427 nm (ε 2.3×10³ M⁻¹ cm⁻¹); HRMS (APCI): *m*/*z* calcd for C₃₅H₂₇BF₁₀N₃O₃ 738.1986. Found: 738.1984 ([M+H]⁺).

¹H NMR (400 MHz, CDCl₃) of **4b**

¹⁹F NMR (376 MHz, CDCl₃) of **4b**

HRMS (APCI) of 4b

Nitroxide radical-boranylium ion complex [5a]SbCl6

A mixture of **4a** (0.10 g, 0.13 mmol), [(4-BrC₆H₄)₃N]SbCl₆ (0.13 g, 0.15 mmol) and CH₂Cl₂ (5 mL) was stirred at 25 °C for 1 h, and the solvent was evaporated. The residue was washed with Et₂O (2 times) and re-crystalized from CH₂Cl₂ at -10 °C to give [**5a**]SbCl₆ as a dark purple solid (0.095 g, 0.085 mmol). UV-vis-NIR (CH₂Cl₂, rt): λ_{max} 1052 nm (ε 1.7×10⁴ M⁻¹ cm⁻¹); ESR (X-band, CH₂Cl₂, rt): *g* 2.0037; HRMS (APCI): *m/z* calcd for C₄₁H₃₉BF₁₀N₃O 790.3028. Found: 790.3024 ([**5a**+H]⁺). Anal. calcd for C₄₁H₃₈N₃BOCl₆Sb: C, 43.81; H, 3.41; N, 3.74. Found: C, 43.99; H, 3.63; N, 3.84.

HRMS (APCI) of [5a]SbCl6

Nitroxide radical-boranylium ion complex [5b]SbCl6

A mixture of **4b** (0.10 g, 0.12 mmol), [(4-BrC₆H₄)₃N]SbCl₆ (0.11 g, 0.13 mmol) and CH₂Cl₂ (5 mL) was stirred at 25 °C for 1 h, and the solvent was evaporated. The residue was washed with hexane and re-crystallized from CH₂Cl₂ at -10 °C to give [**5b**]SbCl₆ as a dark green solid (0.11 g, 0.10 mmol). UV-vis-NIR (CH₂Cl₂, rt): λ_{max} 1081 nm (ε 1.6×10⁴ M⁻¹ cm⁻¹); ESR (X-band, CH₂Cl₂, rt): *g* 2.0035; HRMS (APCI): *m*/*z* calcd for C₃₅H₂₇BF₁₀N₃O₃ 738.1986. Found: 738.1984 ([**5b**+H]⁺). Anal. calcd for C₃₅H₂₆N₃BO₃Cl₆Sb: C, 39.22; H, 2.45; N, 3.92. Found: C, 39.34; H, 2.65; N, 4.00.

HRMS (APCI) of [5b]SbCl6

XRD data		
Compound 4a		
Empirical formula	$C_{41}H_{38}BF_{10}N_3O$	
Formula weight	789.55	
Temperature	−173 °C	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 9.8688(5) Å	<i>α</i> = 95.144(2)°.
	<i>b</i> = 10.8972(6) Å	β=100.083(2)°.
	c = 18.0044(9) Å	$\gamma = 96.151(2)^{\circ}$.
Volume	1883.69(17) Å ³	
Z	2	
Density (calculated)	1.392 g cm^{-3}	
Absorption coefficient	0.118 mm ⁻¹	
<i>F</i> (000)	816	
Crystal size	0.220×0.200×0.150 mm ³	
θ range for data collection	1.891 to 27.499°.	
Index ranges	-12<=h<=12, -14<=k<=14, -23<=l<=23	
Reflections collected	39509	
Independent reflections	8650 [<i>R</i> (int) = 0.0718]	
Completeness to $\theta = 25.242^{\circ}$	99.9 %	
Absorption correction	Semi-empirical from equiva	alents
Max. and min. transmission	1.000 and 0.910	
Refinement method	Full-matrix least-squares or	n F ²
Data / restraints / parameters	8650 / 0 / 514	
Goodness-of-fit on F^2	1.025	
Final <i>R</i> indices [$I \ge 2\sigma(I)$]	$R_1 = 0.0538, wR_2 = 0.1436$	
R indices (all data)	$R_1 = 0.0689, wR_2 = 0.1594$	
Largest diff. peak and hole	0.585 and –0.408 e Å ⁻³	
CCDC No.	2182062	

Compound [5a]SbCl6		
Empirical formula	$C_{43}H_{42}BCl_{10}F_{10}N_3OSb$	
Formula weight	1293.85	
Temperature	–100 °C	
Crystal system	Monoclinic	
Space group	$P2_{1}/c$	
Unit cell dimensions	a = 21.093(7) Å	
	$b = 11.908(5)$ Å $\beta = 108.42(5)^{\circ}$.	
	c = 23.298 (14) Å	
Volume	5552(5) Å ³	
Z	4	
Density (calculated)	1.548 g cm ⁻³	
Absorption coefficient	1.047 mm ⁻¹	
<i>F</i> (000)	2580.0	
Crystal size	0.36×0.26×0.23 mm ³	
θ range for data collection	5.846 to 59.528°.	
Index ranges	-28<=h<=27, -15<=k<=13, -32<=l<=32	
Reflections collected	46335	
Independent reflections	14171 [$R(int) = 0.0233$]	
Completeness to $\theta = 25.242^{\circ}$	99.8%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.000 and 0.91904	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	14171/210/712	
Goodness-of-fit on F^2	1.044	
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0516$, w $R_2 = 0.1269$	
R indices (all data)	$R_1 = 0.0757, wR_2 = 0.1383$	
Largest diff. peak and hole	1.307 and -0.850 e Å ⁻³	
CCDC No	2182063	

Fig. S1 Structure of [5a]SbCl₆ (50% probability level). Hydrogen atoms are omitted.

Compound [5b]SbCl6		
Empirical formula	$C_{35}H_{26}BF_{10}N_3O_3SbCl_6$	
Formula weight	1071.85	
Temperature	−100 °C	
Crystal system	Monoclinic	
Space group	<i>P</i> 2 ₁ /n	
Unit cell dimensions	<i>a</i> = 18.0480(11) Å	
	b = 10.6917(7) Å	$\beta = 102.647(6)^{\circ}$.
	<i>c</i> = 21.8391(12) Å	
Volume	4111.9(4) Å ³	
Z	4	
Density (calculated)	1.731 g cm ⁻³	
Absorption coefficient	1.146 mm ⁻¹	
<i>F</i> (000)	2116	
Crystal size	0.070×0.070×0.050 mm ³	
θ range for data collection	2.767 to 27.481°.	
Index ranges	-23<=h<=22, -13<=k<=13, -25<=l<=28	
Reflections collected	34211	
Independent reflections	9429 [<i>R</i> (int) = 0.0601]	
Completeness to $\theta = 25.242^{\circ}$	99.9 %	
Absorption correction	Semi-empirical from equiva	lents
Max. and min. transmission	1.0000 and 0.51931	
Refinement method	Full-matrix least-squares on	F^2
Data / restraints / parameters	9429 / 0 / 537	
Goodness-of-fit on F^2	1.013	
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0513, wR_2 = 0.0841$	
R indices (all data)	$R_1 = 0.0967, wR_2 = 0.0949$	
Largest diff. peak and hole	0.662 and -0.487 e Å ⁻³	
CCDC No	2182064	

Fig. S2 Structure of [5b]SbCl₆ (50% probability level). Hydrogen atoms are omitted.

Fig. S3 ESR spectrum of [5a]SbCl₆ in CH₂Cl₂ at -150 °C.

Fig. S4 ESR spectrum of [5b]SbCl₆ in CH₂Cl₂ at -150 °C.

Fig. S5 ESR spectrum of [5a]SbCl₆ in the solid state at 25 °C.

Fig. S6 ESR spectrum of [5b]SbCl₆ in the solid state at 25 °C.

Fig. S7 ESR spectrum of [5a]SbCl₆ in the solid state at -150 °C.

Fig. S8 ESR spectrum of [5b]SbCl₆ in the solid state at -150 °C.

Computational data Cartesian coordinates of **4a**

С	-0.6126	-2 31438	-1 46247
C	0.303218	-0.48229	-0 28994
C	0.616315	-2 50368	-2 12574
C	1 518538	-0 59159	-0.92914
н	0.091863	0.301294	0.423635
n C	1 653593	-1 64324	-1.86
н	0.736159	-3 28518	-2.85817
н	2 596197	1 76561	2.00017
N	0.71670	1 30036	0.57265
IN N	1 91447	-1.30930	-0.37203
N O	-1.01447	-2.93433	-1.03103
0	-2.00043	-2.33303	-0.38288
C	-2.06543	-4.35846	-1.96/24
C	-1.35/81	-4.72927	-3.27486
C	-1.59997	-5.25381	-0.81498
С	-3.57717	-4.4899	-2.18434
Н	-1.49046	-3.95122	-4.03211
Н	-0.29244	-4.92659	-3.13958
Н	-1.79971	-5.65152	-3.66054
Н	-2.08249	-4.9542	0.116963
Н	-1.85003	-6.29869	-1.0221
Н	-0.51596	-5.18424	-0.67703
Н	-3.80774	-5.51564	-2.48544
Н	-4.12835	-4.25616	-1.27462
Н	-3.9105	-3.806	-2.96904
В	-2.23247	-1.22891	-0.06974
С	-2.34266	-1.26672	1.549153
С	-3.18666	-0.4901	2.334054
С	-1.59163	-2.20585	2.25197
С	-3.26959	-0.61176	3.714977
С	-1.64235	-2.36071	3.627377
С	-2.49072	-1.55192	4.366388
С	-2.90036	0.066663	-0.82313
С	-3.77086	-0.02573	-1.90231

С	-2.56574	1.364952	-0.45565
С	-4.27261	1.086717	-2.57026
С	-3.03786	2.497582	-1.09215
С	-3.903	2.356668	-2.16586
F	-4.17927	-1.21218	-2.37292
F	-1.73591	1.571334	0.59009
F	-3.99207	0.428461	1.782881
F	-0.756	-3.03204	1.594234
F	-0.88961	-3.27621	4.241627
F	-2.55855	-1.68236	5.689397
F	-4.09817	0.164255	4.415466
F	-2.66961	3.720213	-0.68671
F	-4.36912	3.43138	-2.79971
F	-5.10334	0.93638	-3.60407
Ν	2.53252	0.358146	-0.7135
С	2.117345	1.695515	-0.43355
С	3.877505	-0.03353	-0.52109
С	2.426053	2.312663	0.776866
С	1.321969	2.375524	-1.35089
С	4.914148	0.832889	-0.88161
С	4.210997	-1.27283	0.020782
С	1.915114	3.570188	1.064381
Н	3.050047	1.795656	1.498847
С	0.801444	3.625383	-1.04258
Н	1.08789	1.907507	-2.30201
С	6.234033	0.459232	-0.6984
Н	4.675985	1.802067	-1.30652
С	5.543907	-1.63956	0.180246
Н	3.428092	-1.95618	0.332653
С	1.074552	4.249488	0.175694
Н	2.154938	4.01383	2.025243
Н	0.166948	4.111865	-1.77302
С	6.589677	-0.78765	-0.16902

н	7.009075	1 161441	-0.99003
	1.007075	1.101771	-0.77003
Н	5.753104	-2.61405	0.60543
С	8.066655	-1.15657	0.003307
С	8.248	-2.55656	0.601175
С	8.766841	-1.12533	-1.36706
С	8.743088	-0.14238	0.942936
Н	7.796085	-2.63642	1.594971
Н	7.812077	-3.33158	-0.03736
Н	9.314906	-2.77689	0.705433
Н	8.707965	-0.13673	-1.83148
Н	9.826884	-1.37987	-1.25946
Н	8.312428	-1.84543	-2.05502
Н	9.802465	-0.38977	1.071704
Н	8.685221	0.877023	0.550624

Н	8.270003	-0.14793	1.929996
С	0.437234	5.582431	0.579651
С	-0.30225	6.247897	-0.58813
С	-0.58148	5.301863	1.700833
С	1.509882	6.561337	1.085352
Н	0.365956	6.439795	-1.43438
Н	-1.14069	5.639898	-0.93755
Н	-0.70892	7.210125	-0.26184
Н	-0.09643	4.878141	2.585745
Н	-1.08373	6.227567	2.002898
Н	-1.34073	4.592025	1.359657
Н	1.045092	7.50917	1.376425
Н	2.043491	6.177319	1.959176
Н	2.249246	6.772038	0.305796

Fig. S9 DFT-optimized structure of **4a**. Selected bond lengths (Å): N1-O1 1.410, C1-N1 1.363, O1-B1 1.467, N2-B1 1.599, C2-N3 1.406.

Cartesian coordinates of 4b				
С	-0.4726	-2.22231	-1.0556	
С	0.583693	-0.33992	-0.09987	
С	0.744836	-2.60473	-1.64724	
С	1.800954	-0.64012	-0.67694	

Н	0.430763	0.538791	0.508387
С	1.851289	-1.81079	-1.46425
Н	0.80879	-3.48488	-2.26631
Н	2.786996	-2.08693	-1.93741

Ν	-0.50429	-1.09704	-0.32016
Ν	-1.72603	-2.76026	-1.17734
0	-2.54545	-2.14943	-0.20165
С	-2.0616	-4.20424	-1.2764
С	-1.41046	-4.81199	-2.5238
С	-1.61528	-4.93338	-0.00539
С	-3.58304	-4.28382	-1.44417
Н	-1.52289	-4.15158	-3.38836
Н	-0.35332	-5.0453	-2.38183
Н	-1.90987	-5.75649	-2.75464
Н	-2.03852	-4.44897	0.87666
Н	-1.94552	-5.97626	-0.02883
Н	-0.52428	-4.92573	0.089955
Н	-3.87278	-5.32903	-1.58438
Н	-4.09827	-3.88836	-0.57003
Н	-3.90083	-3.70658	-2.31586
В	-2.03534	-0.80409	0.063105
С	-2.21797	-0.48611	1.640359
С	-2.98423	0.536749	2.186487
С	-1.61337	-1.32756	2.571406
С	-3.13506	0.727666	3.553877
С	-1.73693	-1.17274	3.942254
С	-2.50617	-0.13191	4.437345
С	-2.55271	0.337579	-0.99615
С	-3.4369	0.093263	-2.03976
С	-2.05223	1.633077	-0.95098
С	-3.78339	1.05816	-2.98028
С	-2.35789	2.620327	-1.8696
С	-3.238	2.326761	-2.89994
F	-4.01352	-1.10499	-2.20546
F	-1.20737	1.983604	0.042839
F	-3.64072	1.402314	1.40252
F	-0.85432	-2.35897	2.157827
F	-1.12622	-2.01008	4.783966
F	-2.64012	0.036914	5.751095

F	-3.88397	1.728033	4.020674
F	-1.81373	3.838745	-1.77833
F	-3.55269	3.255722	-3.80121
F	-4.63415	0.764855	-3.9664
Ν	2.909276	0.20418	-0.5338
С	2.715475	1.600544	-0.31922
С	4.220231	-0.3425	-0.46656
С	3.415991	2.274037	0.674302
С	1.806351	2.320432	-1.10404
С	5.257105	0.22762	-1.21419
С	4.502549	-1.44181	0.33716
С	3.226793	3.638014	0.88469
Н	4.123664	1.731064	1.291664
С	1.58223	3.663316	-0.87581
Н	1.254372	1.812702	-1.88811
С	6.53608	-0.28947	-1.15055
Н	5.047673	1.087136	-1.84216
С	5.784419	-1.98506	0.387591
Н	3.71211	-1.88463	0.934909
С	2.299157	4.337315	0.117195
Н	3.79508	4.133035	1.662312
Н	0.844804	4.209939	-1.45271
С	6.810363	-1.40516	-0.35351
Н	7.346753	0.147083	-1.72355
Н	5.967764	-2.84465	1.020228
0	8.096087	-1.8432	-0.37084
0	2.021669	5.659563	0.254247
С	2.692547	6.378516	1.265266
Н	2.317088	7.400503	1.20974
Н	2.478879	5.968813	2.25997
Н	3.777668	6.383627	1.104306
С	8.429511	-2.95763	0.427603
Н	9.493278	-3.13599	0.269373
Н	8.250931	-2.75877	1.491272
Н	7.86571	-3.84998	0.129392

Fig. S10 DFT-optimized structure of **4b**. Selected bond lengths (Å): N1-O1 1.413, C1-N1 1.369, O1-B1 1.463, N2-B1 1.605, C2-N3 1.401.

	e		
С	-0.58405	-2.48737	-1.02083
С	0.243037	-0.50272	-0.07717
С	0.716039	-2.87456	-1.42014
С	1.561434	-0.80166	-0.4753
Н	-0.00656	0.405447	0.454014
С	1.766029	-2.04774	-1.13683
Н	0.879	-3.79879	-1.95433
Н	2.765774	-2.32467	-1.44732
Ν	-0.75759	-1.31522	-0.3512
Ν	-1.76865	-3.09415	-1.18555
0	-2.77909	-2.42614	-0.61799
С	-2.11947	-4.3688	-1.89773
С	-1.74504	-4.19339	-3.3738
С	-1.37486	-5.52502	-1.2223
С	-3.62832	-4.57755	-1.77073
Н	-2.26874	-3.33154	-3.79539
Н	-0.67134	-4.06241	-3.52853
Н	-2.05095	-5.0859	-3.92488
Н	-1.60764	-5.56105	-0.1549

Cartesian	со	oordinates	of	5a

Н	-1.7016	-6.46389	-1.67566
Н	-0.29078	-5.4661	-1.33947
Н	-3.88156	-5.49256	-2.31111
Н	-3.93392	-4.69525	-0.72987
Н	-4.18495	-3.74734	-2.20644
В	-2.32387	-1.08449	-0.08488
С	-2.66978	-1.03308	1.48201
С	-3.56708	-0.16205	2.091082
С	-2.09695	-1.97993	2.327222
С	-3.85413	-0.20459	3.449035
С	-2.35352	-2.05872	3.683814
С	-3.24356	-1.15674	4.249633
С	-2.77888	0.140532	-1.03988
С	-3.40444	-0.00756	-2.27222
С	-2.46067	1.450359	-0.69542
С	-3.726	1.067169	-3.09299
С	-2.7525	2.546488	-1.48429
С	-3.39939	2.353506	-2.69687
F	-3.71328	-1.22427	-2.75414

F	-1.80994	1.692733	0.46286
F	-4.21119	0.767837	1.378914
F	-1.23875	-2.88964	1.816232
F	-1.76486	-2.98367	4.43719
F	-3.50914	-1.2093	5.546183
F	-4.71405	0.656285	3.981575
F	-2.40457	3.77594	-1.09832
F	-3.68378	3.388393	-3.47397
F	-4.32519	0.863244	-4.26117
Ν	2.551986	0.106493	-0.24673
С	2.184713	1.484322	-0.07914
С	3.928544	-0.2629	-0.17555
С	2.484988	2.159257	1.100371
С	1.473433	2.128347	-1.08743
С	4.887315	0.518227	-0.8209
С	4.327619	-1.37424	0.561622
С	2.028172	3.456342	1.27457
Н	3.048439	1.661435	1.882794
С	1.025681	3.427836	-0.89573
Н	1.268717	1.611428	-2.02021
С	6.223432	0.169995	-0.73366
Н	4.582293	1.390024	-1.38945
С	5.673789	-1.71075	0.632167
Н	3.593609	-1.96344	1.102764
С	1.274767	4.117013	0.293877
Н	2.247427	3.955408	2.211472
Н	0.468021	3.903606	-1.692
С	6.653919	-0.95165	-0.0108

Н	6.950132	0.789661	-1.24751
Н	5.954247	-2.57602	1.219402
С	8.145192	-1.2915	0.054622
С	8.417637	-2.54698	0.891026
С	8.6716	-1.53513	-1.37183
С	8.906219	-0.1121	0.687822
Н	8.09538	-2.4254	1.930098
Н	7.924097	-3.43156	0.475612
Н	9.492089	-2.74932	0.904659
Н	8.549372	-0.65604	-2.01105
Н	9.739005	-1.77427	-1.34041
Н	8.151793	-2.37309	-1.84701
Н	9.975189	-0.34098	0.737862
Н	8.792769	0.808774	0.108703
Н	8.554446	0.083855	1.70548
С	0.693408	5.506387	0.5662
С	0.145901	6.163214	-0.70799
С	-0.46753	5.332259	1.565557
С	1.761456	6.436763	1.164801
Н	0.916728	6.259088	-1.47983
Н	-0.70023	5.610402	-1.12481
Н	-0.21144	7.169324	-0.47199
Н	-0.12021	4.916905	2.516831
Н	-0.9362	6.299543	1.772634
Н	-1.23078	4.661206	1.159237
Н	1.330317	7.426551	1.341259
Н	2.143154	6.076817	2.124008
Н	2.610499	6.556072	0.484386

Fig. S11 DFT-optimized structure of **5a**. Selected bond lengths (Å): N1-O1 1.338, C1-N1 1.341, O1-B1 1.514, N2-B1 1.605, C2-N3 1.363.

С	-0.53966	-2.35678	-0.65342
С	0.524992	-0.3928	0.088976
С	0.705055	-2.90643	-1.06065
С	1.785194	-0.8639	-0.30668
Н	0.386516	0.576058	0.548199
С	1.836212	-2.16812	-0.88443
Н	0.754197	-3.88226	-1.51998
Н	2.790067	-2.56613	-1.20799
Ν	-0.56807	-1.10689	-0.10539
Ν	-1.77012	-2.8562	-0.71572
0	-2.69445	-2.03443	-0.16505
С	-2.26584	-4.16658	-1.25063
С	-1.9619	-4.20666	-2.75252
С	-1.58997	-5.30343	-0.47674
С	-3.77777	-4.22412	-1.03093
Н	-2.43662	-3.36012	-3.25419
Н	-0.89094	-4.18841	-2.97024
Н	-2.3673	-5.12997	-3.17355
Н	-1.78229	-5.20647	0.59491

Cartesian	coordinates	of 5b
-----------	-------------	-------

Н	-2.00795	-6.25512	-0.81372
Н	-0.50992	-5.3485	-0.63258
Н	-4.13567	-5.17202	-1.43972
Н	-4.0324	-4.1861	0.029334
Н	-4.28682	-3.40654	-1.54108
В	-2.10903	-0.67365	0.078537
С	-2.43889	-0.23732	1.585799
С	-3.22009	0.847399	1.968428
С	-1.96997	-1.03066	2.629749
С	-3.5035	1.140631	3.295712
С	-2.22714	-0.77505	3.964751
С	-3.00399	0.325264	4.298627
С	-2.41713	0.36499	-1.13315
С	-3.09519	0.045897	-2.30313
С	-1.89706	1.654063	-1.0935
С	-3.26532	0.943021	-3.3517
С	-2.02638	2.574003	-2.11679
C	-2.72684	2.215255	-3.26015
F	-3.60889	-1.18132	-2.50042

F	-1.19541	2.050043	-0.00833
F	-3.74792	1.667569	1.053658
F	-1.21606	-2.11432	2.351302
F	-1.74152	-1.56697	4.917811
F	-3.26539	0.593524	5.570007
F	-4.2519	2.193417	3.608251
F	-1.46953	3.782941	-2.02271
F	-2.86214	3.076462	-4.25875
F	-3.92227	0.5767	-4.44753
Ν	2.898428	-0.07167	-0.16519
С	2.772748	1.345359	-0.13227
С	4.192932	-0.65363	-0.04473
С	3.492239	2.089014	0.803752
С	1.920285	2.006191	-1.0308
С	5.254198	-0.15072	-0.79518
С	4.411067	-1.71748	0.841021
С	3.35404	3.466336	0.86189
Н	4.150296	1.584061	1.502195
C	1.764895	3.372053	-0.96593
Н	1.385978	1.441438	-1.78764

С	6.520226	-0.70418	-0.68082
Н	5.08564	0.672337	-1.48108
С	5.666997	-2.27188	0.95659
Н	3.596377	-2.08972	1.453856
С	2.481429	4.119116	-0.01778
Н	3.913466	4.022041	1.603217
Н	1.08799	3.890949	-1.63434
С	6.735731	-1.77322	0.195721
Н	7.328134	-0.30407	-1.2796
Н	5.861309	-3.08623	1.644987
0	2.266047	5.440019	-0.03628
0	7.91513	-2.38149	0.383088
С	2.95138	6.26887	0.892246
Н	2.616438	7.283838	0.685157
Н	2.693777	6.00239	1.92249
Н	4.035332	6.205865	0.750977
С	9.051215	-1.92553	-0.33778
Н	9.87776	-2.55793	-0.01799
Н	8.903702	-2.03594	-1.41717
Н	9.276665	-0.88115	-0.09826

Fig. S12 DFT-optimized structure of 5b. Selected bond lengths (Å): N1-O1 1.354, C1-N1 1.329, O1-B1 1.501,

N2-B1 1.611, C2-N3 1.374.

Cartesian coordinates of 6a

С	-0.6519	-2.22026	-1.44801
С	0.240758	-0.39521	-0.25438
С	0.627378	-2.53905	-1.9918
С	1.541382	-0.64502	-0.77522
Н	0.045596	0.404045	0.449606
С	1.704834	-1.77377	-1.64043
Н	0.741041	-3.35577	-2.68999
Н	2.680778	-1.99189	-2.05885
N	-0.78184	-1.14983	-0.58308
N	-1.83437	-2.81332	-1.6111
0	-2.81728	-2.24046	-0.92336
С	-2.21966	-4.05442	-2.42265
С	-1.95207	-3.73329	-3.90514
С	-1.39073	-5.23878	-1.89176
С	-3.71582	-4.31067	-2.20177
Н	-2.53121	-2.86102	-4.22241
Н	-0.8956	-3.55893	-4.1277
Н	-2.27416	-4.59062	-4.50307
Н	-1.52536	-5.35513	-0.81239
Н	-1.74793	-6.14975	-2.38019
Н	-0.32251	-5.15217	-2.10771
Н	-3.98836	-5.17775	-2.80959
Н	-3.9418	-4.54051	-1.15812
Н	-4.32558	-3.46192	-2.51732
В	-2.34706	-1.00995	-0.14302
С	-2.56587	-1.31552	1.417483
С	-3.4433	-0.62305	2.259908
С	-1.92154	-2.41554	2.000837
С	-3.63795	-0.97482	3.59611
С	-2.08146	-2.79856	3.325524
С	-2.95412	-2.06704	4.132095
С	-2.91164	0.356595	-0.79513

С	-3.74506	0.427675	-1.91581
С	-2.53319	1.589409	-0.25668
С	-4.19864	1.637264	-2.44712
С	-2.94774	2.813095	-0.76034
С	-3.79711	2.838521	-1.86745
F	-4.14412	-0.68808	-2.55428
F	-1.70136	1.61647	0.820798
F	-4.14099	0.428526	1.81052
F	-1.08363	-3.17005	1.239101
F	-1.42606	-3.84944	3.817438
F	-3.13059	-2.40713	5.399681
F	-4.466	-0.27271	4.36147
F	-2.52818	3.958052	-0.20492
F	-4.20046	3.997267	-2.3711
F	-4.99129	1.645118	-3.51454
Ν	2.562507	0.210847	-0.43858
С	2.250929	1.573214	-0.20073
С	3.899047	-0.23261	-0.32886
С	2.788178	2.246345	0.917076
С	1.369608	2.250179	-1.07264
С	4.952508	0.600726	-0.76804
С	4.191904	-1.49107	0.237783
С	2.396096	3.547054	1.173433
Н	3.454082	1.726161	1.597869
С	1.010038	3.560492	-0.80662
Н	1.022271	1.761952	-1.97845
С	6.258393	0.165597	-0.6499
Н	4.731853	1.555959	-1.23269
С	5.509899	-1.89982	0.356223
Н	3.394165	-2.11114	0.635599
С	1.490399	4.244122	0.331786
Н	2.7803	4.033858	2.062679

Н	0.356953	4.06993	-1.50371
С	6.584145	-1.09239	-0.08463
Н	7.050671	0.808976	-1.01596
Н	5.712647	-2.85489	0.824773
С	8.043958	-1.52357	0.033155
С	8.200995	-2.91021	0.684535
С	8.665377	-1.57082	-1.39041
С	8.808373	-0.48015	0.892444
Н	7.810614	-2.933	1.708334
Н	7.710162	-3.69869	0.102717
Н	9.263312	-3.16445	0.739447
Н	8.637834	-0.59788	-1.89111
Н	9.714892	-1.8719	-1.31232
Н	8.151318	-2.29987	-2.02588
Н	9.857802	-0.78121	0.972139

Н	8.786349	0.521703	0.451914
Н	8.396442	-0.41987	1.905425
С	1.030527	5.653673	0.691935
С	0.215312	6.314626	-0.43675
С	0.121352	5.52459	1.949735
С	2.247747	6.554045	1.019415
Н	0.792767	6.399928	-1.36454
Н	-0.71471	5.775668	-0.64499
Н	-0.06269	7.327837	-0.13287
Н	0.660033	5.104779	2.80576
Н	-0.23775	6.518993	2.234716
Н	-0.74906	4.893233	1.74188
Н	1.892242	7.556215	1.278005
Н	2.830328	6.189643	1.871276
Н	2.917974	6.647124	0.158136

Fig. S13 DFT-optimized structure of **6a**. Selected bond lengths (Å): N1-O1 1.329, C1-N1 1.333, O1-B1 1.531, N2-B1 1.632, C2-N3 1.374.

Cartesian coordinates of 6b

С	-0.52975	-2.15062	-1.12506
С	0.560026	-0.34775	-0.0626
С	0.700133	-2.6115	-1.68177

С	1.816417	-0.75169	-0.58073
Н	0.450897	0.507666	0.590985
С	1.847792	-1.92244	-1.40345

Н	0.721866	-3.47076	-2.33634
Н	2.785783	-2.2457	-1.84025
Ν	-0.54135	-1.00463	-0.35235
Ν	-1.76015	-2.6535	-1.20745
0	-2.67237	-1.93909	-0.54185
С	-2.27655	-3.9061	-1.91697
С	-2.08393	-3.67886	-3.42865
С	-1.50118	-5.12165	-1.37779
С	-3.7689	-4.0488	-1.59034
Н	-2.61683	-2.77984	-3.7513
Н	-1.03271	-3.59419	-3.72019
Н	-2.50434	-4.5361	-3.96231
Н	-1.59399	-5.19247	-0.28995
Н	-1.93891	-6.0239	-1.81405
Н	-0.44082	-5.1171	-1.64303
Н	-4.13132	-4.93747	-2.11435
Н	-3.94043	-4.18886	-0.52056
Н	-4.3446	-3.187	-1.93139
В	-2.09532	-0.63438	-0.00512
С	-2.36551	-0.56924	1.569921
С	-3.15988	0.383746	2.216394
С	-1.8493	-1.57975	2.391724
С	-3.40671	0.350097	3.589106
С	-2.06591	-1.64925	3.761385
С	-2.85748	-0.67079	4.364725
С	-2.48381	0.61325	-0.96631
С	-3.29706	0.53626	-2.1015
С	-1.93709	1.874823	-0.71833
С	-3.56929	1.636645	-2.91755
С	-2.16066	2.98924	-1.51335
С	-2.99568	2.871694	-2.62514
F	-3.85323	-0.63077	-2.48227
F	-1.1132	2.041902	0.353157
F	-3.72379	1.386031	1.527715
F	-1.08563	-2.55666	1.835106
F	-1.53484	-2.63157	4.489882

F	-3.08177	-0.7104	5.670634
F	-4.15694	1.286951	4.161475
F	-1.5645	4.155787	-1.23486
F	-3.22216	3.921261	-3.40376
F	-4.35241	1.502224	-3.98409
Ν	2.942901	-0.00029	-0.30072
С	2.831505	1.391654	-0.10503
С	4.21065	-0.61363	-0.21192
С	3.592601	2.024808	0.907458
С	1.939251	2.164162	-0.89548
С	5.343441	0.029452	-0.76273
С	4.358633	-1.86757	0.433233
С	3.455795	3.377888	1.142051
Н	4.248973	1.433692	1.537046
С	1.795154	3.509972	-0.66228
Н	1.397043	1.699473	-1.71261
С	6.590551	-0.56001	-0.6867
Н	5.225172	0.970597	-1.28941
С	5.599833	-2.45063	0.523595
Н	3.503075	-2.34338	0.902017
С	2.549669	4.142925	0.362323
Н	4.020562	3.839918	1.942649
Н	1.114266	4.115267	-1.25031
С	6.738669	-1.8112	-0.03894
Н	7.441663	-0.06898	-1.14253
Н	5.745452	-3.39155	1.043243
0	2.336391	5.438308	0.506272
0	7.879926	-2.46479	0.09729
С	3.057492	6.212179	1.490451
Н	2.694599	7.231	1.368462
Н	2.829584	5.85102	2.497543
Н	4.132531	6.169718	1.29346
С	9.1181	-1.91576	-0.40427
Н	9.87881	-2.64831	-0.14091
Н	9.069266	-1.80015	-1.49103
Н	9.333544	-0.95928	0.080731

Fig. S14 DFT-optimized structure of **6b**. Selected bond lengths (Å): N1-O1 1.336, C1-N1 1.332, O1-B1 1.524, N2-B1 1.635, C2-N3 1.383.

С	-3.68884	-0.69861	-0.24835
С	-1.53983	-1.3227	-0.74379
С	-3.23131	0.450662	0.40795
С	-0.97237	-0.21159	-0.10455
Н	-0.89655	-2.05776	-1.2206
С	-1.8705	0.68414	0.481284
Н	-3.9038	1.162895	0.863438
Н	-1.50313	1.566992	0.99222
Ν	-2.8392	-1.56042	-0.80621
Ν	-5.06497	-1.03184	-0.38901
0	-5.36489	-2.05398	-1.11284
С	-6.19442	-0.29542	0.277416
С	-6.00575	-0.29594	1.800336
С	-6.32403	1.119987	-0.30345
С	-7.48302	-1.05686	-0.04126
Н	-5.94133	-1.32395	2.168001
Н	-5.11411	0.236886	2.134079
Н	-6.87188	0.178829	2.270978

Н	-6.50298	1.064446	-1.38101
Н	-7.17843	1.624822	0.157235
Н	-5.44379	1.744422	-0.1422
Н	-8.32163	-0.51299	0.403936
Н	-7.64308	-1.13794	-1.11617
Н	-7.46067	-2.06721	0.370201
Ν	0.418152	-0.01395	-0.0616
С	1.30619	-1.12187	-0.01674
С	0.956223	1.30011	-0.04935
С	2.443698	-1.14909	-0.82406
С	1.074953	-2.19682	0.83874
С	1.961446	1.645432	0.856212
С	0.505654	2.269983	-0.94143
С	3.320729	-2.22111	-0.76515
Н	2.639489	-0.32146	-1.49765
С	1.951504	-3.27422	0.8716
Н	0.200435	-2.19183	1.481078
С	2.495915	2.923535	0.855362

Cartesian coordinates of 11a

Н	2.324237	0.901732	1.557894
С	1.037513	3.554561	-0.91756
Н	-0.26739	2.01719	-1.65984
С	3.100976	-3.31394	0.080177
Н	4.190273	-2.20439	-1.41369
Н	1.729615	-4.08778	1.551948
С	2.047378	3.914827	-0.02528
Н	3.277279	3.153712	1.573276
Н	0.65539	4.276731	-1.62929
С	2.662553	5.317558	0.021062
С	2.049749	6.254851	-1.02599
С	2.428837	5.933369	1.412227
С	4.17549	5.224412	-0.2461
Н	2.206105	5.885022	-2.04432
Н	0.974545	6.390449	-0.87165
Н	2.519708	7.24086	-0.95706
Н	2.878156	5.328479	2.205101
Н	2.870972	6.934299	1.465456

Н	1.358866	6.022507	1.625581
Н	4.630733	6.22018	-0.20966
Н	4.682022	4.599926	0.49532
Н	4.372412	4.796302	-1.23409
С	4.054653	-4.51431	0.070284
С	3.85802	-5.41506	1.297112
С	3.78494	-5.34594	-1.1971
С	5.520082	-4.04653	0.06359
Н	4.001399	-4.86127	2.230644
Н	2.863998	-5.87133	1.318899
Н	4.586814	-6.23132	1.275028
Н	3.944331	-4.75165	-2.10228
Н	4.453551	-6.21322	-1.23873
Н	2.752766	-5.7096	-1.21417
Н	6.188914	-4.913	0.095896
Н	5.771669	-3.47764	-0.83529
Н	5.737722	-3.41771	0.932842

Fig. S15 DFT-optimized structure of 11a. Selected bond lengths (Å): N1-O1 1.288, C1-N1 1.423, C2-N3 1.405.

Cartesian coordinates of 11b

С	-3.15902	-0.16605	-0.39608
С	-1.07929	-1.0283	-0.82993
С	-2.60692	0.899637	0.329455
С	-0.41566	-0.01993	-0.09965
Н	-0.50026	-1.81212	-1.31282
С	-1.22884	0.963907	0.487216
Н	-3.23482	1.679898	0.743644
Н	-0.78053	1.781134	1.042545
N	-2.39865	-1.10621	-0.96783
N	-4.56153	-0.27056	-0.64452
0	-4.92304	-0.55998	-1.84168
С	-5.64889	-0.07688	0.381647
С	-5.13071	-0.35883	1.80092
С	-6.19997	1.356217	0.251417
С	-6.75887	-1.0908	0.049147
Н	-4.67479	-1.35275	1.860704
Н	-4.39913	0.373925	2.148497
Н	-5.97739	-0.33376	2.4953
Н	-6.508	1.541984	-0.78213
Н	-7.0703	1.490698	0.903697
Н	-5.45335	2.10861	0.528344
Н	-7.57884	-0.97494	0.766065
Н	-7.14064	-0.93557	-0.96025
Н	-6.37955	-2.11562	0.116381
Ν	0.98571	-0.00208	0.02111
С	1.724562	-1.22215	0.066889
С	1.690461	1.236316	0.088096
С	2.86732	-1.39372	-0.72024

568 705 736 01 04 553 578 774 377
705 36 01 04 553 378 974 377
36 01 04 553 378 974 377
01 04 553 378 974 377
04 553 378 974 377
553 378 974 377
378 974 377
974 377
377
2
36
02
13
718
731
3
65
35
387
55
22
07
58
65
17
39
10

Fig. S16 DFT-optimized structure of 11b. Selected bond lengths (Å): N1-O1 1.284, C1-N1 1.428, C2-N3 1.407.

С	0.195394	2.312463	0.991988
С	0.110854	0.632649	2.612248
С	0.229828	3.319602	1.946758
С	0.157026	1.579896	3.621358
Н	0.044417	-0.43365	2.791489
С	0.213302	2.92903	3.279869
Н	0.272196	4.362354	1.670789
Ν	0.130702	1.01207	1.332328
Ν	0.223576	2.418288	-0.39354
0	0.198018	1.255677	-0.97632
С	0.270906	3.639384	-1.27944
С	-1.01491	4.434879	-1.02589
С	1.548327	4.418552	-0.94883
С	0.308633	3.154025	-2.72743
Н	-1.8923	3.815686	-1.22983
Н	-1.08613	4.825674	-0.00852
Н	-1.03237	5.28884	-1.70705
Н	2.428215	3.775904	-1.03665
Н	1.648176	5.233347	-1.6696

Curresture coordinates of 12

Н	1.53946	4.865731	0.046796
Н	0.314752	4.037972	-3.36868
Н	1.208347	2.572625	-2.93786
Н	-0.5668	2.551925	-2.97415
В	0.042279	0.090668	0.02556
С	1.329312	-0.84058	-0.147
С	1.316794	-2.16963	-0.56295
С	2.594428	-0.2927	0.058121
С	2.478173	-2.91348	-0.72672
С	3.774237	-0.9953	-0.09515
С	3.711245	-2.32508	-0.49102
С	-1.44164	-0.51466	-0.07067
С	-2.46437	-0.00391	-0.86176
С	-1.79085	-1.59639	0.730536
С	-3.73777	-0.55595	-0.89414
С	-3.04503	-2.1773	0.73273
С	-4.02832	-1.65119	-0.0961
F	-2.26804	1.082678	-1.63304
F	-0.86652	-2.11099	1.567667

F	0.169572	-2.79325	-0.8341
F	2.696695	1.007085	0.420399
F	4.947547	-0.41269	0.121651
F	4.822684	-3.02232	-0.64771
F	2.412323	-4.17889	-1.11572

F	-3.31519	-3.21084	1.518064
F	-5.23878	-2.18228	-0.10954
F	-4.67548	-0.02978	-1.67175
Н	0.145231	1.261595	4.656455
Н	0.2444	3.686257	4.055618

Fig. S17 DFT-optimized structure of **12**. Selected bond lengths (Å): N1-O1 1.301, C1-N1 1.390, O1-B1 1.544, N2-B1 1.601.

Cartesian coordinates of 13

С	-0.69671	0.232657	0.139845
С	-2.77775	0.97401	-0.40563
С	-1.17582	-1.04078	0.451358
С	-3.3579	-0.26242	-0.14603
Н	-3.38793	1.808524	-0.74394
С	-2.53154	-1.28752	0.29486
Н	-0.51238	-1.80449	0.836884
Ν	-1.47864	1.224294	-0.27363
Ν	0.677744	0.570261	0.311849
0	0.926823	1.66068	0.925807
С	1.842929	-0.23837	-0.16282

С	2.407569	-1.02848	1.023024
С	1.441075	-1.16034	-1.31556
С	2.891866	0.757563	-0.66863
Н	2.63088	-0.34665	1.847611
Н	1.701794	-1.78384	1.382151
Н	3.330442	-1.54063	0.734081
Н	0.960717	-0.59543	-2.11983
Н	2.344081	-1.6239	-1.72264
Н	0.768194	-1.96372	-1.01173
Н	3.774229	0.209892	-1.01202
Н	2.496942	1.341828	-1.50452

Н	3.184106	1.448331	0.121297
Н	-4.424	-0.40973	-0.27772

Cartesian coordinates of TEMPO

Fig. S18 DFT-optimized structure of 13. Selected bond lengths (Å): N1-O1 1.276, C1-N1 1.426.

С	-1.3322	-0.06919	-0.02897
С	-1.24669	1.402189	-0.48352
С	0	2.128882	0.024236
Н	-2.16143	1.913105	-0.15844
Н	-1.24404	1.432868	-1.58186
С	1.24669	1.402189	-0.48352
Н	0	2.184816	1.120185
Н	0	3.16475	-0.33635
С	1.332203	-0.06919	-0.02897
Н	2.161426	1.913105	-0.15844
Н	1.244043	1.432868	-1.58186
Ν	0	-0.74339	-0.20223
С	1.767158	-0.18376	1.44764
С	2.338199	-0.82465	-0.91306
С	-2.3382	-0.82465	-0.91306

С	-1.76716	-0.18376	1.44764
0	0	-2.01956	-0.0471
Н	-1.14961	0.427778	2.112554
Н	-1.69316	-1.22626	1.769549
Н	-2.80702	0.144137	1.558857
Н	-2.01861	-0.80986	-1.96053
Н	-3.32105	-0.34509	-0.84419
Н	-2.42649	-1.86556	-0.5969
Н	1.149614	0.427778	2.112554
Н	2.80702	0.144137	1.558857
Н	1.693162	-1.22626	1.769549
Н	2.018612	-0.80986	-1.96053
Н	2.426493	-1.86556	-0.5969
Н	3.321047	-0.34509	-0.84419

Fig. S19 DFT-optimized structure of TEMPO. Selected bond lengths (Å): N1-O1 1.286.

Fig. S20 UV-vis-NIR spectrum of [**5a**]SbCl₆ in CH₂Cl₂ and TD-DFT assignments for the longest and second longest absorption bands.

References

- S1. R. Duchateau, S. J. Lancaster, M. Thornton-Pett, M. Bochmann, Organometallics, 1997, 16, 4995-5005.
- S2. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
- S3. (a) G. M. Sheldrick, *Acta Cryst.*, 2008, A64, 112-122; (b) G. M. Sheldrick, *Acta Cryst.*, 2015, C71, 3-8.
- Gaussian 16, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- S5. (a) F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 73-78; (b) F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2017, 8, e1327.
- S6. NBO 7.0, E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2018.