Synthesis

All reagents and solvents were obtained from commercial sources and used without further treatment. Hsal ($122 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(0.2 \mathrm{ml}, 1.0 \mathrm{mmol})$ were added to $\mathrm{MeCN}(20 \mathrm{ml})$ and the solution kept under stirring for 10 minutes, followed by addition of $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(249 \mathrm{mg}, 1.0 \mathrm{mmol})$. The resultant pink solution was left under stirring for 30 minutes during which time no colour change was observed. The solution was then filtered and layered with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{ml})$. Pink crystals of $1 \cdot 16 \mathrm{MeCN}$ formed over 3 days in ~30\% yield. Anal. Calcd (found) for 1: C, 45.21; H, 3.37. Found: C, 44.93, H, 3.23.

Physical Measurements

Elemental analyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) were performed by the University of Ioannina microanalysis service.

X-ray diffraction

Single crystal X-ray diffraction data were collected on a Bruker D8 VENTURE diffractometer (University of Crete), equipped with a PHOTION II CPAD detector. Crystal data for 1 (CCDC 2178060): $\mathrm{C}_{176} \mathrm{Co}_{16} \mathrm{H}_{208} \mathrm{O}_{72}, M=4418.29 \mathrm{~g} / \mathrm{mol}$, tetragonal, space group $P 4 / n$ (no. 85), $a=$ 29.9250(6) $\AA, c=11.2727(3) \AA, V=10094.8(5) \AA^{3}, Z=2, T=200(2) K, \mu(C u K \alpha)=10.704 \mathrm{~mm}^{-1}, D c a l c=$ $1.454 \mathrm{~g} / \mathrm{cm}^{3}, 28843$ reflections measured ($4.176^{\circ} \leq 2 \Theta \leq 136.522^{\circ}$), 9197 unique ($R_{\text {int }}=0.0378, \mathrm{R}_{\text {sigma }}=$ 0.0405) which were used in all calculations. The final R_{1} was $0.0435(I>2 \sigma(I))$ and $w R_{2}$ was 0.1257 (all data).

Powder X-ray diffraction data for $\mathbf{1}$ were collected using a Bruker D8 ADVANCE with copper radiation at $40 \mathrm{kV}, 40 \mathrm{~mA}$ and a Johansson monochromator, 2 mm divergence slit and 2.5 degree Soller slits on the incident beam side. LynxEye detector and Bruker DIFFRAC software. Diffraction measured from $2 \theta=3^{\circ}-30^{\circ}$; step size, 0.0101°. Samples were loaded into quartz capillaries with a 1 mm inside diameter and measured while spinning.

Magnetic Measurements

Magnetic susceptibility data were collected on a polycrystalline sample of 1 on a Quantum Design Dynacool PPMS equipped with a 9 T magnet in the temperature range 300-2.00 K. Diamagnetic corrections were applied to the observed paramagnetic susceptibilities using Pascal's constants.

Computational Details

To estimate the intramolecular magnetic exchange interactions in $\mathbf{1}$ we have employed Density Functional Theory (DFT) in Gaussian 09 on a model complex (Model 1) created from the ASU of 1. ${ }^{1}$ We have performed pairwise exchange interaction calculations by keeping only the two paramagnetic centres of interest in Model 1, replacing the remaining Co" ions with diamagnetic $\mathrm{Zn}^{\prime \prime}$ ions. This method is known to reproduce experimental magnetic exchange values for systems with weak intramolecular magnetic exchange interactions $\left(J \leq 10 \mathrm{~cm}^{-1}\right) .{ }^{2}$ The hybrid B3LYP functional ${ }^{3}$ has been used together with the TZV basis set for Co, SVP basis set for Zn, O and SV basis set for C and H atoms. ${ }^{4}$ We have employed Noodleman's broken symmetry methodology. ${ }^{5}$

To calculate the zero field splitting (zfs) parameters for each Co" centre in the ASU we have used the ORCA software suite (version ORCA 4.0). ${ }^{6}$ The zeroth-order regular approximation (ZORA) method in combination with the ZORA contracted version of basis set (ZORA-def2-TZVP for Co and ZORA-def-SVP for rest of the elements) ${ }^{7}$ is known to be a reliable methodology to estimate zfs parameters. We have used the resolution of identity (RI) approximation. During state-average complete active space selfconsistent field (SA-CASSCF) calculations we have considered seven electrons in five d-orbitals (CAS (7 electrons / 5 3d-orbitals)) in the active space with ten triplet and fifteen singlet roots. We have used $2^{\text {nd }}$ order N -electron valence perturbation theory to estimate the zero-field splitting parameter as well as to consider the dynamic correlation. ${ }^{8}$ We have used integration Grid 6 for Co, Grid 5 for O and Zn , and Grid 4 for the remaining elements.

Fig. S1. (A) Molecular structure of $\mathbf{1}$ viewed perpendicular to the $\left[\mathrm{CO}_{16}\right]$ plane. (B) Asymmetric unit of 1. Both figures presented with atomic displacement parameters. Colour code: $\mathrm{Co}=$ pink, $\mathrm{O}=$ red, $\mathrm{C}=$ black, $\mathrm{H}=$ white.

Fig. S2. Powder diffraction data for compound 1 (top). Refinement of the experimental diffraction data of 1 collected at room temperature by using the Pawley method and the single-crystal structural model as starting parameters (bottom). Experimental (black circles), calculated (red line), difference plot [(lobs-Icalc)] (blue line) and Bragg positions (black ticks). Tetragonal, $P_{4} / n ; a=30.0816 \AA \AA ; c=$ $11.7914 \AA ̊ ; \alpha=\beta=\gamma=90^{\circ} ; \mathrm{R}_{\mathrm{exp}}=0.85 \%, \mathrm{R}_{\mathrm{wp}}=1.06 \%, \mathrm{GoF}=1.25$.

Fig. S3. FT-ATIR spectrum of $\mathbf{1}$

Table S1. Bond Valence Sum (BVS) calculations for the metal ions in 1.

	Co(II)	Co(III)
Co1	$\underline{2.16}$	2.20
Co2	$\underline{1.94}$	1.97
Co3	$\underline{2.12}$	2.16
Co4	$\underline{1.96}$	2.00

Fig. S4. (A) metal-oxygen core of complex 1, highlighting the ASU. The full structure (B) and metaloxygen core (C) of Model 1. The latter is the ASU of complex 1. Colour code: $\mathrm{Co}=$ pink, $\mathrm{O}=\mathrm{red}, \mathrm{Zn}=$ silver and $\mathrm{C}=$ black. H atoms are removed for clarity.

Table S2. Pertinent structural parameters for 1 alongside the DFT computed magnetic exchange interactions.

	Average Co-O-Co angle (${ }^{\circ}$)	Average Co-O distance (Å)	Average Co-O-Co-O angle (${ }^{\circ}$)	Average Co \cdots Co distance (Å)	$\mathrm{J}\left(\mathrm{cm}^{-1}\right)$ nearest neighbour
Co1-Co2	95.2	2.100	21.1	3.100	+3.2
Co2-Co3	96.4	2.089	22.1	3.113	+1.7
Co3-Co4	95.7	2.096	22.2	3.104	+2.5
Co4-Co1	96.8	2.084	22.4	3.114	+3.8

$<\operatorname{Co}(\alpha) \mathrm{d}_{\mathrm{yz}} \mid \mathrm{Co}(\beta) \mathrm{d}_{\mathrm{y} 2}>=0.012$
$\left\langle\operatorname{Co}(\alpha) \mathrm{d}_{\mathrm{yz}}\right|\left|\operatorname{Co}(\beta) \mathrm{d}_{\mathrm{x}}{ }^{2}-{ }^{2}{ }^{2}\right\rangle=0.020$

$<\operatorname{Co}(\alpha) \mathrm{d}_{\mathrm{x}-\mathrm{y}^{2}}{ }^{2}| | \operatorname{Co}(\beta) \mathrm{d}_{\mathrm{x}-\mathrm{y}^{2}}{ }^{2}>=0.044$

$$
<\mathrm{Co}(\alpha) \mathrm{d}_{\mathrm{z}}{ }^{2}| | \mathrm{Co}(\beta) \mathrm{d}_{\mathrm{yz}}>=0.003
$$

$\left\langle\operatorname{Co}(\alpha) \mathrm{d}_{\mathrm{x}}{ }^{2}{ }^{2}{ }^{2}\right|\left|\operatorname{Co}(\beta) \mathrm{d}_{\mathrm{z}}{ }^{2}\right\rangle=0.053$

$<\operatorname{Co}(\alpha) \mathrm{d}_{\mathrm{z}}{ }^{2}| | \mathrm{Co}(\beta) \mathrm{d}_{\mathrm{x}-\mathrm{y}}{ }^{2}{ }^{2}>=0.075$

Fig. S5. DFT computed overlap integral values together with the representative MO diagram. Three intermediate (green text) and six small (black text) overlap interactions are computed.

Table S3. SHAPE analysis ${ }^{9}$ performed on each Coll ion in the ASU of 1.

HP-6	1 D6h	Hexago				
PPY-6	$2 \mathrm{C5u}$	Pentagonal pyramid				
0C-6	3 0h	Octahedron				
TPR-6	4 D3h	Trigonal prism				
JPPY-6	$5 \mathrm{C5v}$	Johnso	pentagonal pyramid			
Structure [ML 6]	HP-6	PPY-6	0c-6	TPR-6	JPPY-6
Co1-Co16	,	30.213,	24.540,	1.659,	13.315,	27.817
Co2-Co16	,	29.535 ,	23.736,	0.969,	12.691,	27.326
Co3-Co16	,	29.945 ,	24.306,	1.695,	13.651,	27.604
Co4-Co16	,	29.275,	24.250,	0.878,	13.275,	27.920

Table S4. Ab initio NEVPT2 estimated anisotropy parameters (g, D and E / D) for each Co" ion in the ASU of 1. We include the d orbital energies, $d_{y z}=$ grey, $d_{x z}=$ pink, $d_{x y}=$ blue, $d_{z}^{2}=$ red and $d_{x}{ }^{2}-y^{2}=$ black.

	$g_{x x} g_{\text {yy }}, g_{z z}\left(g_{\text {iso }}\right)$	$D\left(\mathrm{~cm}^{-1}\right)$	E / D	NEVPT2 computed d orbital energies (cm^{-1})
Co1	1.902, 2.439, 2.930 (2.424)	87.1	0.24	0.0, 294.3, 842.8, 6467.4, 8226.7
Co2	2.057, 2.408, 2.562 (2.342)	41.2	0.23	0.0, 75.1, 1135.2, 7159.2, 9955.8
Co3	1.880, 2.471, 2.928 (2.426)	88.5	0.22	0.0, 287.4, 892.4, 6356.9, 8275.0
Co4	2.050, 2.437, 2.576 (2.354)	44.6	0.20	0.0, 105.5, 1001.4, 7256.7, 10037.3

Model 2. $J=-0.04 \mathrm{~cm}^{-1}$

Model 3. $J=-0.19 \mathrm{~cm}^{-1}$
D)

Fig. S6. The trimetallic Co-Zn-Co models employed to estimate the two unique next-nearest neighbour magnetic interactions present in 1. a) Model 2 where both next-nearest neighbour magnetic centres are not directly bridged by any functional group, and (b) Model 3 where both centres are bridged via two syn-anti-O-C-O(carboxylate) groups. (c-d) Spin density plots for models Model 2 and Model 3, respectively. Analysis further supports the presence of little/no magnetic interaction for the former and a very small interaction through the syn-anti-O-C-O(carboxylate) pathway for the latter.

Fig. S7. Ab initio NEVPT2 computed d-orbital splitting for each Co" ion in the ASU of 1. Easy-plane anisotropy $(+D)$ can be attributed to the electronic transitions between orbitals with different m_{L} levels $\left(d_{x z / y z} \rightarrow d_{x y / x^{2}-y^{2}}\right.$). Note that two electronic transitions $d_{x z / y z} \rightarrow d_{x y}$ (cyan curly arrow) and $d_{x z / y z} \rightarrow d_{x}^{2}-y^{2}$ (light green straight arrow) give positive D values with the dominant contribution arising from the $d_{x z / y z}$ $\rightarrow \mathrm{d}_{\mathrm{xy}}$ electronic transition. The magnitude of D is correlated to the energy separation between the orbitals involved in the electronic transition (i.e. between $d_{y z / x z}$ and $d_{x y / x^{2}-y^{2}}$).

Fig. S8. The NEVPT2 computed $D_{z z}$ axis (green bars) for Co1-Co4 centres in 1. The non-collinearity of the $D_{z z}$ axis of the Col centres can be attributed to the non-planar sinusoidal arrangement of metal centres.

References:

1. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision E.01, Wallingford CT, 2013.
2. M. K. Singh, A. Etcheverry-Berríos, J. Vallejo, S. Sanz, J. Martínez-Lillo, G. S. Nichol, P. J. Lusby and E. K. Brechin, Dalton Trans., 2022, 51, 8377-8381.
3. a) A. D. Becke, Phys. Rev. A, 1988, 38, 3098-3101; b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; c) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785.
4. a) A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571-2577; b) A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829; c) G. E. Scuseria and H. F. Schäfer, J. Chem. Phys., 1989, 90, 3700.
5. L. Noodleman, J. Chem. Phys., 1981, 74, 5737.
6. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73-78.
7. (a) K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, Chem. Phys. Lett., 1995, 242, 652-660; (b) K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, Theor. Chem. Acc., 1997, 97, 119-124.
8. (a) C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger and J.-P. Malrieu, J. Chem. Phys., 2001, 114, 10252; (b) C. Angeli, R. Cimiraglia and J.-P. Malrieu, J. Chem. Phys., 2002, 117, 9138; (c) C. Angeli, R. Cimiraglia and J.-P. Malrieu, Chem. Phys. Lett., 2001, 350, 297-305.
9. SHAPE, version 2.0; continuous shape measures calculation; Electronic Structure Group, Universiat de Barcelona: Barcelona, Spain, 2010.
